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Abstract
Vehicle ReID has been an active topic in computer vision,
with a substantial number of deep neural models proposed
as end-to-end solutions. In this paper, we solve the prob-
lem from a new perspective and present an interesting vari-
ant called human-in-the-loop vehicle ReID to leverage inter-
active (and possibly wrong) human feedback signal for per-
formance enhancement. Such human-machine cooperation
mode is orthogonal to existing ReID models. To avoid in-
cremental training overhead, we propose an Interaction ReID
Network (IRIN) that can directly accept the feedback sig-
nal as an input and adjust the embedding of query image in
an online fashion. IRIN is offline trained by simulating the
human interaction process, with multiple optimization strate-
gies to fully exploit the feedback signal. Experimental results
show that even by interacting with flawed feedback generated
by non-experts, IRIN still outperforms state-of-the-art ReID
models by a considerable margin. If the feedback contains no
false positive, IRIN boosts the mAP in Veri776 from 81.6%
to 95.2% with only 5 rounds of interaction per query image.

Introduction
Given a query image and an image gallery harnessed across
multiple surveillance cameras, vehicle ReID retrieves im-
ages that refer to the same real-world vehicle. The prob-
lem is challenging due to the presence of different view-
points (Lou et al. 2019), low-image resolution (Zhao et al.
2021), illumination changes (Liu et al. 2016a) and partial
occlusions (Rao et al. 2021; Zhang et al. 2022). To over-
come these challenges, state-of-the-art methods typically re-
sort to devising advanced neural networks (Rao et al. 2021;
Zhao et al. 2021) or effective loss functions (Yan et al.
2020; Quispe et al. 2021) to extract discriminative visual
features and establish remarkable performance in the bench-
mark datasets. Nonetheless, new breakthrough via model
improvement has become more and more challenging.

In this paper, we jump out of the box and propose a new
paradigm called human-in-the-loop vehicle ReID. It is or-
thogonal to existing ReID models and works in a human-
machine cooperative mode to leverage iterative feedback
for further performance improvement. Note that the qual-
ity of feedback could be unreliable, because identifying two
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Figure 1: An example of human-in-the-loop vehicle ReID.

matching vehicles through their appearance is also challeng-
ing for human beings1. Figure 1 depicts a toy example to
deliver the overall idea. In the initial step, a list of images
is returned and ranked by the similarity to the query image,
using any existing ReID models. Afterwards, users are al-
lowed to employ an operation to provide feedback signal on
the results. To avoid incurring cumbersome efforts for hu-
man intervention, we define the operation as picking a posi-
tive match from a small set of uncertain candidates. Our goal
is to develop a mechanism to effectively take advantage of
the feedback signal and update the order of images in the
rank list. In the next-round interaction, a new subset of un-
certain images will be selected for human verification. This
process is repeated until the final results are satisfactory or a
maximum number of iterations is reached.

A straightforward approach to leverage human feedback
is to treat the human-picked positive sample as a new ob-
servation and apply incremental learning to update the ReID
results. For instance, we can adopt the online incremental
learning framework proposed in (He et al. 2020) to main-
tain an exemplar set for each vehicle class. In each iteration,
this set is updated to incorporate new training samples de-
rived from human feedback. The network retains previous
knowledge as part of the final classifier and is re-trained us-

1The annotation of vehicle ReID benchmark datasets often
needs to rely on additional clues such as vehicle plate or travel
routes.
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ing the exemplar set. (Wu and Gong 2021) designs a more
comprehensive learning objective that incorporates the co-
herence of classification, distribution and representation in a
unified framework. The underlying motivation is to support
life-long ReID without forgetting. However, these incremen-
tal learning methods suffer from two major drawbacks when
applied in the online and interactive scenario of Figure 1.
First, the human feedback in each iteration is lightweight as
it only contains a “positive” sample selected from an uncer-
tain candidate set. Its effect is limited even with the assis-
tance of data augmentation. Second, it incurs additional on-
line training cost, which is not friendly for real-time human-
machine interaction.

To resolve these two issues, we propose a novel mech-
anism to better exploit the human feedback signal without
incurring additional training cost. Our idea is to devise a net-
work that accepts human feedback as part of the input and
dynamically adjusts the embedding of query image to reduce
its distance to the positive samples. To achieve the goal, we
propose an Interaction ReID Network (IRIN), which aug-
ments the existing ReID models with a Transformer (Wu
et al. 2021) encoder with gating mechanism. In the offline
training of IRIN, we simulate the human interaction pro-
cess to generate the feedback signal, by constructing a se-
lective uncertain candidate set for each vehicle in the train-
ing set and picking a positive sample using the groundtruth
labels. In addition, we adopt supervised contrastive learn-
ing (Khosla et al. 2020) to pull the query image and its posi-
tive samples closer in the embedding space. Finally, IRIN is
jointly trained with the backbone ReID model to minimize
the identification loss and contrastive loss.

We invite 20 postgraduates with 10 female students and
10 male students for performance evaluation. It is possible
that these students pick false positives from the uncertain
candidate sets and generate misleading feedback signals.
Experimental results show that the mAP of IRIN increases
steadily with more iterations, implying that it can effectively
leverage the feedback signal. Even when IRIN is provided
with flawed feedback, the new human-machine cooperation
mode can still surpass pure machine models, student-based
annotations and existing online learning frameworks. In the
ideal case with perfect feedback, with only 5 rounds of in-
teraction for each query image, IRIN boosts the mAP in
Veri776 (Liu et al. 2016b) from 81.6% to 95.2%. In the end
of the experiments, we also apply IRIN in the task of person
ReID to validate its generality.

Related Work
Vehicle ReID: The mainstream strategy of vehicle ReID
is to learn robust and discriminative vehicle representation
via devising advanced neural network or effective loss func-
tions. In the former category, (Zhao et al. 2021) proposes
a heterogeneous relational complement network that com-
bines region-specific features and cross-level features as a
supplement to the original high-level output. (Khorramshahi
et al. 2019) employs a dual adaptive attention mechanism
to focus on the most informative key-points of vehicle im-
age. (He et al. 2021) proposes a Transformer-based ReID
model, with a jigsaw patch module and side information

embeddings to enhance the robust feature learning. The
model achieves state-of-the-art performance in vehicle ReID
benchmark datasets. As to loss function improvement, Cir-
cle loss (Sun et al. 2020) is developed to achieve a more flex-
ible and targeted pair similarity optimization. To stabilize
the triplet loss, (Ghosh, Shanmugalingam, and Lin 2021)
proposes a grid-based motion statistical feature matcher for
relation-preserving triplet mining. (Quispe et al. 2021) uses
attribute-related cross entropy loss and triplet loss to distill
crucial attribute information. Readers can refer to (Zakria
et al. 2021) for a comprehensive survey.
Human-in-the-Loop Visual Tasks: We review human-in-
the-loop visual tasks according to the machine learning
pipeline, including the stages of data annotation, model
training and online inference. 1) Data annotation: To im-
prove data quality, (Berti-Équille 2019; Muthuraman et al.
2021) utilize model sensitivity to identify potentially incor-
rect labels for human verification. In (Liu et al. 2019), re-
inforcement learning is adopted in the task of person ReID
to iteratively prioritize a set of data samples for human an-
notation. 2) Model training. This step is focused on how to
iteratively leverage human feedback to improve model per-
formance. As mentioned, (He et al. 2020) and (Wu and Gong
2021) are two representative incremental learning strategies
that work in the online scenario. 3) Online inference: In
this stage, human can assist models to accomplish a task to-
gether and achieve better performance. For instances, (Bren-
ner, Priyadarshi, and Itti 2016) leverage the human feed-
back of online viewpoint adjustment to improve object de-
tection confidence without additional training cost. (Stone-
braker et al. 2020) presents a search-and-mark framework to
facilitate surveillance tasks.

This work belongs to the stage of online inference, i.e.,
human users work with ReID models in an online fashion,
without the need to re-train the underlying model. The re-
search challenges come from the requirements for real-time
interaction and robustness to the flawed feedback.

Proposed Model
Framework Overview
In this paper, we study iterative vehicle ReID with the as-
sistance of human feedback for continuous performance im-
provement. Given a query image Iq , we define the human
operator as picking the most promising image Ip from a set
of uncertain candidates U and represent the feedback as a
positive matching pair (Iq, Ip). Other types of human opera-
tor can also be explored and we consider this direction as our
future work. With the feedback signal, our idea is to devise
a network that can accept the human feedback as part of in-
put and dynamically adjust the embedding of query image to
reduce its distance to the positive samples. As shown in Fig-
ure 2, we propose an Interaction ReID Network (IRIN) that
augments a backbone ReID model with a Transformer en-
coder with gating mechanism. In the offline training stage,
we simulate the human interaction process to generate the
feedback signal, by constructing a selective uncertain can-
didate set for each vehicle in the training set and picking
a positive sample using the groundtruth labels. In addition,
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Figure 2: The network structure and training pipeline of IRIN.

we treat the query image as an anchor and adopt supervised
contrastive learning (Khosla et al. 2020) to pull together the
anchor and its positive samples in the embedding space. Fi-
nally, IRIN is jointly trained to minimize the identification
loss and contrastive loss.

Backbone ReID Network
We adopt ResNeXt101 (Xie et al. 2017) appended by an In-
stance Batch Normalization (IBN) (Pan et al. 2018) layer
as our backbone network, mainly due to its simplicity and
popularity — it is easy to implement and has been widely
applied in previous ReID models (Zhao et al. 2021; Ghosh,
Shanmugalingam, and Lin 2021). Our IRIN is built on top
of the backbone network and augment it with a module to
fuse the human feedback and dynamically adjust the feature
of query image.

Human Feedback Simulation
Since IRIN treats the human feedback signal as part of the
input, we need to simulate the procedure of human inter-
action in the offline training state. In our simulation process,
we randomly pick an image from each vehicle in the training
set to constitute a query set Q. For each Iq ∈ Q, we deter-
mine a group of uncertain samples U that require human
assistance. More specifically, we adopt the popular sam-
pling strategy in active learning and select uncertain samples
based on the classification entropy of the model output.

xU = argmax
x

−
∑
y

Pθ(y | x) logPθ(y | x) (1)

where x refers to a vehicle image, y is its class id, and P is
the vehicle classification probability. θ is our model param-
eters.

Since our human operator is defined as picking a match-
ing image from a set of uncertain candidates, we need to
select an instance Ip from U to generate human feedback
and the instances in U that belong to the same vehicle as

the query image are beneficial to improve the performance
of the model against the query. Intuitively, Ip with the maxi-
mum distance to Iq is preferred because it is the hardest sam-
ple that cannot be well resolved by the current model. How-
ever, we observe that users are inclined to select the sample
that they feel the most promising, i.e., with the highest prob-
ability of belonging to the same vehicle as the query. This
observation motivates us to simulate human behavior by se-
lecting Ip from set U , which is associated with the minimum
distance to Iq .

Our offline training process also simulates another feature
of human-in-the-loop ReID, in which the iterative feedback
is applied on the same query image for a number of con-
secutive iterations. In our batch setting, let B be the batch
size in model training. In each batch, we select m vehicles
and each vehicle is assigned with B

m training samples. In the
subsequent iterations, we will train the model with only the
samples from these m vehicles until all of their samples have
been accessed. Afterwards, we proceed to the next group of
m vehicles.

Feedback Fusion Module
We propose a Transformer-based encoder with gating mech-
anism to fuse the query feature with the feedback signals. In
the k-th iteration, the feedback signal f (k) (i.e., the visual
feature of the picked image) is concatenated with previous
signals to form a matrix F(k) = [f (1), f (2), . . . , f (k)]. Let
q(k−1) denote the fused query feature in the (k − 1)-th it-
eration. Our goal is to fuse q(k−1) and F(k) to derive a new
query-specific feature q(k). In our implementation, q(k−1)

is first concatenated with F(k) and used as the input to the
Transformer-based encoder. We use [q

(k−1)
1 , f̂

(1)
1 , . . . , f̂

(k)
1 ]

to denote the output by the first encoder layer E1. Since
the feedback signals could be false positive, we also de-
vise a gating mechanism to determine the contribution of
the encoded feature f̂

(i)
1 . In particular, q

(k−1)
1 and f̂

(i)
1

(i = 1, . . . , k) are concatenated to calculate the gate weight
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through a multi-layer perceptron (MLP) and activate func-
tion (Sigmoid). If the feedback refers to a positive match,
we expect the weight output by Sigmoid to be close to 1.
Otherwise, a small gate weight is preferred. As a trade-off
between efficiency and model performance, we use 2-layer
encoder for the feature fusion between q(k−1) and F(k). Fi-
nally, q(k) is obtained by pooling the output of the two-layer
encoder.

[q
(k−1)
1 , f̂

(1)
1 , . . . , f̂

(k)
1 ] = E1([q

(k−1), f (1), . . . , f (k)]) (2)

f
(i)
1 = f̂

(i)
1 ⊙ Sigmoid(MLP1(q

(k−1)
1 ⊕ f̂

(i)
1 )) (3)

[q
(k−1)
2 , f̂

(1)
2 , . . . , f̂

(k)
2 ] = E2([q

(k−1)
1 , f

(1)
1 , . . . , f

(k)
1 ]) (4)

f
(i)
2 = f̂

(i)
2 ⊙ Sigmoid(MLP2(q

(k−1)
2 ⊕ f̂

(i)
2 )) (5)

q(k) = Pooling([q
(k−1)
2 , f

(1)
2 , . . . , f

(k)
2 ]) (6)

Supervised Contrastive Learning
Contrastive learning is a self-supervised approach to learn an
embedding space in which similar sample pairs are pulled
together while dissimilar ones stay far apart. Supervised
contrastive learning extends the self-supervised mode into
fully-supervised setting to effectively leverage label infor-
mation. It chooses positive pairs from the same class and
negative samples from different classes. The learning objec-
tive is to pull together samples belonging to the same class
and push apart those from different classes. To utilize super-
vised contrastive learning, we maintain the query feature as
anchor, which will be iteratively updated. Images referring
to the same vehicle with the query vehicle will be regarded
as positive samples while others as negative samples. Con-
sidering the quantitative limitation of batch size on negative
samples, we propose a memory bank called Hard Negative
Memory Bank (HNMB) for negative sample expansion with
at low cost inspired by (Wu et al. 2018). More specifically,
we maintain a fixed-size queue to store negative samples for
each query vehicle, which is denoted by N+(i). Hard nega-
tives in the batch samples are continuously stored in N+(i)
and follow the principle of first-in-first-out for eviction, i.e.,
the earliest samples will be popped as long as the size of
N+(i) exceeds the memory size.

Joint Training
As shown in Figure 2, the feedback fusion module is jointly
trained with the backbone ReID network, with two optimiza-
tion objectives. First, for the backbone network, we can sim-
ply apply the loss function commonly used in previous ReID
models to learn discriminative feature representation. In our
implementation, we follow recent works (Ghosh, Shanmu-
galingam, and Lin 2021; Quispe et al. 2021) to adopt the
combination of ID Loss and Metric Loss. As shown in the
following equations, we choose Cross Entropy Loss as the
ID Loss and soft-margin Triplet Loss as the Metric Loss:

LID =
N∑
i=1

−p̂i log (pi) ,

{
p̂i = 0, i ̸= y
p̂i = 1, i = y

(7)

LMetric = log[1 + exp (∥va − vp∥ − ∥va − vn∥)] (8)

where y is the groundtruth ID label, pi is the ID prediction
logits of class i, va is an anchor feature, vp is a positive
feature and vn is a negative feature.

Second, for the component of feedback signal fusion, we
apply Supervised Contrastive Loss (SCL) LSCL to adjust
the query embedding using feedback and make it as close
as possible to those of the matching images. We apply SCL
to this task because it encourages the model to pay more at-
tention to the hard samples (containing both positives and
negatives) so as to generate a more discriminative query em-
bedding by leveraging feedback signals. LSCL can be for-
mally expressed as:

LSCL=
∑
i∈I

−1
N

∑
p∈P (i)

log
exp

(
q(k) · v⊤

p /τ
)∑

a∈A(i) exp
(
q(k) · v⊤

a /τ
) (9)

where we set the iteratively updated vehicle feature vq,k as
anchor in SCL. A(i) = P (i) + N(i) + N+(i) is a set of
vehicle image indices in the batch for vehicle i, in which
P (i) is the set of indices of all positives, N(i) is all negatives
indices set, and N+(i) is HNMB for vehicle i after k − 1
iterations of simulated human feedback.

With the two types of loss functions, the final objective of
joint learning is to minimize

L = λidLID + λmLMetric + λhLSCL (10)

where λid, λm and λh are weight parameters.

Online Inference
With the trained IRIN model, we explain the online infer-
ence procedure with iterative feedback signals (as shown
in Algorithm 1). Given a query image, we extract its fea-
tures using the backbone network (which is ResNeXt101
appended by an IBN in our implementation). The images
in the gallery are sorted according to their similarity to the
query image and top-n candidates are returned. Among the
returned images, a set of uncertain images U are identified
according to the classification entropy. The user picks an im-
age Ip from U that is considered to be positive with the high-
est confidence. With the feedback signal, the query feature is
adjusted by the IRIN network. In the next iteration, the top-n
candidates and uncertain image set U are updated. The user
picks another ”positive” image from U to update query fea-
ture. The procedure repeats until the maximum number of
iterations is reached or the user is satisfied with the top-n
results.

Experiment
Experimental Setup
Datasets. We use two popular vehicle ReID benchmarks.
Veri-776 (Liu et al. 2016b) contains 49, 357 images of 776
different vehicles, captured by 20 cameras in multiple view-
points. VehicleID (Liu et al. 2016a) is a larger-scale dataset,
with 221, 567 images and 26, 328 vehicles. In evaluation,
it provides three test datasets in different scales (small,
medium, and large).
Implementation Details. Following previous ReID models,
the input images are resized to 240 × 240 and augmented
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Algorithm 1: Vehicle Re-ID with iterative feedback

1 q(0) ← Extract visual feature of the query image;
2 CANDn ← top-n similar images to q(0);
3 U ← images in CANDn with top-|U | entropy;
4 for k ← 1 to Imax do
5 if CANDn is satisfactory then
6 break
7 Ip ← the image picked by the user from U ;
8 q(k) ← IRIN(q(k−1), Ip);
9 Update CANDn and U according to q(k);

10 return the sorted images w.r.t. the similarity to q(k)

by random flipping, random padding and random erasing.
The feature dimension is set to 2, 048. The model is trained
with 120 epochs with a batch size of 128. SGD optimizer
is employed with a momentum of 0.9 and the weight decay
of 5e − 4. Each batch contains 8 images per vehicle. The
initial learning rate is set to 0.01 and linearly decayed to
0.0001. Our backbone network is created by appending an
Instance Batch Normalization (IBN) (Pan et al. 2018) to a
ResNeXt101 (Xie et al. 2017) model and we select 10 un-
certain samples for human interaction simulation. The size
of hard negative memory bank is set to 512. In the loss func-
tion of joint training, the weight parameters λid, λm and λh

are both set to 1.0. In the online inference stage, top-50 can-
didates are returned in each iteration and the size of uncer-
tain images U is set to 10. The model is implemented with
PyTorch and trained on Tesla-V100 GPU.
Performance Metrics. The performance of our human-in-
the-loop vehicle ReID can still be evaluated by conventional
ReID metrics. We select mean average precision (mAP), Cu-
mulative Matching Characteristics at top-1 (rank-1) and Cu-
mulative Matching Characteristics at top-5 (rank-5) for per-
formance evaluation.
Comparison Methods. We consider TransReID (He et al.
2021) as the state-of-the-art vehicle ReID model. In our
performance evaluation, it is treated as a machine baseline
without human intervention. As to incremental learning in
the online scenario, we select ILOS (He et al. 2020) and
GwFReID (Wu and Gong 2021) as two representative ap-
proaches. They maintain an exemplar set for each vehicle
which incorporates the candidates picked by the user with
high confidence. Online training is conducted on the exem-
plar set, with different learning objectives.

Sensitivity to Human Feedback Quality
Since it is possible that users provide flawed feedback with
false positives, we simulate the human interaction in the
evaluation stage and control the probability that a correct
positive pair is picked as the feedback. As shown in Figure 3,
we vary the probability of positive feedback from 1.0 to 0.8
and compare IRIN with online incremental learning meth-
ods (ILOS and GwFReID). The mAP of TransReID is also
plotted as the machine baseline without human intervention.
It is interesting to find that the backbone model of IRIN can

achieve higher mAP than TransReID, probably due to the
joint training framework.

(b) Veri776 (c) VehicleID-Small

(d) VehicleID-Medium (e) VehicleID-Large

Figure 3: Sensitivity to the quality of human feedback.

When the feedback signal is relatively reliable, we can see
that the mAPs of IRIN, ILOS and GwFReID increase with
more rounds of human interaction, indicating that both IRIN
and online incremental learning can benefit from iterative
human feedback — their mAPs also increase with the qual-
ity of feedback. In the oracle scenario with perfect feedback,
with only 5 iterations for each query image, IRIN can boost
the accuracy to 95.2% from 81.6% in Veri776, which is re-
markably higher than 80.8% achieved by TransReID. IRIN
can significantly better leverage the feedback signal than the
incremental learning frameworks of ILOS and GwFReID.
With the same quality of the feedback, the mAP of IRIN sur-
passes ILOS and GwFReID by a wide margin. Between the
two competitors, GwFReID outperforms ILOS because it is
associated with a more comprehensive learning objective.

Sensitivity to Candidate Set Size
We also investigate how the size of uncertain candidate
images impacts human-in-the-loop vehicle ReID. Figure 4
shows that the mAP results for IRIN-1.0, IRIN-0.9 and
IRIN-0.8 under different sizes of candidate set. Intuitively,
the IRIN-1.0 that always receives a true positive feedback
can benefit from the expansion of candidate set, whereas
IRIN-0.9 and IRIN-0.8 with noisy feedback cannot increase
steadily as the feedback candidate set increases. Since hu-
man feedback is not perfect, we set the default size of can-
didate images to 10 in our experiments with real human in-
teraction.

Efficiency Study
In this experiment, we evaluate the time cost spent on hu-
man feedback signal processing. IRIN can directly accept
the feedback as part of the input and adjust the feature em-
bedding for the query image. Thus, its running time includes
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Method Veri776 VehicleID-Small VehicleID-Medium VehicleID-Large
mAP time mAP time mAP time mAP time

IRIN 95.2 0.031s 97.9 0.029s 96.4 0.033s 96.0 0.036s
ILOS-0.1 85.7 10.8s 92.4 21.91s 90.2 23.14s 89.1 24.16s
ILOS-0.2 86.4 13.85s 93.3 28.43s 90.9 29.89s 90.1 30.95s
ILOS-0.3 86.3 17.5s 92.8 35.94s 90.6 36.88s 89.9 39.00s
GwFReID 87.7 41.3s 94.0 63.7s 92.5 65.3s 91.8 69.9s

Table 1: Comparison on feedback processing time in Veri776. Here, ILOS-0.1/0.2/0.3 sets the weight of the distillation loss
to 0.1/0.2/0.3, respectively. In this paper, 0.2 is the default setting.

(b) Veri776 (c) VehicleID-Small

Figure 4: Sensitivity to the size of candidate set.

the cost to update the query feature and obtain a new ranking
list. For incremental learning, online training overhead is in-
curred to update the underlying model with the augmented
positive samples by random flipping, padding and erasing.
With the number of augmented samples fixed to 24, we vary
the weight of distillation loss (denoted by λd) from 0.1 to
0.3 in the loss function of ILOS. As we can see from Ta-
ble 1, it takes higher running time when λd increases. This is
because the model training becomes more “query-specific”
and its online training requires more epochs to be converged.
Thus, ILOS-0.2 is more accurate than ILOS-0.1 but incurs
higher processing time. However, when λd continues to rise,
we also find that the mAP does not increase monotonically,
probably because the information from the feedback signal
are not sufficient to provide reliable clues to guide the opti-
mization directions of model parameters. In contrast, IRIN
is much faster and more accurate than incremental learning.
It takes less than 0.04s to handle a feedback signal and can
easily support real-time user interaction, whereas ILOS re-
quires users to wait more than 10 seconds for each interac-
tion. The running time of GwFReID is even worse, around
3-4 times higher than that of ILOS-0.1. The reason is that
GwFReID maintains a larger exemplar set than ILOS and
requires higher re-training overhead.

Experiments with Real Human Interaction
We invite 20 postgraduates with 10 female and 10 male
students to participate in the real human interaction exper-
iment. Each student is required to provide iterative feed-
back for each query image with 5 iterations. We observe
that the quality of feedback is different for male and female
students. Thus, we will report their results separately and
refer them as IRIN-Male and IRIN-Female, respectively.

The comparison approaches include three modes. 1) For
machine-only mode, we still use TransReID as the baseline
without human interaction. 2) For human-machine cooper-
ation mode, we compare IRIN with incremental learning
method for ReID (denoted by IRIN-Male and IRIN-Female,
respectively). Furthermore, we also report IRIN-Oracle to
show the upper bound performance with perfect feedback
signal. 3) For human-only baselines, we require the students
to annotate the matching vehicles for the query images. To
reduce their annotation cost, we make an assumption that
the positive samples are contained in the top-200 most simi-
lar images obtained in the initial round of IRIN. This proce-
dure generates two baselines: Male-Annotation and Female-
Annotation.

Figure 5: The mAP results with real human interaction on
Veri776. Shaded areas represent the variance of mAP.

In Figure 5, we report the mean mAP results for all partic-
ipants with increasing number of iterations applied on each
query image. For the human-machine cooperative methods,
since the quality of annotation is different among the stu-
dents, we also plot the variance with shaded area. The re-
sults lead us to the following key observations. 1) The mAPs
of human-only baselines are significantly higher than the
machine-only baseline, indicating that human users are more
capable of distinguishing the true positives from a set of sim-
ilar images. 2) The results of Male-Annotation and Female-
Annotation show that female students can provide more ac-
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Method IRIN-Oracle IRIN-Female IRIN-Male
mAP rank-1 rank-5 mAP rank-1 rank-5 mAP rank-1 rank-5

IRIN 95.2 99.5 100 93.2 98 99.5 89.9 96.5 99
IRIN-max-dist 94.5 99 99 92.1 97.5 99 88 96 98

IRIN-random-sample 93.8 99.5 99.5 91.8 97.5 98.5 87.7 95.5 98.5
IRIN-triplet-loss 92.3 99 99.5 90.6 95.5 98 85.9 94.5 97.5

IRIN-w/o-HNMB 92.7 99 99.5 91.3 97 98.5 86.8 96.5 98

Table 2: The ablation study of sampling and optimization strategy.

curate feedback. Consequently, when the feedback is pro-
vided to IRIN, we can see that IRIN-Female outperforms
IRIN-Male. This finding is consistent with the experiment
on feedback quality in Figure 3. 3) Both IRIN, ILOS and
GwFReID can benefit from human feedback. Their mAPs
increase steadily with the number of interactions per query.
4) Compared with ILOS and GwFReID, IRIN is more effec-
tive in leveraging the human feedback and achieves higher
accuracy. 5) With sufficient number of iterations, IRIN, as
a human-machine cooperation method, eventually outper-
forms machine-only and human-only baselines. Besides, we
can observe that its variance reduces with more iterations of
human interaction.

Ablation Study
We examine four variants of IRIN for ablation study.
IRIN-random-sample replaces the active learning
based sampling strategy with random sampling to obtain
the set of uncertain candidates for human verification.
IRIN-max-dist simulates human interaction by select-
ing the positive sample with the maximum distance to the
query image, whereas the original IRIN uses the minimum
distance. IRIN-triplet-loss replaces contrastive loss
function with traditional triplet loss. IRIN-w/o-HNMB re-
moves the component of hard negative memory bank.

In Table 2, we report the results of these four IRIN vari-
ants under different settings of feedback quality. In the of-
fline training stage, the active learning based sampling strat-
egy for uncertain candidate selection is more effective than
random sampling. With these uncertain candidates, we can
see that the strategy to simulate human users to pick the sam-
ple with the minimum distance to query image is indeed su-
perior to picking the most different candidate. Overall, the
supervised contrastive loss and hard negative memory bank
play more important effect in this ablation study. When ei-
ther component is removed, we can observe considerable
performance degradation.

Generality to Person ReID
In the final experiment, we evaluate the generality of our
framework by applying it to person ReID and conduct ex-
periments with human interaction in MSMT17 (Wei et al.
2018). The dataset contains 126, 441 pictures of 4, 101
pedestrians, captured by 15 cameras. We use similar com-
parison methods as those in Figure 5. Since TransReID
claims to achieve state-of-the-art performance in both ve-
hicle and person ReID, we choose it as the machine base-

line without human intervention. The results in Figure 6 the
mAP derived from the backbone network of IRIN is inferior
to TransReID (74.6% vs 79.1%). Nevertheless, with only
one iteration of feedback, both IRIN-Male and IRIN-Female
have outperformed TransReID. With more iterations, the
performance advantage is further widened. When there are
5 iterations, their mAPs are substantially higher than that
of TransReID, reaching 89.3% and 91.5% respectively. It
is also interesting to observe that IRIN-Female achieves al-
most the same accuracy with IRIN-Oracle when the number
of iterations is set to 5, implying that our proposed IRIN is
effective in leveraging imperfect feedback.

Figure 6: Experiment on person ReID.

Conclusion
In this paper, we study vehicle ReID in a new scenario —
with human in the loop to provide iterative feedback for con-
tinuous performance enhancement. We propose an Interac-
tion ReID Network (IRIN) to effectively fuse the feedback
signal and dynamically adjust the feature embedding of the
query image. It can support real-time interaction and is suit-
able for applications with high accuracy requirement. Ex-
perimental results validate the superiority of such human-
machine cooperation mode over machine-only or human-
only baselines. With flawed feedback, the proposed IRIN
can even outperform the state-of-the-art vehicle ReID model
by a wide margin. In our future study, we will explore a more
diversified set of human operators as feedback signals.
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