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Abstract
Crowdsourcing is a favorable computing paradigm for pro-
cessing computer-hard tasks by harnessing human intelli-
gence. However, generic crowdsourcing systems may lead
to privacy-leakage through the sharing of worker data. To
tackle this problem, we propose a novel approach, called
iFedCrowd (incentive-boosted Federated Crowdsourcing),
to manage the privacy and quality of crowdsourcing projects.
iFedCrowd allows participants to locally process sensitive
data and only upload encrypted training models, and then ag-
gregates the model parameters to build a shared server model
to protect data privacy. To motivate workers to build a high-
quality global model in an efficacy way, we introduce an in-
centive mechanism that encourages workers to constantly col-
lect fresh data to train accurate client models and boosts the
global model training. We model the incentive-based inter-
action between the crowdsourcing platform and participating
workers as a Stackelberg game, in which each side maximizes
its own profit. We derive the Nash Equilibrium of the game
to find the optimal solutions for the two sides. Experimental
results confirm that iFedCrowd can complete secure crowd-
sourcing projects with high quality and efficiency.

Introduction
Crowdsourcing becomes increasingly popular in recent
decades which coordinates the Internet workers to do micro-
tasks so as to solve computer-hard problems (e.g., image an-
notation, answering database-hard queries (Fan et al. 2015;
Tong et al. 2020; Kang et al. 2021)). Moreover, the develop-
ment of crowdsourcing platforms, such as Amazon Mechan-
ical Turk1, CrowdFlower2 and Baidu Test3, makes it more
convenient to get crowdsourced data by recruiting broad
workers. However, prior researches have found that the sub-
mitted data can reveal crowd workers’ private information,
such as locations, vocal prints, face images and even busi-
ness secrets (Tong, Wang, and Shi 2020; Zhao, Liu, and
Chen 2021). With the increasing concerns and regulations
on data security and personal privacy, data privacy in crowd-
sourcing is getting more and more vital. State-of-the-art
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protection techniques usually achieve privacy preservation
through injecting imprecision, such as cloaking (Pournajaf
et al. 2014; Zhai et al. 2019), inaccuracy (e.g., local differen-
tial privacy (Wang et al. 2016, 2018)) to perturb crowd work-
ers’ sensitive information (Wang, Yu, and Han 2020). Nev-
ertheless, these techniques would inevitably lead to quality-
loss crowdsourcing as they need to modify the original data.

To solve the above challenge, the federated learning (FL)
paradigm is proposed (McMahan et al. 2017). FL enables
distributed computing nodes to collaboratively train models
without exposing their sensitive data, thus realizing privacy-
preserving model training with little loss (or even no loss) of
model performance (Wang, Yu, and Han 2020; Yang et al.
2019). The crowdsourcing system typically outsources data
collection tasks to Internet workers and then aggregates and
analyzes the sensing data (Capponi et al. 2019; Gummidi,
Xie, and Pedersen 2019; Tu et al. 2020; Yu et al. 2020a).
Nevertheless, the centralized platform is generally untrusted
and may leak workers’ private information. With the preva-
lence of mobile devices with increasing computation power
(e.g., laptops and cell phones) and advanced network infras-
tructure (e.g., 5G), we can directly outsource data processing
tasks instead of data collecting tasks to participants within
the FL framework. Consequently, the collected data that in-
volves private information can be kept locally without being
exposed to other workers and the server. The significance
in the lens of federated crowdsourcing has been well recog-
nized (Tong, Wang, and Shi 2020; Wang, Yu, and Han 2020;
Pandey et al. 2020).

Although FL has shown great advantages in privacy-
preserving crowdsourcing, it still faces an open challenge
that how to incentive clients to participate in the FL by con-
tributing their computational/communication resource and
data (Zhan et al. 2021). Clients may be reluctant to perform
local training and share their model updates without suffi-
cient compensation. Moreover, although FL does not require
participants to upload their raw data to the remote server,
the malicious attackers and the curious server may still infer
the private information of training data from the intermedi-
ate model parameters and gradients (Song, Ristenpart, and
Shmatikov 2017). Such security risks and potential threats
aggravate the reluctance of client participation (Song et al.
2020). On the other hand, sufficient rewards can motivate
them to tolerate these risks and make contributions. In addi-
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Figure 1: Schematic framework of iFedCrowd. The task publisher publishes a to-be-trained model θ and the requirements of
training data. Then the server first announces the reward rates r to the participating clients. For any client k, it chooses the
training strategy at the given reward rates: the accuracy level A∗

k, data freshness F ∗
k and completion time T ∗

k . Next, the client
collects the required data and completes training task for attaining the accuracy A∗

k and the data freshness F ∗
k within the limited

time T ∗
k . At last, the server aggregates the received client models {θk}nk=1 to obtain the final server model and sends the rewards

to clients based on their contributions.

tion, the clients in FL are independent, and only their owners
can determine the participating strategy (i.e., when, where
and how to participate in FL (Zhan et al. 2022)). Hence, the
rewards can affect the clients’ decisions and training strate-
gies, and the final model performance. Taken together, the
incentive mechanism is essential for FL and crowdsourcing.

Contemporary studies focus on the incentive mechanism
design for FL and are generally driven by clients’ contri-
bution, reputation and resource allocation (Ding, Fang, and
Huang 2020; Zhan et al. 2022). They aim to accurately eval-
uate the contributions of different data providers so that the
revenue can be distributed reasonably, or motivate clients
to contribute their computation power and bandwidth to
achieve a fast convergence. Unfortunately, these incentive
techniques for FL cannot be directly applied to federated
crowdsourcing. This is because: (i) The crowd workers in
federated crowdsourcing continuously collect new data dur-
ing the training process to perform model updating. Accord-
ingly, the motivation of the incentive mechanism for feder-
ated crowdsourcing is to stimulate workers to use fresh data
to update models. (ii) As the edge devices of crowd work-
ers feature highly heterogeneous resources (e.g., computing
power, bandwidth, or memory), the required time to upload
model updates may vary significantly, thus leading to a long
completion time of the training task. Hence, the time cost
for local training and model uploading needs to be consid-
ered to achieve a faster model convergence rate. (iii) The
collected training samples on workers’ devices are annotated
by themselves, some of which may be error-prone and noisy.
Furthermore, potentially malicious workers may also sub-
mit low-quality data for quick pay. As such, it is essential
to evaluate the data quality for different data providers to

complete federated crowdsourcing project with high quality.
(iv) In federated crowdsourcing, many data owners may not
actively participate in the federated learning process, espe-
cially when the data owners are individual workers rather
than enterprises. Therefore, distributing remuneration in a
timely manner is crucial for recruiting and retaining more
high-quality workers over time. On the other hand, the task
publisher (server) aims to minimize the total reward, while
each client has its own interests of maximizing the revenue
that is defined by the received reward from the platform mi-
nus its cost of data collection and model training.

To address above issues, we propose the incentive-
boosted Federated Crowdsourcing (iFedCrowd) that spurs
mobile clients of the federated crowdsourcing market to ac-
tively collect local data and train client models for improving
the server model. iFedCrowd formulates the above problem
as a Stackelberg game (Zhang and Zhang 2009) to analyze
such scenario. In the lower level of the game, iFedCrowd
distributes the revenue in terms of workers’ local accuracy
level, data freshness and total completion time, thereby en-
couraging workers to accomplish the collaborative training
task with high quality and efficiency. Meanwhile, it takes
into account the cost of collecting data, computation and
communication to reward workers with reasonable compen-
sation so that they actively participate in the federated learn-
ing task. In the upper level of the game, iFedCrowd max-
imizes the utility of the task publisher that is defined by
the obtained profit of the aggregated model minus the to-
tal reward paid to clients. We derive the Nash Equilibrium
that describes the steady state of the whole federated crowd-
sourcing system. Figure 1 presents the schematic framework
of iFedCrowd. The main contributions of our work are out-
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lined as follows:
(i) We study how to motivate crowd workers to accomplish
federated crowdsourcing projects in an economic way. We
propose an incentive-boosted federated crowdsourcing so-
lution (iFedCrowd) and formulate this solution as a Stack-
elberg game, which motivates workers to constantly collect
fresh data and refine client models.
(ii) We derive the Nash Equilibrium of the Stackelberg game
to obtain the optimal solution that maximizes the profit of
the task publisher and the participating clients.
(iii) Extensive simulations are conducted to demonstrate that
iFedCrowd can motivate workers to complete secure crowd-
sourcing projects with high quality and efficiency.

Related Work
Our work is closely related with the researches from two
branches: privacy protection of crowd workers and incentive
mechanisms in federated learning.

As the crowdsourced data is collected by humans, the
data submitted by workers involves private information and
may cause serious privacy leakage (Ryoo et al. 2017; Xu
et al. 2019). Differential privacy (Dwork 2008) is a widely-
adopted technique to protect participants’ privacy. How-
ever, employing such data perturbation techniques needs
to inject strong noise into raw data or intermediate re-
sults, which severely deteriorates data accuracy. Various en-
cryption techniques have also been applied to circumvent
the exposure of private information. To name a few, Tang
et al. (2020) proposed a privacy-preserving task recommen-
dation scheme with win-win incentives in crowdsourcing
through developing attribute-based encryption with prepa-
ration/online encryption and outsourced decryption tech-
nologies. Wu, Wang, and Xue (2019) proposed a privacy-
aware task allocation and data aggregation scheme (PTAA)
that leverages bilinear pairing and homomorphic encryption.
Miao et al. (2019) presented a privacy-preserving truth dis-
covery framework, which performs weighted aggregation on
users’ encrypted data using a homomorphic cryptosystem.
Nevertheless, these encryption-based methods would bring
complex computations for data processing and analysis, and
cannot defend against privacy inference attacks (Wang et al.
2019; Yuan et al. 2019).

To relieve these disadvantages, federated learning (FL) al-
lows multiple clients to collaboratively train a shared model
by iteratively aggregating model updates without exposing
their raw data. CrowdFL (Zhao, Liu, and Chen 2021) inte-
grates FL into mobile crowdsensing and enables participants
to locally process collected data via FL and only upload en-
crypted training models. Zhang, Yiu, and Hui (2020) utilized
a statistical iterative crowdsourcing algorithm to combine in-
ference results from different FL client models. However,
these FL-enabled crowdsourcing methods follow a too opti-
mistic assumption that crowd workers are voluntarily partic-
ipating, without any returns.

The incentive mechanism is essential and crucial to FL.
Since the model training operations at edge nodes will con-
sume various resources, such as computation power, band-
width and battery, the edge nodes would not like to get

involved in this voluntary collaboration, without any com-
pensation. Consequently, a plethora of studies have concen-
trated on incentive mechanism design in FL. Song, Tong,
and Wei (2019) proposed the contribution index based
on Shapley value to evaluate the contribution of different
clients. They reconstructed the approximate models on dif-
ferent combinations of training datasets through the inter-
mediate results so as to effectively calculate the contribution
index. Zeng et al. (2020) presented a procurement auction
incentive framework considering the multi-dimensional and
dynamic edge resources. They applied the game theory to
derive the optimal strategies for each client, and leveraged
the expected utility to guide the parameter server to select
the optimal clients to train the learning model. Lim et al.
(2020) used the contract theory to build the incentive mech-
anism between clients and users, and the coalitional game
theory to reward the clients based on their marginal contri-
butions. Yu et al. (2020b) proposed a fair incentive scheme to
achieve the long-term system performance and avoid the un-
fairness treatment during the training process. Pandey et al.
(2020) incorporated FL into the crowdsourcing framework
and formulated a two-stage Stackelberg game to enhance the
communication efficiency. Zhan et al. (2020) introduced a
game-based mechanism to motivate crowd workers to max-
imally contribute their local data for FL learning task.

However, all these studies are inapplicable to federated
crowdsourcing scenario where a worker continuously col-
lects new data samples. In addition, they disregard the com-
pletion time of federated learning tasks, and the instability of
crowd worker’s participation. Our proposed iFedCrowd uti-
lizes the Age of Information (AoI) (Li, Li, and Hou 2019) to
quantify the freshness of collected data. It rewards the work-
ers that can provide fresh data with more remuneration, thus
encouraging workers to constantly collect the suitable task
data. In addition, it takes the completion time spent on data
collection and model training into account to measure the
contribution of workers, so as to incentivize workers to ac-
complish the task at a faster pace.

Methodology
Problem Definition
Let W = {w1, w2, · · · , wn} be the n crowd workers partic-
ipating in federated crowdsourcing. Each worker wk ∈ W
collects his/her own set of tasks for annotations Dk =
{xk

1 ,x
k
2 , · · · ,xk

Nk
}, where Nk denotes the number of tasks

collected by worker wk. Let Yk = {yk1 , yk2 , · · · , ykNk
} be

the labels annotated by worker wk for the corresponding Nk

tasks. To preserve the privacy of participants, both Dk and
Yk are kept locally and not shared with the FL server or other
clients. We propose iFedCrowd to train the server model θ̃
via the collaboration with n client models {θ1, θ2, · · · , θn}.

Stackelberg Game Based Incentive Mechanism
In federated crowdsourcing, the task publisher sets up a to-
be-trained model θ and the requirements for training data.
Then iFedCrowd recruits crowd workers to collect suitable
training data and collaboratively train the shared model.
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Meanwhile, the task publisher allocates rewards to the par-
ticipating clients to achieve an optimal local accuracy, and
incentivizes clients for maximizing its own benefits, i.e.,
a well-trained model with low budget. Upon receiving re-
wards from the server, the rational clients will individually
maximize their own profits. Such interaction scenario be-
tween the server and clients can be viewed as a Stackelberg
game. The game can be divided into two levels. In the lower
level, the participating clients independently determine their
strategies to solve the local subproblem with the offered in-
centive. In the upper level, the task publisher decides on the
reward rates for clients to build a high-quality model and
maximize the utility.

Lower-level Subgame: In the lower level of the game, the
task publisher will firstly announce uniform reward rates for
the participating clients. Intuitively, for a higher accuracy of
the client model trained over the local data, fresher collected
data and less completion time, there will be an increase in
the reward for the participating clients. Therefore, the rev-
enue allocated to client k is defined as follows:

vk = r1 ·
Ak

Tk
+ r2 · Fk (1)

where Ak, Fk, Tk are the accuracy level of the client model
θk, the freshness of the training data, and the completion
time of local training and model update, respectively. r1 > 0
and r2 > 0 are the corresponding reward rates. To compute
the freshness of the collected training data, the server re-
quires the workers to record the time at which the data was
collected. Let gk(t) be the generation time of the client k’s
most recent training sample at time slot t, we can define the
freshness of the data as:

Fk =
1

t− gk(t)
(2)

Then rational workers will try to improve the freshness of
the training data, shorten the completion time, and improve
the local model’s accuracy for maximizing its utility.

At the same time, training the global model (i.e., the to-
be-trained model) with local data for a defined accuracy
level and limited training time incurs a cost for the partic-
ipants, mainly including the calculation cost and the com-
munication cost:

Ck = ccalk + ccolk + ccom (3)

where ccalk , ccolk and ccomk denote the calculation cost, data
collection cost and communication cost, respectively. ccalk is
related with the number of iterations to train the local model
for attaining the target accuracy Ak. Based on the relation
between local iterations and model accuracy in (Pandey et al.
2020), we define the calculating cost for client k as:

ccalk = γk(1 +Ak) log(1 + Ak) (4)

where γk > 0 is a parameter choice of client k that depends
on the local data size and the condition number of the local
subproblem. Hence, more iterations result in more calcula-
tion costs on clients’ devices.

The cost of collecting training data for workers is pro-
portional to the data freshness. To guarantee the freshness,

workers should continuously collect new data. Therefore,
the data collection cost for client k can be defined as:

ccolk = eδk·Fk (5)

where δk > 0 is a parameter of client k that depends on the
performance of sensors on workers’ devices.

The communication cost ccom is the same for all the par-
ticipating clients and is incurred when a client interacts with
the server for model update. During the iterative process of
the collaborative training task, let s be the size of the model
parameters, this total cost can be defined as ccom=s.

With the reward allocated to workers defined in Eq. (1)
and the cost of participating clients defined in Eq. (3), the
client utility model for workers can be defined as:

uk = r1 ·
Ak

Tk
+ r2 · Fk − Ck (6)

Upper-level Subgame: In the upper level of the game, the
task publisher can determine the optimal reward rates r∗

([r∗1 , r
∗
2]) to maximize the profit after knowing the response

of workers. The utility of the task publisher can be defined
by the final model performance and total completion time.
As a result, the server utility model is defined as follows:

U =
1

n

n∑
k=1

(α·Ak+β·Fk)− max
1≤k≤n

Tk−
n∑

k=1

(r1·
Ak

Tk
+r2·Fk)

(7)
where α > 0 and β > 0 are the system parameters and∑n

k=1(r1 · Ak

Tk
+ r2 · Fk) is the total cost spent for incen-

tivizing workers to participate in the federated learning task.
Based on the game formulation defined above, we con-

sider the optimal choice that maximizes the utility of both
the task publisher and the participating clients. Hence, we
derive the Nash Equilibrium to find the optimal solution for
the two subgames in the next subsection.

Nash Equilibrium
Definition 1. Nash Equilibrium. (r∗, A∗, F∗, T∗) is a Nash
Equilibrium if it satisfies the following conditions:

U(r∗,A∗,F∗,T∗) ≥ U(r,A∗,F∗,T∗) (8)

uk(r
∗, A∗

k, F
∗
k , T

∗
k ) ≥ uk(r

∗, Ak, Fk, Tk), ∀k ∈ W (9)

for any values of r, A, F, and T.
To study the equilibrium of the lower-level game, we de-

rive the best response for each client.
Theorem 1. The client k’s best response regarding the tar-

get accuracy A∗
k, data freshness F ∗

k and completion time T ∗
k

can be characterized as follows:

A∗
k = ehk(T

min
k ) − 1, F ∗

k =
1

δk
log(

r2
δk

), T ∗
k = Tmin

k (10)

where hk(T
min
k ) is r1

γk·Tmin
k

− 1 and Tmin
k is the minimum

time for worker k to complete the data collection and model
training.

Proof. See the supplementary file (Kang et al. 2022) for
the detailed proof.
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According to Theorem 1, the task publisher, which is the
leader in the Stackelberg game, can derive the unique Nash
Equilibrium among participating clients under any given
reasonable reward rates r. Consequently, the task publisher
can maximize its utility by choosing the optimal reward rates
(i.e., the equilibrium of the upper-level game). The utility
model of the task publisher based on the set of best response
A∗, F∗ and T∗ is defined as follows:

U(r) =
1

n

n∑
k=1

(α·A∗
k+β·F ∗

k )− max
1≤k≤n

T ∗
k−

n∑
k=1

(r1·
A∗

k

T ∗
k

+r2·F ∗
k )

(11)
Theorem 2. The second order derivatives of U(r) satisfy

the following conditions:

∂2U

∂r21
< 0,

∂2U

∂r22
< 0 (12)

Proof. See the supplementary file (Kang et al. 2022) for
the detailed proof.

Since ∂2U
∂r21

< 0 and ∂2U
∂r22

< 0, the utility of the task pub-
lisher U(r) is a strictly concave function. Thus it has a
unique maximizer r∗ that satisfies the following conditions:

∂U

∂r1
= 0,

∂U

∂r2
= 0 (13)

Therefore, there exists a unique Nash Equilibrium of the
Stackelberg game. If clients do not satisfy A∗

k and F ∗
k , the

server can update the server utility model according to the
actual training strategy submitted by clients, and recalculate
the optimal reward rates. It will assign new reward rates in
the next round and still achieve the maximum server profit.

Algorithm 1 summarizes the pseudo-code of iFedCrowd.
Lines 2-10 and lines 12-16 are the procedures at central
server and local clients, respectively. Specifically, the pro-
cess at the server consists of the following steps: compute
the optimal response at the given reward rates for each client
(lines 2-5), calculate the optimal reward rates and distribute
them to the participating clients, then wait for them to finish
the task (lines 7-9), receive the client models and return the
aggregated model to the task publisher (lines 10). The pro-
cess at the local client consists of the following steps: receive
the announced reward rates from the server (line 12), choose
the optimal data collection and model training strategies and
accomplish the set goals (lines 14-15), and send back the
updated local model to the server (line 16).

Experiments
Performance Comparison with Baselines
To characterize and demonstrate the efficacy of the pro-
posed incentive mechanism for federated crowdsourcing, we
conduct a comparison of its performance with two base-
lines, namely Random and MAX. Random randomly se-
lects the reward rates to incentivize the participating clients.
MAX chooses the largest revenue rates to achieve the best
response. Since Pandey et al. (2020) aimed to minimize
the communication budget between server and users, while
Zhan et al. (2020) aimed to maximize the quantity of client

Algorithm 1: iFedCrowd: incentive-boosted Federated
Crowdsourcing
Input: n clients, local datasets {Dc}nc=1; the computation
parameters {γk}nk=1; data collection parameters {δk}nk=1;
size of the published model s; system parameters α and β.
Output: Global model θ̃.

1: Procedure at the Central Server:
2: for all clients k = 1 → n in parallel do
3: Calculate the client k’s utility uk given the reward

rates r1 and r2 via Eq. (6).
4: Compute the optimal response including the accuracy

level A∗
k, the data freshness F ∗

k and the completion
time T ∗

k via Eq. (10).
5: end for
6: Calculate the task publisher’s utility via Eq. (11).
7: Determine the optimal reward rates r∗1 and r∗2 via

Eq. (13), then announce them to all clients.
8: Wait for all clients to complete the data collection and

model training task.
9: Receive the updated client models {θk}nk=1 and send the

rewards to clients based on their contributions.
10: return the aggregated server model θ̃.
11: Procedure at Local Client k:
12: Receive the reward rates r∗1 and r∗2 .
13: Calculate the local utility via Eq. (6).
14: Choose the training strategies including A∗

k, F ∗
k and T ∗

k
to solve the local subproblem via Eq. (10).

15: Collect the required data and complete training task for
attaining the accuracy level A∗

k and the data freshness
F ∗
k within the limited time T ∗

k .
16: Send the updated local model θk to the server.

training data, we do not take these two most related meth-
ods for comparison. We fix the number of crowd work-
ers to 10. The task publisher’s utility model is defined
with parameters α = 80, β = 50. Other reasonable
values for the system parameters can also be used here,
which do not affect performance comparisons between these
methods. The code of iFedCrowd is shared at www.sdu-
idea.cn/codes.php?name=iFedCrowd. We implement iFed-
Crowd with the Mindspore deep learning framework.

To verify the effectiveness of the optimal reward rates, we
evaluate the performance of baselines under different con-
figurations, that is, with different client parameters includ-
ing γ and δ. To investigate the impact of γ, we set γ to be
uniformly distributed on [Γ,Γ + 4](Γ = 1, 2, · · · , 6) and δ
to be distributed on [1, 2]. In the similar way, we set δ to be
uniformly distributed on [∆,∆+ 1](∆ = 0, 1, · · · , 5) with
the uniformly distributed γ on [1, 5] to analyze the impact of
δ. We independently run each method ten times and record
the average performance.

Figure 2 reports the reward rates of iFedCrowd and the
baselines under different configurations. We have the fol-
lowing observations: (i) All the three methods have a signif-
icant increase in reward rates as the computing cost param-
eter γ and the data collection cost parameter δ are enlarged.
The reason is that attaining the same accuracy level and col-
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Figure 2: Reward rates (r1 and r2) vs. client parameters (γ ∈
[Γ,Γ + 4] and δ ∈ [∆,∆+ 1]).
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Figure 3: Average utility of workers vs. client parameters
(γ ∈ [Γ,Γ + 4] and δ ∈ [∆,∆+ 1]).

lecting the new training samples consume much more bud-
get, and thus the participating clients exert more incentive
to compensate for their cost. (ii) MAX always allocates the
largest reward rates to participating clients since it aims to
encourage workers to collect more fresh data and achieve the
highest local accuracy as much as possible. However, this
strategy also wastes much more budget and allows the task
publisher to reap very few profits. (iii) Random randomly
selects reward rates for workers regardless of the comput-
ing cost, data collection cost and the communication cost of
clients. Therefore, it may allocate inadequate compensation
to workers and cannot maintain a stable profit for the task
publisher. (iv) Our iFedCrowd achieves a more significant
improvement in choosing reward rates than baselines. This
is because iFedCrowd considers the task publisher’s profit
and the cost spent for incentivizing workers to make contri-
butions. Then it determines the optimal reward rates to max-
imize the utility of the participating clients and the task pub-
lisher. As a result, iFedCrowd can attract workers to make
significant contributions with small reward rates.

To evaluate the attractiveness of iFedCrowd to crowd
workers, we plot the average utility of workers with differ-
ent client parameters in Figure 3. The results under differ-
ent configurations give similar observations, and iFedCrowd
achieves the competitive client utility than other baselines
with the increasing client parameters. In addition, we have
the following important observations: (i) MAX has a bet-
ter performance than Random in most cases, which offers
much more reward to stimulate workers making greater con-
tributions. Nevertheless, iFedCrowd achieves the competi-
tive utility over MAX, which wastes a lot of unnecessary
budget to achieve the same client benefits as iFedCrowd.
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Figure 4: Utility of task publisher vs. client parameters (γ ∈
[Γ,Γ + 4] and δ ∈ [∆,∆+ 1]).

(ii) Random allocates much less revenue to the participat-
ing workers than MAX. In addition, the paid remuneration
to workers is not stable across the different scenarios, thus
aggravating the reluctance of clients’ participation. (iii) In
federated crowdsourcing, the individual workers may not ac-
tively participate in the published federated learning tasks.
Accordingly, our proposed iFedCrowd leverages the client
utility model to quantify the benefits of workers and chooses
the optimal reward rates to engage the data owners. As a
result, it maintains a more profitable and stable federated
crowdsourcing market, thus can attract more data owners to
actively contribute their resources.

The bar charts in Figure 4 further present the task pub-
lisher’s profit for each method with different client parame-
ters. As expected, the larger computing and data collection
costs lead to a lower utility of the task publisher. In addi-
tion, we have the following observations: (i) MAX usually
performs the worst as it distributes rewards to clients that
greatly outweigh the benefits of clients’ contributions, thus
consuming much more cost and resulting in less profit of
the task publisher. (ii) Random assigns much less reward
to the participating clients since it randomly chooses the re-
ward rates. Hence, it allows the task publisher to obtain more
profit than that of MAX. However, it does not take into ac-
count the optimization of task publisher’s utility given the
response of participating clients and just randomly deter-
mines the reward rates of the utility model. Therefore, it is
outperformed by iFedCrowd. (iii) iFedCrowd clearly outper-
forms the compared baselines in different scenarios. This is
because iFedCrowd utilizes the server utility model to se-
lect the optimal reward rates to maximize the profit of the
task publisher. Therefore, it enables the task publisher to ef-
ficiently obtain a high-quality server model with low budget.

Experiment with Real Crowdsourcing Project
We used a real-world dataset called FitRec (Ni, Muhlstein,
and McAuley 2019) for experiments. FitRec dataset is col-
lected from the sport website Endomondo and includes mul-
tiple sources of sequential sensor data generated on mobile
devices, such as heart rate, speed, GPS, sport type and user
gender. Following (Ni, Muhlstein, and McAuley 2019), we
re-sample the sequential data in 10-second intervals, and fur-
ther generate two derived sequences: distance and speed. We
randomly select 50 users as crowd workers to participate in
the federated crowdsourcing. A single layer LSTM followed
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Random MAX iFedCrowd
r1 17.189 23.957 12.468
r2 1.568 7.497 4.562

Worker utility 4.713 6.216 4.165
Server utility 37.197 14.223 52.518

RMSE 4.613 3.634 3.057

Table 1: Experimental results on real-world FitRec dataset
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Figure 5: Reward rates (r1 and r2) vs. number of workers.

by a fully connected layer is used as the backbone for the
training model. We use the canoncial RMSE (Root Mean
Squared Error) as the evaluation metric to quantify the per-
formance on the prediction tasks.

As shown in Table 1, MAX allocates the largest reward
rates to the users, as expected. As such, MAX offers the
highest worker utility among the three methods. However,
it just obtains a server model that is comparable in perfor-
mance with iFedCrowd. In other words, it wastes much more
budget and results in the lowest server utility. iFedCrowd
achieves the competitive worker utility than other baselines
and clearly outperforms the compared baselines in terms
of server utility. This is because iFedCrowd estimates the
training strategy for each client in advance. Then it utilizes
the server utility model to select the optimal reward rates to
achieve the best performing model without wasting budget.
As a result, it enables the task publisher to gain the maxi-
mum profit.

Impact of Number of Workers
To more explicitly evaluate iFedCrowd, we plot the reward
rates and the utility of task publisher and clients with dif-
ferent number of participating workers in Figure 5 and Fig-
ure 6. The experimental results are relatively stable when
the number of workers exceeds 30, so we vary the number
of workers from 5 to 30. The conclusions under different
client parameters are similar, so we use a reasonable and
fixed range for different parameters, namely γ ∼ U(3, 5)
and δ ∼ U(2, 4).

Figure 5 reports the impact of the number of client work-
ers on the reward rates. We observe that: (i) MAX always re-
leases the highest and inflexible reward rates to participating
clients as the number of workers increases. It aims to max-
imize each client’s participation level, no matter how much
the clients cost. Although this mechanism enhances the at-
tractiveness to crowd workers, the obtained benefits are not
proportional to its payment, thus severely cutting down the
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Figure 6: The utility of task publisher and workers vs. num-
ber of workers.

profit of the task publisher. (ii) In Random mechanism, the
server determines the reward rates to workers randomly re-
gardless of changes in the number of workers. Therefore,
the cost of Random is relatively low compared to MAX.
But potential and inadequate incentives will prevent workers
from contributing their data and computation resources. Fur-
thermore, the uncertainty of the allocated revenue can not
attract more workers to participate in the federated learning
task. (iii) As the number of participating workers increases,
the reward rates of iFedCrowd decrease. This is because
iFedCrowd considers the remuneration paid to the workers,
and it chooses the optimal reward rates to maintain a high
server profit when more workers joining the federated learn-
ing task. Hence, iFedCrowd gradually reduces the reward
rates to maximize the benefits for the task publisher.

In Figure 6, we display the changing utility of task pub-
lisher and workers with an increasing number of workers.
We notice that: (i) The average utility of workers in MAX is
much more inflexible and higher that of Random and iFed-
Crowd, which is in congruence with the previous analysis.
Hence, the wasted budget allocated to participating clients
leads to the lowest utility of task publisher, as more and
more clients participate in the federated learning task. (ii)
In contrast to MAX and Random, iFedCrowd obtains an in-
creasing utility of task publisher when the number of work-
ers increases. This is because iFedCrowd selects the optimal
reward rates according to the set of workers’ response. Then
it reduces the allocated reward to maximize the utility of the
task publisher when more workers submit their response to
the server. At the same time, this mechanism will also cause
a decline in workers’ utility. In addition, more workers will
also lead to more competition among participating workers.
Therefore, each worker will obtain less reward from the task
publisher as more and more workers involved.

Conclusion
We presented an incentive mechanism iFedCrowd to com-
plete secure crowdsourcing projects with quality and effi-
ciency. iFedCrowd aims to jointly maximize the utility of the
participating clients and the crowdsourcing platform, and it
defines the Stackelberg game to model the competition be-
tween clients and platform. We derive the best response so-
lution and the existence of Nash Equilibrium of this game.
Extensive experiments confirm the efficacy of iFedCrowd.
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