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Abstract

In practice, Wearable Human Activity Recognition (WHAR)
models usually face performance degradation on the new user
due to user variance. Unsupervised domain adaptation (UDA)
becomes the natural solution to cross-user WHAR under an-
notation scarcity. Existing UDA models usually align samples
across domains without differentiation, which ignores the dif-
ference among samples. In this paper, we propose an unsuper-
vised domain adaptation model with sample weight learning
(SWL-Adapt) for cross-user WHAR. SWL-Adapt calculates
sample weights according to the classification loss and do-
main discrimination loss of each sample with a parameter-
ized network. We introduce the meta-optimization based up-
date rule to learn this network end-to-end, which is guided by
meta-classification loss on the selected pseudo-labeled target
samples. Therefore, this network can fit a weighting function
according to the cross-user WHAR task at hand, which is su-
perior to existing sample differentiation rules fixed for spe-
cial scenarios. Extensive experiments on three public WHAR
datasets demonstrate that SWL-Adapt achieves the state-of-
the-art performance on the cross-user WHAR task, outper-
forming the best baseline by an average of 3.1% and 5.3% in
accuracy and macro F1 score, respectively.

Introduction
Wearable Human Activity Recognition (WHAR) aims to
infer human activities through signals collected by wear-
able sensors. Since wearable sensors are non-intrusive and
portable, WHAR is widely applied in many fields, e.g.,
health monitoring (Hong et al. 2010), factory worker assis-
tance (Maekawa et al. 2016), and human-device interaction
(Reed, Reed, and Dascalu 2019).

Achieving high accuracy in real applications has always
been a challenge in WHAR. Due to the distinct physical
condition and behavioral pattern of each user, distribution
shift often exists between the data of different users, which
is known as user variance (Chen, Zhang, and Peng 2020). As
a result, a well trained model might perform poorly on the
new user in real applications. To tackle cross-user WHAR,
some works proposed to adapt WHAR models to the new
user using annotated data from this user (Hong, Ramos,
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and Dey 2016; Matsui et al. 2017; Rokni, Nourollahi, and
Ghasemzadeh 2018; Mairittha, Mairittha, and Inoue 2020;
Amrani, Micucci, and Napoletano 2021). However, data an-
notation usually demands user efforts, thereby limiting the
practicality of these solutions under inconvenient situations.

Unsupervised Domain Adaptation (UDA) has emerged as
a promising solution to cross-user WHAR under annotation
scarcity. UDA transfers the knowledge learned from a la-
beled source domain to an unlabeled target domain. This is
achieved by aligning samples across domains, which creates
domain-invariant feature representations. A large number of
UDA models have been proposed for cross-user WHAR and
achieved great success, where the source domain contains
the labeled data of training users and the target domain con-
tains the unlabeled data of the new user. UDA models for
cross-user WHAR can mainly be divided into three cate-
gories according to the choice of UDA techniques. The first
category minimizes domain discrepancy measures between
the source and target domains (Hosseini et al. 2019; Ding
et al. 2018; Khan, Roy, and Misra 2018); the second cate-
gory adversarially learns domain-invariant feature represen-
tations that fools a domain discriminator (Zhou et al. 2020;
Chen et al. 2019; Wilson, Doppa, and Cook 2020; Ding et al.
2018); and the third category maps source samples to tar-
get samples, or the other way around (Gil-Martı́n, Antúnez-
Durango, and San-Segundo 2020; Soleimani, E. and Nazer-
fard, E. 2021).

Existing UDA models usually align samples across do-
mains regardless of the difference among samples. However,
the alignment of different samples might contribute to the
target classification task in varying degrees. The differen-
tiation of samples has been explored for special scenarios
(Chakma et al. 2021; Zhang et al. 2018; Shu et al. 2019;
Cao et al. 2019), which mainly selects or weights samples
according to two aspects: 1) how well samples are classified,
which is usually evaluated by classification loss or classifi-
cation confidence. 2) how similar samples are to the other
domain, which is usually evaluated by domain discrimina-
tion loss or domain discrimination probability. Samples are
differentiated by the rules customized for each special sce-
nario.

In real applications, we might come across various cross-
user WHAR tasks: the user variance between training users
and the new user might be small or large, e.g., the new user
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might fall within or out of the age group of training users;
the data collected from the new user might be clean or cor-
rupted, e.g., the occurrence of the transitions between activ-
ities might be low or high. Usually, much is unknown about
the cross-user WHAR task at hand, which makes it inpracti-
cal to choose a sample differentiation rule for a special sce-
nario as in existing models. In addition, some rules involve
hyper-parameters that need to be tuned (Shu et al. 2019; Cao
et al. 2019), which makes them less applicable and less ro-
bust.

To address the above challenge, we propose an unsuper-
vised domain adaptation model with sample weight learn-
ing (SWL-Adapt) for cross-user WHAR. We weight sam-
ples during alignment according to how well they are clas-
sified and how similar they are to the other domain. Instead
of manually designing a sample weighting rule, we learn a
parameterized network to calculate sample weights driven
by the WHAR task on the new user. This is achieved based
on the idea of meta-optimization, which uses one optimiza-
tion method to tune another optimization method. The main
contributions of this paper are summarized as follows:

1) We introduce weight allocator, which maps the clas-
sification loss and domain discrimination loss of each sam-
ple to its weight in weighted domain alignment loss. Due
to the impressive capability of neural networks, it can auto-
matically fit task-specific weighting functions, which have
stronger representation power than those manually designed
in current works.

2) We introduce the meta-optimization based update rule
to learn weight allocator end-to-end, which is guided by
meta-classification loss on the selected pseudo-labeled tar-
get samples. The learned weight allocator can up-weight the
samples whose alignment benefits the WHAR task on the
new user while down-weighting the samples whose align-
ment does not.

3) We extensively evaluate SWL-Adapt on three public
WHAR datasets. By comparing to the state-of-the-art UDA
models, we demonstrate that SWL-Adapt achieves compet-
itive performance as a UDA model for cross-user WHAR,
outperforming the best baseline by an average of 3.1% and
5.3% in accuracy and macro F1 score, respectively.

Related Work
Unsupervised Domain Adaptation
Recent UDA models usually achieve adaptation by creat-
ing domain-invariant feature representations, which can be
mainly divided into three categories. The first category min-
imizes a variety of domain discrepancy measures between
the source and target domains (Long et al. 2015, 2017). For
example, Rozantsev et al. (2019) utilized MMD as the do-
main discrepancy measure. The second category adversari-
ally learns domain-invariant feature representations that fool
a domain discriminator (Ganin, Y. and Lempitsky, V. 2015;
Ganin et al. 2016; Tzeng et al. 2017), which is commonly
referred as adversarial UDA (Zou et al. 2019). For example,
Ganin et al. (2016) proposed DANN, which uses a Gradient
Reversal Layer (GRL) to achieve the adversarial training of
feature extractor and domain discriminator. The third cate-

gory maps source samples to target samples, or vice versa
(Soleimani, E. and Nazerfard, E. 2021). For example, Shri-
vastava et al. (2017) proposed SimGAN, which uses a Gen-
erative Adversarial Network (GAN) to map the data of the
source domain to the target domain, then uses the classifier
trained on the mapped source data for target classification.

Sample Differentiation in UDA

Some works explored differentiating samples during align-
ment for special scenarios (Chakma et al. 2021; Cao et al.
2019; Wang et al. 2022). For example, Zhang et al. (2018)
proposed to weight source samples during alignment for par-
tial domain adaptation, where the target domain has less
number of classes than the source domain. The source sam-
ples that are dissimilar to the target domain are given lower
weights, as their labels are unlikely to appear in the target
domain and they should be discarded during alignment. Shu
et el. (2019) proposed TCL for weakly-supervised domain
adaptation, where the source domain is collected with coarse
labeling or corrupted data. TCL is guided by a curriculum,
which combines the classification losses of source samples
and the similarities of source samples to the target domain
to perform source sample selection. The source samples that
are corrupted or dissimilar to the target domain will not be
selected, thus they are eliminated during alignment.

However, these UDA models differentiate samples using
the rules manually designed for special scenarios with task-
dependant hyper-parameters. Such rules might not general-
ize to the various WHAR tasks and the diverse data distri-
butions of users in real applications. We propose to learn a
parameterized network in a data-driven manner for sample
weighting, which is flexible and effortless.

UDA for Cross-user WHAR

UDA has been widely adopted for cross-user WHAR (Ding
et al. 2018; Chen et al. 2019; Zhou et al. 2020; Gil-Martı́n,
Antúnez-Durango, and San-Segundo 2020). Khan et al.
(2018) proposed HDCNN based on a CNN model, which
minimizes the layer-wise Kullback-Leibler divergence be-
tween training users and the new user after every interme-
diate layer. Hosseini et al. (2019) proposed MMD-transfer
based on a BILSTM model, which minimizes the MMD
between training users and the new user before the output
layer. Soleimani et al. (2021) proposed SA-GAN based on
a CNN model, which uses GAN to map the data of training
users to those from the new user. Wilson et al. (2020) pro-
posed CoDATS based on a CNN model, which formulates
the labeled data of each training user as a source domain,
and performs adversarial UDA between each training user
and the new user. Chen et al. (2022) proposed SALIENCE
based on a CNN-RNN model, which performs adversarial
UDA across users at the sensor level to achieve local align-
ment, and uses an attention mechanism to differentiate sen-
sors considering how well they are aligned across users.

Existing UDA models for cross-user WHAR ignore the
difference among samples, which might hinder the perfor-
mance on the new user.
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Figure 1: The framework of SWL-Adapt. “⊕” indicates con-
catenation operation. “⊗” indicates multiplication opera-
tion. “BCE” and “CE” indicate binary cross-entropy func-
tion and cross-entropy function, respectively. “BN” indi-
cates batch normalization layer. For a 1-D convolutional
layer, fx indicates the number of filters, kx indicates kernel
size, and sx indicates stride size. For a dense layer, x units
denotes the number of units. nh is the number of units in the
hidden layer of weight allocator, which is a hyper-parameter.
nc is the number of classes, which depends on the WHAR
task.

Methodology
Problem Definition
In cross-user WHAR, we are given the labeled data from
several training users DS = {(xi, yi)}nS

i=1 with samples xi

and labels yi as the source domain, where nS is the number
of samples from training users. We are given the unlabeled
data from the new user DT = {xi}nS+nT

i=nS+1 with samples
xi as the target domain, where nT is the number of sam-
ples from the new user. We assume that training users and
the new user share the same sensor deployment and activ-
ity set, while their data are distributed differently. We use
D = {(xi, di)}ni=1 with domain labels di to denote the data
of both domains, where n is the total number of samples
from training users and the new user, i.e., n = nS + nT.
We have di = 0 for source samples and di = 1 for target
samples. The goal of UDA for cross-user WHAR is to train
an activity recognition network for the new user, using the
labeled data from training users and the unlabeled data from
the new user.

The Subnetworks
Figure 1 presents the framework of SWL-Adapt, which con-
sists of four subnetworks, i.e., feature extractor F (·; θf),
classifier C(·; θc), domain discriminator D(·; θd), and
weight allocator W (·; θw) with parameters θf , θc, θd, θw,

respectively. Feature extractor and classifier constitute ac-
tivity recognition network.

Samples are sent into feature extractor to extract fea-
tures, which are sent into classifier and domain discrimina-
tor. Classifier outputs the classification probabilities, i.e., the
probabilities of samples belonging to each activity class. Do-
main discriminator outputs the domain discrimination prob-
abilities, i.e., the probabilities of samples coming from the
target domain. Then, the classification losses and domain
discrimination losses of samples are calculated and concate-
nated, and sent into weight allocator to calculate sample
weights. Since target samples are unlabeled, their classifi-
cation losses are calculated with pseudo-labels.

Sample weights are applied to samples during alignment.
The features of samples with high weights are forced to
be similarly distributed between training users and the new
user, while the features of samples with low weights are al-
lowed to keep the identifying patterns of training users and
the new user.

Training
Feature extractor and domain discriminator are adversari-
ally trained as the conventional DANN (Ganin et al. 2016).
Weight allocator is learned to give proper sample weights
that benefit the WHAR task on the new user, whose perfor-
mance is estimated with highly confident pseudo-labeled tar-
get samples. In order to get a better estimation, we also train
activity recognition network with highly confident pseudo-
labeled target samples. Training with pseudo-labeled target
samples is very common in UDA (Lifshitz, O. and Wolf, L.
2021), which can learn class-discriminative features for the
new user.

Training Losses The parameters of SWL-Adapt are op-
timized according to classification loss, meta-classification
loss, and weighted domain alignment loss.

Our training involves the pseudo-labeling of target sam-
ples. Whenever pseudo-labels are required, they are re-
assigned to target samples by the following procedure:
for the i-th target sample with classification probability
{pc(xi)|nc

c=1} = C(F (xi;θf); θc), where nc denotes the
number of classes, we choose the class with the highest
probability as its pseudo-label, i.e., ŷi = argmaxc pc(xi),
with classification confidence pŷi

(xi). We select the pseudo-
labeled target samples with classification confidences higher
than a threshold ρ to calculate classification loss and meta-
classification loss. Specifically, we denote the mask on the
i-th target sample as mi, which indicates whether this sam-
ple is selected: mi = 1 if pŷi(xi) > ρ, otherwise mi = 0.

For notation convenience, we denote the classifica-
tion loss of the i-th sample xi with class label yi or
pseudo-label ŷi as lci (θf ,θc) = hce(C(F (xi;θf); θc), yi)
or hce(C(F (xi;θf);θc), ŷi), and its domain discrimi-
nation loss with domain label di as ldi (θf ,θd) =
hbce(D(F (xi;θf);θd), di), where hce represents the cross-
entropy function and hbce represents the binary cross-
entropy function. Using ⊕ to represent concatenation opera-
tion, we denote the weight allocator output of this sample as
ηi(θw) = W (lci (θf ,θc)⊕ ldi (θf ,θd);θw), which is normal-
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Figure 2: The update rule of weight allocator. “⊕” indicates concatenation operation. “⊗” indicates multiplication operation.
Black arrow indicates forward computation. Red arrow indicates backward computation. Purple arrow indicates backward-on-
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ized to sample weight wi(θw):

wi(θw) =
ηi(θw)∑b

j=1 ηj(θw) + δ(
∑b

j=1 ηj(θw))
(1)

where b is the batch size and δ(·) prevents the computation
error when all ηi(θw) in a mini-batch are zeros. δ(a) = τ
when a = 0 and δ(a) = 0 otherwise, where τ is a posi-
tive constant. This normalization is performed separately on
source and target samples, so that their summed weights re-
main equal.

We use labeled source samples and the selected pseudo-
labeled target samples to formulate classification loss Lc as:

Lc(θf ,θc) =
1

nS

nS∑
i=1

lci (θf ,θc)+

1∑n
j=nS+1mj

n∑
j=nS+1

mj l
c
j(θf ,θc)

(2)

We use the selected pseudo-labeled target samples to for-
mulate meta-classification loss as:

Lmc(θ̃f(θw); θc) =
n∑

i=nS+1

mil
c
i (θ̃f(θw),θc) (3)

where θ̃f(θw) represents the feature extractor parameters
obtained by optimizing according to weighted domain align-
ment loss using weight allocator W (·; θw). This is described
in detail in Training Algorithm.

We use source and target samples with domain labels to
formulate weighted domain alignment loss Lwd as:

Lwd(θf ,θd;θw) = − 1

n

n∑
i=1

wi(θw)l
d
i (θf ,θd) (4)

Training Process At each training step, we sample a mini-
batch of labeled source samples and another mini-batch of
unlabeled target samples. We denote the learning rate of
weight allocator as α and the learning rate of the other three
subnetworks as β. At training step t, three updates are se-
quentially performed on the two mini-batches as follows,
which are summarized in Appendix 1.

1) Updating feature extractor and classifier parame-
ters. The first update makes activity recognition network
learn class-discriminative patterns on both labeled source
samples and the selected pseudo-labeled target samples:

θ
(t)(1)
f = θ

(t)
f − β∇

θ
(t)
f

Lc(θ
(t)
f ,θ(t)

c ) (5)

θ(t+1)
c = θ(t)

c − β∇
θ
(t)
c
Lc(θ

(t)
f ,θ(t)

c ) (6)

2) Updating weight allocator parameters. We de-
sign the meta-optimization based update rule for the sec-
ond update, which is the key to learning proper sample
weights: with meta-classification loss as the learning objec-
tive, weight allocator is learned to assign higher weights to
the samples whose alignment benefits the WHAR task on the
new user. This helps to improve the class discriminability of
target samples during alignment.

First, we obtain another set of feature extractor parameters
by optimizing according to weighted domain alignment loss:

θ̃
(t)
f (θ(t)

w ) = θ
(t)(1)
f −β∇

θ
(t)(1)
f

Lwd(θ
(t)(1)
f ,θ

(t)
d ;θ(t)

w ) (7)

Then, we calculate meta-classification loss on the selected
pseudo-labeled target samples using θ̃

(t)
f and update weight

allocator parameters by:

θ(t+1)
w = θ(t)

w − α∇
θ
(t)
w
Lmc(θ̃

(t)
f (θ(t)

w ),θ(t+1)
c ) (8)

Figure 2 (a) illustrates the optimization process in Equa-
tion (7) and Figure 2 (b) illustrates the optimization process
in Equation (8). The analysis on this update rule is included
in Appendix 2. In implementation, the computation graph of
Equation (7) is saved, so that the gradients of weight allo-
cator parameters in Equation (8) can be automatically com-
puted through the saved computation graph. After obtaining
the optimized weight allocator parameters, θ̃(t)

f is thrown
away, and θ

(t)(1)
f is updated with the optimized θ

(t+1)
w in

the following update.
3) Updating feature extractor and domain discrimina-

tor parameters. Guided by sample weights, the third update
aligns source and target samples to reduce the discrepancy
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between training users and the new user, while trying to im-
prove the class discriminability of target samples to enhance
the performance on the new user:

θ
(t+1)
f = θ

(t)(1)
f − β∇

θ
(t)(1)
f

Lwd(θ
(t)(1)
f ,θ

(t)
d ;θ(t+1)

w ) (9)

θ
(t+1)
d = θ

(t)
d + β∇

θ
(t)
d

Lwd(θ
(t)(1)
f ,θ

(t)
d ;θ(t+1)

w ) (10)

where the adversarial learning is achieved with the GRL be-
tween feature extractor and domain discriminator.

Experiments
Datasets and Preprocessing
SWL-Adapt is evaluated on three public WHAR datasets.

SBHAR (Reyes-Ortiz et al. 2016) contains the recordings
of 30 users performing 6 daily activities and 6 transition ac-
tivities between three of the daily activities (sitting, standing,
and laying), e.g., sit-to-stand. The users recorded 5 hours of
data in total. We use the accelerometer data collected from
the smartphone on the waist, which are sampled at around
50 Hz.

OPPORTUNITY (Roggen et al. 2010) contains the
recordings of 4 users performing 5 daily activities. Each user
performed daily activities for 15-25 minutes in total with-
out any restriction. We use the accelerometer data collected
from the IMU on the right lower arm, which are sampled at
around 30 Hz.

RealWorld (Sztyler, T. and Stuckenschmidt, H. 2016)
contains the recordings of 15 users performing 8 daily activ-
ities in real world environments rather than controlled labs.
Each user performed each activity for 10 minutes, except
for jumping (around 1.7 minutes). We use the accelerometer
data collected from the smartphone on the chest, which are
sampled at around 50 Hz.

The data are pre-processed as follows. First, we remove
invalid values and complete missing values through linear
interpolation. Then we normalize the data by channel to be
within the range of [-1, 1]. Finally we perform data segmen-
tation using the sliding window strategy: the window size is
set to 2.56 seconds and the overlap is set to 50% for SBHAR
with reference to Reyes-Ortiz et al. (2016); the window size
is set to 3 seconds and the overlap is set to 50% for OP-
PORTUNITY and RealWorld with reference to Chang et al.
(2020); the activity label of a window is set to the one that
appears most. The details of the pre-processed data are in-
cluded in Appendix 3.

Experimental Settings
Evaluation Protocol The labeled data of training users are
randomly split into the training set and the validation set by
0.8:0.2. The unlabeled data of the new user are randomly
split into the adaptation set and the test set by 0.5:0.5. All
models are trained on the training set and the adaptation set,
tuned on the validation set, and tested on the test set. We
formulate a set of new users for each dataset, and each user
in this set will be selected as the new user once. For stabil-
ity, such process is repeated 5 times using 5 varying random
seeds (1 to 5) and the mean and standard deviation of the 5
repeats are reported as the final results.

For SBHAR, the first 15 users serve as training users and
the remaining 15 users constitute the set of new users. It is
important to remain robust against the high occurrence of
the transitions between activities, which severely affects the
performance of WHAR (Reyes-Ortiz et al. 2016). To inves-
tigate cross-user WHAR under the case where the data of
the new user are corrupted with a non-negligible amount of
transition activities, daily activities are always included and
transition activities are only included in the training data of
the new user. Since only 4 users are available for OPPOR-
TUNITY, we use the leave-one-person-out-cross-validation
evaluation method as Chen et al. (2022), i.e., each user is se-
lected as the new user once, while the remaining users serve
as training users. For RealWorld, we divide users according
to age with reference to Zhou et al. (2020). The 10 users
aged under 30 serve as training users and the 5 users aged
otherwise constitute the set of new users.

We use accuracy and macro F1 score as performance
measures. Due to the class imbalance observed in all three
datasets, macro F1 score serves as a complement to accuracy
for capturing performance balance across classes (Liu et al.
2020). In our tables, “Acc.” represents accuracy and “Mac.
F1” represents macro F1 score.

Implementation Details As illustrated in Figure 1, weight
allocator is constructed with two dense layers with sig-
moid activation for the output layer and ReLU activation
for the hidden layer. Multi-Layer Perceptrons are known to
be universal approximators to almost any continuous func-
tions, which enables weight allocator to fit various weight-
ing functions covering those manually designed in previous
works. For fair comparison, the other three subnetworks are
constructed following CoDATS (Wilson, Doppa, and Cook
2020) for SWL-Adapt and all compared models except the
classifier of XHAR (Zhou et al. 2020), which is constructed
as original to process spatial-temporal features. For feature
extractor, we use stride 2 in the first two convolutional lay-
ers, which can speed up training without loss of accuracy
(Chang et al. 2020).

The source codes of SWL-Adapt are available online1. All
the models evaluated in this paper are trained with PyTorch
(Paszke et al. 2019). Adam algorithm (Kingma, D. P. and Ba,
J. 2015) is used for optimization as in CoDATS. We use the
cosine annealing schedule on the learning rate, which is set
to 1e-4 for the compared models as in CoDATS. The learn-
ing rate is increased to 1e-3 for SWL-Adapt so that the gra-
dients of weight allocator parameters by meta-optimization
would be of the same scale as those of other subnetwork
parameters. Training batch size is set to 128 and the total
number of steps is set to 1000. The update in Equation (7)
is implemented with a differentiable optimizer provided by
higher (Grefenstette et al. 2019).

DEV (You, Wang, and Jordan 2019) is used to tune the
hyper-parameters of all models. The number of units nh in
the hidden layer of weight allocator is tuned under 80 and
set to 3, 5, and 7 on SBHAR, OPPORTUNITY, and Real-
World, respectively. The classification confidence threshold

1https://github.com/Rxannro/SWL-Adapt
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Model SBHAR Opportunity RealWorld
Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1

HDCNN (PerCom 2018) 0.772±0.008* 0.754±0.003* 0.628±0.004* 0.528±0.006* 0.647±0.016* 0.626±0.013*
MMD (TPAMI 2019) 0.768±0.011* 0.748±0.009* 0.604±0.003* 0.500±0.004* 0.636±0.013* 0.604±0.010*
DAN (ICML 2015) 0.772±0.009* 0.749±0.008* 0.606±0.004* 0.504±0.006* 0.699±0.025* 0.650±0.023*

AdvSKM (IJCAI 2021) 0.786±0.009* 0.761±0.009* 0.620±0.004* 0.521±0.009* 0.703±0.012 0.668±0.013*
MCD (CVPR 2018) 0.781±0.008* 0.762±0.006* 0.620±0.003* 0.523±0.006* 0.633±0.011* 0.605±0.011*

XHAR (SECON 2020) 0.769±0.015* 0.749±0.013* 0.618±0.005* 0.532±0.007* 0.725±0.021 0.677±0.022*
DANN (JMLR 2016) 0.751±0.006* 0.730±0.007* 0.619±0.005* 0.511±0.012* 0.736±0.012 0.695±0.016*
DUA (CVPR 2022) 0.759±0.009* 0.772±0.011* 0.625±0.001* 0.530±0.001* 0.599±0.002* 0.569±0.001*
ETN (CVPR 2019) 0.750±0.011* 0.727±0.009* 0.620±0.004* 0.504±0.003* 0.737±0.011 0.696±0.006*
TCL (AAAI 2019) 0.726±0.010* 0.706±0.008* 0.619±0.005* 0.509±0.012* 0.741±0.027 0.698±0.024
UAN (CVPR 2019) 0.752±0.013* 0.730±0.008* 0.617±0.006* 0.519±0.008* 0.731±0.030 0.688±0.026*

SS-UniDA (AAAI 2021) 0.722±0.011* 0.701±0.009* 0.617±0.008* 0.510±0.018* 0.742±0.030 0.692±0.028*
PADA (ECCV 2018) 0.744±0.008* 0.722±0.007* 0.609±0.004* 0.483±0.007* 0.733±0.021 0.690±0.019*

SWL-Adapt 0.829±0.014 0.832±0.014 0.666±0.007 0.589±0.015 0.753±0.046 0.741±0.048

Improvement 4.3% 6.0% 3.8% 5.7% 1.1% 4.3%

Table 1: Comparison with the state-of-the-art UDA models (mean±std). “*” indicates that SWL-Adapt is statistically superior
to the compared model according to pairwise t-test at a 95% significance level. The result of the best compared UDA model is
underlined, over which the improvement is calculated.

ρ is tuned within [0.5, 0.6, 0.7, 0.8, 0.9] and set to 0.7 for all
datasets.

Additional model analyses can be found in our Appen-
dices.

Comparison with Other UDA Models

We compare SWL-Adapt with the following two categories
of state-of-the-art UDA models: UDA models without the
differentiation of samples: HDCNN (Khan, Roy, and Misra
2018), MMD (Rozantsev, Salzmann, and Fua 2019), DAN
(Long et al. 2015), AdvSKM (Liu, Q. and Xue, H. 2021),
MCD (Saito et al. 2018), XHAR (Zhou et al. 2020), DANN
(Ganin et al. 2016), and DUA (Mirza et al. 2022). UDA
models with the differentiation of samples: ETN (Cao et al.
2019), TCL (Shu et al. 2019), UAN (You et al. 2019), SS-
UniDA (Lifshitz, O. and Wolf, L. 2021), and PADA (Cao
et al. 2018).

The results are shown in Table 1, from which the follow-
ing tendencies can be observed: 1) SWL-Adapt shows clear
superiority over the compared state-of-the-art UDA mod-
els, outperforming the best baseline by 4.3%, 3.8%, and
1.1% in accuracy and 6.0%, 5.7%, and 4.3% in macro F1
score on SBHAR, Opportunity, and RealWorld, respectively.
This indicates that SWL-Adapt can better adapt to the new
user by sample weight learning. 2) ETN, TCL, UAN, SS-
UniDA, and PADA generally fail to improve over their base
model DANN by differentiating samples, while SWL-Adapt
improves over DANN on all datasets. Since the five com-
pared models design sample differentiation rules that are tai-
lored for special scenarios, they are expected to perform well
when their assumptions hold and worse otherwise. The rea-
son for the improvement achieved by SWL-Adapt is that it
is capable of automatically fitting a weighting function that
is suitable for the cross-user WHAR task at hand.

Ablation Study
We compare SWL-Adapt with the following variants: Base
is equivalent to DANN (Ganin et al. 2016), which is obtained
by removing weight allocator and disabling sample weight
learning. SWL-D is obtained by removing the classification
losses of samples from the input of weight allocator. SWL-
C is obtained by removing the domain discrimination losses
of samples from the input of weight allocator. SWL-S is ob-
tained by only performing sample weight learning for source
samples.

The results are shown in Table 2, from which the fol-
lowing tendencies can be observed: 1) SWL-Adapt consis-
tently outperforms SWL-D and SWL-C, which implies that
the combination of domain discrimination losses and clas-
sification losses is useful for weighting samples. 2) SWL-S
outperforms Base (DANN) on all datasets, which implies
that weighting source samples is already beneficial. SWL-
Adapt outperforms SWL-S on all datasets, which implies
that weighting target samples along with source samples
brings additional performance gain.

Model Investigation
Visualization of Feature Distributions We visualize the
source and target feature distributions on RealWorld by t-
SNE (Maaten, L. V. D. and Hinton, G. 2008). The features
are the outputs of the dense layer of classifier (before soft-
max). To investigate the effect of SWL-Adapt under the
biggest age difference, we set the eldest user (user 5, age 64)
as the new user. We also provide the A-distance dA as the
domain discrepancy measure between the source and target
domains (Ben-David et al. 2010). Smaller A-distance indi-
cates smaller domain discrepancy.

The results are shown in Figure 3, from which the fol-
lowing tendencies can be observed: 1) The target feature
distribution resembles the source feature distribution more
for DANN. This agrees with the fact that the A-distance of

6017



Model SBHAR Opportunity RealWorld
Acc. Mac. F1 Acc. Mac. F1 Acc. Mac. F1

Base (DANN) 0.751±0.006* 0.730±0.007* 0.619±0.005* 0.511±0.012* 0.736±0.012 0.695±0.016*
SWL-D 0.822±0.015* 0.822±0.013* 0.650±0.019 0.574±0.023 0.682±0.044* 0.672±0.036*
SWL-C 0.823±0.006 0.824±0.006* 0.658±0.008 0.563±0.017 0.737±0.040 0.718±0.037
SWL-S 0.821±0.009* 0.822±0.008* 0.661±0.006 0.582±0.013 0.738±0.026 0.723±0.033

SWL-Adapt 0.829±0.014 0.832±0.014 0.666±0.007 0.589±0.015 0.753±0.046 0.741±0.048

Table 2: Comparison with variants (mean±std). “*” indicates that SWL-Adapt is statistically superior to the compared model
according to pairwise t-test at a 95% significance level.

target
source

(a) Base (DANN)

target
source

(b) SWL-Adapt

Figure 3: Visualization of feature distributions using t-SNE.
(a) dA = 1.72. (b) dA = 1.98.

DANN is smaller than that of SWL-Adapt, indicating that
DANN achieves smaller domain discrepancy. 2) For DANN,
target samples are spread out among source samples; for
SWL-Adapt, target samples are gathered among source sam-
ples and several clusters are formed.

This is because DANN aligns samples across domains
without differentiation, which pursues smaller domain dis-
crepancy regardless of the class discriminability of target
samples. With sample weight learning during alignment,
SWL-Adapt not only decreases domain discrepancy but also
improves the class discriminability of target samples, i.e.,
the inter-class separation and intra-class compactness.

Analysis of Sample Weights Figure 4 (a) and (b) show
the weight allocator functions learned on SBHAR and Re-
alWorld, respectively, from which the following tendencies
can be observed: 1) In Figure 4 (a), sample weight mono-
tonically increases as classification loss decreases and as do-
main discrimination loss increases, i.e., the model enforces
the alignment of the samples that are well classified and sim-
ilar to the samples of the other domain. In addition, we find
that in the data of the new user, transition activity samples
(with 0.504 classification loss and 0.657 domain discrimi-
nation loss in average) generally have larger classification
losses and smaller domain discrimination losses than daily
activity samples (with 0.332 classification loss and 0.703 do-
main discrimination loss in average), indicating that transi-
tion activity samples are given smaller weights during align-
ment. This could be beneficial, as forcefully aligning them
with the daily activity samples of training users could de-
crease the class discriminability of daily activity samples.
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Figure 4: Weight allocator functions learned by SWL-Adapt.
Contour graphs are used to visualize weight allocator func-
tions w.r.t. the classification losses and domain discrimina-
tion losses of samples. The shade of color shows the value
of sample weight (after sigmoid layer, without normaliza-
tion). Contour lines are labeled with the according sample
weights.

2) In Figure 4 (b), sample weight monotonically increases
as classification loss increases and as domain discrimina-
tion loss decreases, i.e., the model enforces the alignment
of the samples that are poorly classified and dissimilar to the
samples of the other domain. Since the domain discrepancy
is significant on RealWorld due to the large age difference
between training users and the new user, some target sam-
ples are likely to be dissimilar to source samples and hard
to classify. Enforcing their alignment could increase their
class discriminability and reduce the domain discrepancy. 3)
Figure 4 (a) and (b) show contradictive trends w.r.t. classifi-
cation loss and domain discrimination loss. This shows the
great flexibility of SWL-Adapt, i.e., SWL-Adapt can weight
samples according to the cross-user WHAR task at hand.

Conclusions
In this paper, we propose a novel unsupervised domain adap-
tation model with sample weight learning named SWL-
Adapt for cross-user WHAR. We introduce weight allo-
cator and the meta-optimization based update rule to per-
form sample weight learning. Experiments on three datasets
demonstrate the superiority of SWL-Adapt. In addition, we
validate the flexibility of SWL-Adapt, and find that it can
not only decrease domain discrepancy but also enforce the
class discriminability of target samples.
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