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Abstract

Translating imagined speech from human brain activity into
voice is a challenging and absorbing research issue that
can provide new means of human communication via brain
signals. Efforts to reconstruct speech from brain activity
have shown their potential using invasive measures of spo-
ken speech data, but have faced challenges in reconstructing
imagined speech. In this paper, we propose NeuroTalk, which
converts non-invasive brain signals of imagined speech into
the user’s own voice. Our model was trained with spoken
speech EEG which was generalized to adapt to the domain of
imagined speech, thus allowing natural correspondence be-
tween the imagined speech and the voice as a ground truth.
In our framework, an automatic speech recognition decoder
contributed to decomposing the phonemes of the generated
speech, demonstrating the potential of voice reconstruction
from unseen words. Our results imply the potential of speech
synthesis from human EEG signals, not only from spoken
speech but also from the brain signals of imagined speech.

Introduction
Brain signals contain various information related to hu-
man action or imagery, making them valuable materials
for understanding human intentions. Brain-computer inter-
face (BCI) is a technology that analyzes users’ brain ac-
tivity to derive external commands to control the environ-
ment through brain signals, therefore, can benefit paralyzed
or locked-in patients (Chaudhary, Birbaumer, and Ramos-
Murguialday 2016). Brain-to-speech (BTS) is a novel re-
search stream in the field of BCI, which aims to directly
synthesize audible speech from brain signals (Lee, Lee, and
Lee 2022, 2020). While current studies on decoding human
brain signals related to speech mainly focus on using spoken
speech brain signals measured with invasive methods (Anu-
manchipalli, Chartier, and Chang 2019; Angrick et al. 2019;
Herff et al. 2019), reconstructing imagined speech using
non-invasive modalities is an intriguing topic that enables
practical and silent communication via brain signals. How-
ever, due to the fundamental constraint of the imagined
speech lacking the ground truth (GT) voice, it is challeng-
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ing to synthesize the user’s own voice from imagined speech
brain signals.

As the potential of reconstructing speech from brain sig-
nals of spoken speech has been demonstrated, we expect that
there must be relevant brain activation patterns that encode
significant features of the speech. Imagined speech is known
to resemble the neural patterns of spoken speech, which is
mainly located on the ventral sensorimotor cortex (Watan-
abe et al. 2020; Si et al. 2021; Cooney, Folli, and Coyle
2018; Lee, Lee, and Lee 2019). If imagined speech has sim-
ilar features to spoken speech, it may be feasible to establish
a correlation between the brain signals of spoken speech, the
audio of spoken speech, and the brain signals of imagined
speech. Furthermore, if we could train and infer phonemes
from imagined speech, several unseen words composed of
already trained phonemes could also be reconstructed from
the trained word sets.

In this study, we proposed a NeuroTalk framework
that can correlate imagined speech electroencephalography
(EEG) with spoken speech EEG and its corresponding au-
dio, to reconstruct voice from imagined speech. The imag-
ined utterances were decoded from the EEG signals to re-
construct the voice at the word level. Moreover, we esti-
mated the possibility of reconstructing unseen words using
the pre-trained model trained with only a few words, to po-
tentially increase the degree of freedom using the model
trained with a minimum number of words, including vari-
ous phonemes. Based on our results, we aim to find the po-
tential of speech reconstruction from imagined speech brain
signals to the user’s own voice. The main contributions are
as follows:

Main Contribution
• We propose a generative model based on multi-receptive

residual modules with recurrent neural networks that can
extract frequency characteristics and sequential informa-
tion from neural signals, to generate speech from non-
invasive brain signals.

• The fundamental constraint of the imagined speech-
based BTS system, which lacks the GT voice, has been
addressed by the domain adaptation approach to link the
imagined speech EEG, the spoken speech EEG, and the
spoken speech audio.

• Unseen words have shown the potential to be recon-
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structed from the trained model for both spoken and
imagined speech EEG. This implies that the model could
learn the phoneme-level information from the brain sig-
nal, demonstrating the potential for robust speech gener-
ation by training only a few words or phrases.

Background
Speech-Related Paradigms
Speech-related paradigms mainly used in the BTS studies
can be largely divided into three categories: spoken speech,
mimed speech, and imagined speech. While spoken speech
indicates the natural speech that accompanies vocal output
and movement of the articulators, mimed speech does not
produce vocal output but accompanies the movement of the
mouth and tongue as if speaking out loud (Schultz et al.
2017). Imagined speech is the mode of internally imagin-
ing speech, accompanying both the imagery of the mouth
movement and the vocal sound, without producing actual
movement or voice (Cooney, Folli, and Coyle 2018).

Invasive Approach
Invasive measurements involve a surgical process of imple-
mentation inside the skull to capture brain activation directly
from the cortex. Therefore, medical risks and difficulties
exist to be applied for healthy users (Wang and Ji 2021).
However, due to the high signal-to-noise ratio (SNR), many
previous studies focused primarily on synthesizing speech
from invasive brain signals. Studies using electrocorticog-
raphy (Akbari et al. 2019; Anumanchipalli, Chartier, and
Chang 2019; Angrick et al. 2019; Herff et al. 2019) and at-
tempts to decode speech from deeper brain structures using
stereotactic electroencephalography depth electrodes (An-
grick et al. 2021a, 2022, 2021b; Herff, Krusienski, and
Kubben 2020; Meng et al. 2022) have reported the possi-
bility of speech reconstruction using spoken speech data.

Non-invasive Approach
Electroencephalography EEG is the most widely used
non-invasive modality for practical use since it does not
involve any surgical process and is relatively easy to ac-
cess (Krishna et al. 2020). However, non-invasive measures
have relatively low SNR and artifact problems compared to
the invasive modalities, which makes it hard to extract the
user’s intention from brain signals (Graimann, Allison, and
Pfurtscheller 2009).

Spoken speech-based BTS Speech reconstruction from
spoken speech or mimed speech brain signals, kinematic
or EMG data has shown potential (Gaddy and Klein 2020,
2021; Gonzalez et al. 2017). Nonetheless, relying solely on a
spoken speech-based BTS system is not a definitive solution
for the essential goal of BCI, as it is redundant when users
can speak aloud. Additionally, it is not applicable to patients
who are unable to speak or move.

Decoding imagined speech Current EEG-based imagined
speech decoding technology has shown promising results in
terms of classification problems (Saha, Abdul-Mageed, and
Fels 2019; Wang et al. 2013; Lee et al. 2019b). However,

these approaches are constrained to the basic classification
of the predefined set of classes (Makin, Moses, and Chang
2020), therefore, reconstructing natural speech from imag-
ined speech brain signals is crucial for intuitive and silent
BCI communication.

Imagined speech-based BTS The fundamental constraint
of speech reconstruction from EEG of imagined speech is
the inferior SNR and the absence of vocal GT corresponding
to the brain signals. Therefore, speech synthesis from imag-
ined speech using non-invasive measures has not yielded
convincing results (Proix et al. 2022). Attempts to recon-
struct speech from invasive data during whispered and imag-
ined speech have been made, but have reported relatively
inferior performance even when invasive measures were uti-
lized (Angrick et al. 2021b). Speech synthesis from imag-
ined speech could be the key to a new era of human com-
munication, moving from current voice or text-based com-
munication to brain-based communication. It may also be a
technology that can help patients who are unable to speak or
those who may lose their voice in the future.

Method
In this section, we describe the model frameworks used
in this paper, including generator, discriminator, vocoder,
and automatic speech recognition (ASR), as well as losses
including reconstruction loss, generative adversarial net-
work (GAN) loss, and connectionist temporal classification
(CTC), as shown in Figure 1. The collected brain signals of
spoken speech and imagined speech are represented as fea-
ture embeddings to extract the optimal features from brain
signals. The generator applying GAN (Goodfellow et al.
2014) reconstructs a mel-spectrogram to match the target
voice during spoken speech. The reconstruction loss for the
generator is determined as the difference between the re-
constructed mel-spectrogram from the EEG signals and the
GT mel-spectrogram during spoken speech. The discrimi-
nator classifies the validity of whether the input samples of
the mel-spectrogram are real or fake, and calculates an ad-
versarial loss for the generator and discriminator. The pre-
trained vocoder synthesizes the mel-spectrogram into a re-
constructed voice. The pre-trained ASR model transforms
the reconstructed voice into text and calculates the CTC loss
for the generator.

Since imagined speech has no reference voice, voice sam-
ples during the spoken speech, which is recorded in the same
sequence as imagined speech, were used as the target audio.
To match the EEG to the voice of spoken speech, dynamic
time warping (DTW) was applied between the reconstructed
mel-spectrogram from EEG and the mel-spectrogram of
voice during spoken speech. Furthermore, domain adapta-
tion (DA) was conducted to transfer the architecture of spo-
ken speech to that of imagined speech.

Architectures
Embedding vector It is known that spatial, temporal, and
spectral information are all important for speech-related
brain signals, and vector-based brain embedding features
can represent the contextual meaning in brain signals (Gold-

6031



Feature
Embedding

𝑮

Generator Reconstructed 
Mel-spectrogram

𝑫

Discriminator
𝓛recon(𝑮)

Real or Fake

𝓛adv(𝑮;𝑫)

Pretrained
Vocoder

𝓥

𝑨 𝓛𝒄𝒕𝒄(𝑮)Text

Reconstructed 
voiceThank 

you

Imagined EEG

Thank 
you

Spoken EEG

Domain 
Adaptation

Mel-spectrogram 
of voice

Transfer learning 

Transfer 
learning 

Pretrained 
ASR Model

Voice during
Spoken Speech

𝓛adv(𝑫; 𝑮)

Figure 1: Overall framework of this study. Imagined speech EEG was given as the input to reconstruct the corresponding audio
of the imagined word or phrase with the user’s own voice. G refers to the generator, which generates the mel-spectrogram from
the embedding vector. D is the discriminator, which distinguishes the validity of the input. At the bottom, the two models, a
pre-trained vocoder V and a pre-trained ASR model A, generate text from the mel-spectrogram.

stein et al. 2022; Lee, Lee, and Lee 2020). The embedding
vector was generated using a common spatial pattern (CSP)
to maximize spatial patterns and log-variance to extract tem-
poral oscillation patterns. CSP finds the optimal spatial fil-
ters using covariance matrices (Devlaminck et al. 2011), and
helps to decode the brain signals related to speech (Nguyen,
Karavas, and Artemiadis 2017).

To reduce the difference between the data distribution of
spoken EEG and imagined EEG, CSP filters were shared
with both EEG signals. CSP filters were trained with imag-
ined EEG, which contains relatively pure brain signals,
rather than spoken EEG which may contain some noise. By
sharing the CSP filters, the spoken EEG domain could be
adapted to the subspace of imagined EEG.

The CSP filters were trained with eight CSP features and
sixteen segments without overlap using the training dataset.
Each trial of EEG signals has a size of time point × channels
(5,000 × 64). After applying CSP, the embedding vector,
transformed from EEG signals, has 104 features × 16-time
segments, where the features consist of 13 classes × 8 CSP
features.

Generator The main architecture of the proposed gen-
erator consists of gated recurrent units (GRU) (Cho et al.
2014) to capture the sequence information and several resid-
ual blocks to capture the temporal and spatial information,
preventing vanishing gradient problems. Figure 2a describe
the generator in detail. The input of the generator is given
as the embedding vector of EEG signals and the output is
generated as a mel-spectrogram. The embedding vector goes
through a pre-convolutional layer consisting of 1d convo-

lution and concatenates the features from the bi-directional
GRU to extract the sequence features. After that, the genera-
tor upsamples it N times using transposed convolution with
a stride of two or three and the multi-receptive field fusion
(MRF) module, which is the sum of the outputs of multiple
residual blocks with different kernel sizes. Finally, a post-
convolutional layer and activation function are applied.

Discriminator The discriminator is similarly composed in
the opposite direction to the generator, as described in Fig-
ure 2b. The input of the discriminator is the mel-spectrogram
and the output is the validity of real/fake voice. Moreover,
the discriminator was also trained using class information
from only voice data.

Vocoder and ASR Vocoder and ASR models are used to
clarify the reconstructed voice from brain signals by trans-
lating it into text. Vocoder is a category of speech synthesis
technology converting intermediate representation such as
mel-spectrogram to waveform audio. To adjust our frame-
work for a real-world BTS system, we applied a pre-trained
HiFi-GAN (Kong, Kim, and Bae 2020) which is a high-
quality vocoder with fast inference speed. The same ar-
chitecture and hyperparameters were applied with the pre-
trained model ‘Universal ver.1’.

ASR converts human speech waveform into written texts,
which can represent the speech as a contextual sequence of
discrete units (Baevski et al. 2020). The ASR is composed of
pre-trained HuBERT (Hsu et al. 2021) with a large configu-
ration, which is a self-supervised learning model of speech
representations trained with the Libri-Light dataset and fine-
tuned with the LibriSpeech dataset.
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Figure 2: The architecture details in (a) generator, (b) discriminator, and (c) MRF module. The MRF modules in both the
generator and the discriminator were repeated three times in our experiment. kr indicates the kernel size of the residual block
and Dr indicates the dilation rates of the residual block.

Training Loss Term
This section describes training losses: reconstruction loss
Lrec, GAN loss Ladv , and CTC loss Lctc. The generator is
trained with reconstruction, adversarial, and CTC loss, while
the discriminator uses an adversarial loss.

L(G) = λg1Lrec(G)+ λg2Ladv(G;D)+ λg3Lctc(G) (1)

L(D) = λdLadv(D;G) (2)
where loss coefficients are referred to λg1−3 for the genera-
tor and λd for the discriminator.

Reconstruction loss Reconstruction loss has been veri-
fied in many studies (Kong, Kim, and Bae 2020; Isola et al.
2017), which can help improve the efficiency of the genera-
tor and the fidelity of reconstructed data.

Lrec(G) = Es[(G(s)− x)2] (3)

where s refers to the input of the generator such as an em-
bedding vector from EEG signals, and x refers to the input
of the discriminator such as a mel-spectrogram.

GAN loss To reconstruct the mel-spectrogram to follow
the real one, adversarial GAN loss Ladv was conducted on
the generator G and discriminator D as follows.

Ladv(G;D) = Es[log(1−D(G(s)))] (4)
Ladv(D;G) = E(x,s)[log(1−D(x))+ log(D(G(s)))] (5)

where s refers to the input of generators such as embedding
vector from EEG signals and x refers to the input of discrim-
inator such as mel-spectrogram.

CTC loss CTC loss is a common performance metric for
automatic speech recognition systems (Graves et al. 2006).
CTC loss Lctc allows to train the model using sequen-
tial data without the alignment information. CTC loss was
primarily given to guide the prediction of characters and
phonemes, to enhance the performance of unseen classes.

Domain Adaptation
The DA strategy was employed to resolve the fundamental
constraint of speech reconstruction from imagined speech.
Since imagined speech does not accompany the movement
of the articulators, it is relatively reliable in terms of arti-
facts accompanied by the mouth movement and the vibra-
tion. However, since the GT audio for imagined speech does
not exist, we designed a framework that adapts the domain
of imagined speech from spoken speech, to exploit the nat-
ural correspondence of imagined EEG and the voice of spo-
ken speech. The DA process was performed in two steps; 1)
sharing the covariance matrix between imagined EEG and
spoken EEG by applying the CSP filter of imagined speech
and 2) applying transfer learning for the generator and dis-
criminator from the trained model of spoken EEG.

Sharing subspace The CSP weights, trained with a train-
ing set (60%) of imagined EEG, were shared to generate
embedding vectors. Sharing the CSP filters computed from
imagined EEG allows the latent space of spoken EEG to be
shifted into a comparable feature space of imagined EEG.
Unlike most DA approaches that involve applying the weak
domain to the well-trained classifier, we elected to the con-
trary, bringing the spoken speech feature space to that of the
imagined speech. In that case, we could achieve a clear pat-
tern more from the neural characteristics of speech rather
than the movement artifacts or vibration artifacts.

Transfer learning The model was trained with a training
set of spoken EEG, and then fine-tuned with a training set
of imagined EEG at a smaller learning rate than the case of
spoken EEG. This was to connect with the voice recordings
of spoken speech, which acts as the GT of imagined speech.
The trained model from spoken EEG can assist in training
the model of imagined EEG that has relatively insufficient
information, therefore, the spoken EEG could guide learning
from the weak features of imagined EEG.
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Experimental Setup
Dataset
Participants Six participants volunteered in the study.
The study was conducted in accordance with the Declaration
of Helsinki, approved by the Korea University Institutional
Review Board [KUIRB-2019-0143-01]. Informed consent
was obtained from all participants. Since the dataset con-
tains human-derived biosignals, only a small sample dataset
could be published to reproduce and execute code.

Paradigms For the spoken speech session, participants
were instructed to naturally pronounce the randomly given
thirteen phases, provided as an auditory cue of twelve word-
s/phrases (ambulance, clock, hello, help me, light, pain, stop,
thank you, toilet, TV, water, and yes) and a silent phase.
Speech data were recorded in a rhythmic manner to avoid
any visual or auditory disruptions. The imagined speech
data was collected in the exactly same manner as the spo-
ken speech, following the previous study (Lee, Lee, and Lee
2020). A hundred trials of both spoken speech and imag-
ined speech per class were collected for each participant.
Therefore, each participant had 1,300 trials for the spoken
and imagined speech paradigm.

Recording The dataset used in this study consists of
scalp EEG recordings of spoken/imagined speech and voice
recordings of spoken speech. During the experiment, EEG
signals were recorded at the sampling rate of 2,500Hz
via Brain Vision/Recorder (BrainProduct GmbH, Germany),
and the corresponding audio was simultaneously recorded at
the sampling rate of 8,000Hz. Brain signals were recorded
with a 64-channel EEG cap with active Ag/AgCl electrode
placement following the international 10-10 system.

Pre-processing
EEG signals were extracted in 2-second intervals for each
trial. The data was filtered with a 5th-order Butterworth
bandpass filter in the high-frequency range of 30–120 Hz
which is well-known to contain speech-related informa-
tion (Lachaux et al. 2012; Lee, Lee, and Lee 2020). A notch
filter was used to remove the line noise at 60 Hz with har-
monics of 120 Hz. The electrooculography (EOG) and elec-
tromyography(EMG) of spoken speech were removed using
blind source separation referencing (Gómez-Herrero et al.
2006). The baseline was corrected by subtracting the aver-
age value of 500 ms before each trial. Pre-processing proce-
dures were performed in Python and Matlab using OpenBMI
Toolbox (Lee et al. 2019a), BBCI Toolbox (Krepki et al.
2007), and EEGLAB (Delorme and Makeig 2004). For the
voice data, we resampled the voice signals to 22,050 Hz and
reduced the noise using the noise reduction library (Sain-
burg, Thielk, and Gentner 2020).

Dataset Composition and Training Procedure
Imagined speech lacks a reference voice to train a model.
However, spoken speech provides both audio and EEG data
in a perfectly time-aligned pair. Since the experimental de-
sign of imagined speech and spoken speech was completely
identical, the voice of the identical sequence of spoken

speech for each participant was used as the reference voice
for the imagined speech. Moreover, the transfer learning ap-
proach was applied with the model trained on spoken speech
EEG and spoken speech audio to imagined speech EEG.

The dataset was divided into 5-fold subsets in training,
validation, and test dataset according to the random selec-
tion with a random seed. One unseen word, ‘stop’ was sep-
arated from the dataset, and was not included in the training
set. It was chosen to test unseen cases since every phoneme
composing the word ‘stop’ was covered with the remaining
11 words used for the training. That is, we trained the 11
words/phrases and a silent phase as a training dataset and
validated 12 words/phrases and a silent phase in the valida-
tion and test dataset including the unseen word.

Model Implementation Details

The generator had three residual blocks with the kernel size
of 3, 7, and 11, each dilation of 1, 3, and 5, and upsam-
pling rate of 3, 2, and 2 with twice upsample kernel size.
The number of the initial channel was 1,024, and the direc-
tional GRU dimension was half of the initial channel. The
discriminator had the same residual block as the generator,
but a downsampling rate of 3, 3, and 3 with twice the ker-
nel size. The number of the final channel was 64, and the
directional GRU dimension was half of the final channel.
The mel-spectrogram was managed in a sampling rate of
22,050 Hz and the STFT and mel function was conducted
with nFFT of 1,024, the window of 1,024, hop size of 256,
and 80 bands of mel-spectrogram. Initial training was con-
ducted with an initial learning rate of 10−4, and the fine-
tuning was conducted with a lower learning rate such as
10−5 in the maximum epoch of 500 and a batch size of 10.
We trained the model on an NVIDIA GeForce RTX 3090
GPU. We used AdamW optimizer (Loshchilov and Hutter
2017) with searched parameters of β1=0.8, β2=0.99, and
weight decay λ=0.01, which was scheduled by 0.999 factor
in every epoch. We released the source code and sample data
on GitHub at: https://github.com/youngeun1209/NeuroTalk.

Evaluation Metrics

For the evaluation metrics, we used root mean square er-
ror (RMSE), character error rate (CER), and a subjec-
tive mean opinion score (MOS) test. To evaluate the accu-
rate reconstructing performance of the generator, we com-
puted the RMSE between the target and reconstructed mel-
spectrogram. To evaluate the clarity quantitatively, we com-
puted CER after going through the ASR model. For the sub-
jective evaluation, a MOS test was conducted to evaluate the
quality of the reconstructed speech. We randomly selected
125 samples of voice from a test dataset. The samples were
evaluated by more than 20 raters on a scale of 1-5 with 0.5-
point increments. We compared the performance of gener-
ation with the voice of GT and the converted voice using
mel-transform and ASR from the voice of GT. Moreover, to
demonstrate the extension of NeuroTalk, we evaluated the
generation performance of unseen word which is composed
of phonemes that were contained in the trained word classes.
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Silent cases for both spoken and imagined EEG was 
successfully decoded except for only one case of imagined speech
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Figure 3: Mel-spectrogram and the audio wave of the original voice, voice reconstructed from EEG. Three examples of recon-
struction include ‘Hello’, ‘Water’, and ‘Help me’. Silent phases for both spoken and imagined EEG were successfully decoded.
Unseen cases were also reconstructed despite their inferior performance.

Results and Discussion
Voice Reconstruction from EEG
The audio samples are included in the demo page at:
https://neurotalk.github.io/demo. Figure 3 displays the mel-
spectrogram and the audio wave samples of the original
voice, reconstructed voice from spoken speech EEG, and
reconstructed voice from imagined speech EEG. As shown
in the figure, successfully reconstructed cases display simi-
lar patterns of the mel-spectrogram and the audio waveform
with the original voice. Table 1 shows the evaluation results
of the reconstructed voice from brain signals compared to
the GT. MOS of spoken speech cases had no large difference
from GT, which shows that the model can generate natural
speech from spoken EEG. Objective measures of RMSE and
CER have shown inferior performance in the case of imag-
ined speech EEG compared to that of spoken speech EEG.

As depicted in Figure 3, the test samples of the silent
phases were successfully reconstructed without any activa-
tion. Silent cases for both spoken and imagined EEG were
successfully decoded except for only one case of imagined
speech. According to this result, we can infer that our model
accurately learned the silence interval and can detect the
speech onset from both spoken and imagined speech EEG.
Although imagined speech does not have GT voice, the re-
sults show that the proposed NeuroTalk framework effec-
tively adapts the spoken speech-based model to the imag-
ined speech EEG to decode the user’s silent intention from
brain signals and generate voice.

There were some instances of failure for the imagined
speech case, as shown in Figure 4. In the case of synthe-
sizing ‘thank you’, the main distinction between the success
and failure cases was whether it detects the silence intervals
within a phrase. As shown in Figure 4, an instance with a
CER of 50% exhibited only a small silence interval between
the words ‘thank’ and ‘you’. Moreover, the instance of fail-
ure with a CER of 100% generated only few characters that
cannot represent any of the syllables found in the GT.

Voice Reconstruction of Unseen Words
According to Figure 3 and Table 1, the unseen cases have
shown CER of 78.9% and 83.1% for spoken and imagined
speech, respectively. Although the word was not perfectly
reconstructed, the model generated fairly high-quality audio
with MOS over 2.5. The gap between the CER of spoken and
imagined EEG was relatively small compared to the trained
words. Although it still could be further improved, our re-
sult demonstrates that the NeuroTalk model has the poten-
tial to extend the degree of freedom of decodable words or
sentences by training on the word-level dataset. We expect
that CTC loss could learn the character or phoneme infor-
mation of words even from brain signals, which contain hu-
man intention and phonetic information. Since we trained
the model with a limited set of words/phrases, it may be
simply classifying the EEG as one of the training classes.
However, the model has shown the potential to generate the
unseen word outside of the training set indicating the possi-
bility of generalization and extension to the classes outside
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Model RMSE CER (%) MOS

GT - 18.4 (±11.5) 3.67 (±1.0)
GT (trans.) - 23.4 (±10.9) 3.68 (±0.9)

SpEEG 0.17 (±0.02) 40.2 (±13.5) 3.34 (±1.0)
ImEEG 0.18 (±0.03) 68.3 (±2.5) 2.78 (±1.1)
Unseen SpEEG 0.19 (±0.03) 78.9 (±7.4) 2.87 (±1.1)
Unseen ImEEG 0.19 (±0.03) 83.1 (±14.5) 2.57 (±1.2)

Table 1: Quantitative and qualitative evaluation of spoken
and imagined EEG. GT (trans.) indicates the transformed
voice from GT via mel-transform and vocoder. SpEEG and
ImEEG refer to spoken and imagined EEG, respectively.

Success and failure case

(CER=0)

THANK YOU

(CER=0)

THANK YOU THANK YOU

(CER=0)

THANKEE

(CER=50)

E

(CER=100)

Reconstructed voice 
from imagined EEG

Reconstructed voice 
from spoken EEG

Original 
voice

Figure 4: Success and failure cases. Mel-spectrogram and
waveform were shown for original and reconstructed voices.

of the training set. Since our model generates speech rather
than classifying into predefined classes, we expect that de-
spite the inferior performance or somewhat mumbled voice,
human listeners may be able to recognize the user’s intention
given the context in the real-world application. Our current
results are in the preliminary stage, but we plan to increase
the number of training vocabularies for future work.

Ablation Study
We performed an ablation study of GRU in the genera-
tor and discriminator, losses of GAN, reconstruction, and
CTC to verify the effect of each module and loss on the
model performance. As demonstrated in Table 2, CER of
all cases were mostly inferior to the baseline, indicating that
all approaches perform their roles. Specifically, the perfor-
mance was notably compromised when reconstruction loss
was omitted, followed by a slightly improved but still subop-
timal performance without CTC loss. This suggests that the
reconstruction loss followed by CTC loss has the most sig-
nificant impact on the overall performance of the framework.
In the subjective evaluation, the absence of GRU resulted in
the poorest naturalness, emphasizing the importance of se-
quential features for natural speech synthesis.

Domain Adaptation
DA was performed by sharing the CSP subspaces and trans-
ferring the spoken speech-based trained model to imagined
speech EEG. As shown in Table 2, the CER without DA has
shown inferior performance compared to the baseline. This
implies that the information from spoken speech EEG was

Input RMSE CER (%) MOS

Baseline 0.18 (±0.03) 68.3 (±2.5) 2.78 (±1.1)

w/o GRU 0.19 (±0.03) 76.1 (±3.3) 2.18 (±1.2)
w/o GAN loss 0.18 (±0.02) 76.1 (±2.3) 2.86 (±1.2)
w/o recon. loss 0.62 (±0.12) 80.2 (±8.0) 2.50 (±1.3)
w/o CTC loss 0.39 (±0.07) 76.9 (±0.3) 2.52 (±1.2)
w/o DA 0.18 (±0.03) 72.3 (±1.7) 2.66 (±1.2)

Table 2: Ablation study of imagined EEG including perfor-
mance without GRU module, GAN loss, reconstruction loss,
CTC loss, and DA approach.

useful for training imagined speech EEG, which means the
neural substrates of imagined and spoken speech have com-
mon features that can be represented in our embedding vec-
tor. Speech production and articulation are mainly known to
be associated with the left sensory-motor and inferior frontal
cortices (Proix et al. 2022). Angular gyrus functions to asso-
ciate various language-related activation from the auditory,
motor, and sensory regions, therefore, not only the left tem-
poral lobe but the whole brain may function in the speech
process (Watanabe et al. 2020). Our embedding vector, gen-
erated from the whole channel EEG, may contain both the
articulatory information and the speech intention. Therefore,
we demonstrate the potential of generating speech by ex-
tracting informative speech-related features, represented by
the shared features of spoken and imagined speech EEG.

Leave-One-Out Scenario
For a more comprehensive discussion, we conducted an ad-
ditional experiment of the leave-one-out (LOO) approach
to further apply our NeuroTalk system to locked-in patients
who can only use imagined speech. The model was trained
with the spoken EEG of entire participants excluding one
participant and was fine-tuned with the imagined EEG of the
excluded participant. As a result, comparable performance
inferior to the baseline but better than without DA was ac-
quired. Based on this preliminary experiment, we have iden-
tified the possibility of extending our framework to an en-
tirely new person, which could offer additional support to
individuals who have lost their own voice.

Conclusion
We presented NeuroTalk, which reconstructs the user’s own
voice from the EEG during imagined speech. The DA ap-
proach was carried out through joint feature embedding and
transfer-learning the models of imagined speech EEG, using
the pre-trained models of spoken speech EEG. Our results
demonstrate the feasibility of reconstructing voice from non-
invasive brain signals of imagined speech at the word level.
Furthermore, the generation of the unseen word with mul-
tiple characters, despite the inferior performance, indicates
the potential to extend our study to larger datasets and to ex-
plore sentence-level speech synthesis in the future. We hope
our study contributes to advancing the means of human com-
munication and further provides increased freedom of com-
munication for patients or people with disabilities.
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