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Abstract
Brain-computer Interface (BCI) builds a neural signal to the
motor command pathway, which is a prerequisite for the re-
alization of neural prosthetics. However, a long-term stable
BCI suffers from the neural data drift across days while re-
training the BCI decoder is expensive and restricts its appli-
cation scenarios. Recent solutions of neural signal recalibra-
tion treat the continuous neural signals as discrete, which is
less effective in temporal feature extraction. Inspired by the
observation from biologists that low-dimensional dynamics
could describe high-dimensional neural signals, we model the
underlying neural dynamics and propose a semantic-dynamic
feature that represents the semantics and dynamics in a shared
feature space facilitating the BCI recalibration. Besides, we
present the joint distribution alignment instead of the com-
monly used marginal alignment strategy, dealing with the var-
ious complex changes in neural data distribution. Our recali-
bration approach achieves state-of-the-art performance on the
real neural data of two monkeys in both classification and re-
gression tasks. Our approach is also evaluated on a simulated
dataset, which indicates its robustness in dealing with various
common causes of neural signal instability.

Introduction
The Brain-computer Interface, BCI (Chapin et al. 1999;
Hochberg et al. 2006; Zhang et al. 2019a; Fang, Qi, and
Pan 2020) provides direct brain control of external devices
by decoding the motor intentions from neural activities,
which has demonstrated the potential in motor rehabilita-
tion and restoration. However, long-term available BCI suf-
fers from the intrinsic instability caused by several inevitable
problems (e.g., elusive flow of the tissues, neuron necrosis,
and electrodes displacement (Barrese et al. 2013; Degen-
hart et al. 2020)), which restricts the promotion of BCI from
the lab to real-life applications. A widely adopted strategy
for alleviating such degradation is daily recalibration (Aji-
boye et al. 2017). Recalibration with supervised learning ap-
proaches (Wen et al. 2021; Brandman et al. 2018) enables
high performance. However, labeling the newly-collected
data is often expensive, raising restrictions for promoting
BCI to real-life applications. Recently, leveraging unlabelled
data for recalibration has received increasing interest.
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Copyright © 2023, Association for the Advancement of Artificial
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Motor-related neural signals (e.g., cortical signals in dor-
sal premotor cortex, PMd or primary motor cortex, M1)
have been widely used in mature BCI experiments and
even neuroprosthesis (Hochberg et al. 2012; Wodlinger
et al. 2014; Pandarinath et al. 2017; Pan et al. 2018). Re-
searchers have revealed motor-related neural signals to be
a high-dimensional mapping of low-dimensional underly-
ing dynamics (Pandarinath et al. 2018b; Churchland et al.
2012). Therefore, recalibrating motor-related neural signals
with unlabeled data could be achieved by unsupervised do-
main adaptation (UDA) considering the dynamics. However,
prevalent UDA methods are designed for non-sequential
data (e.g., images (Long et al. 2014; Sun, Feng, and Saenko
2016)) and primarily focus on spatial features. Existing
UDA methods for sequential data (e.g., texts (Zhang et al.
2019b), audios (Drossos, Magron, and Virtanen 2019), cor-
tical signals (Dyer et al. 2017; Farshchian et al. 2018)) also
fail to extract dynamic features. That is, they treat the se-
quence to be discrete and extract features by aggregating
local ones, which ignores the structure (Wang et al. 2018)
or dynamics (top row, Fig. 1). Besides, these methods only
align the marginal distribution of the features while do not
explicitly align decision boundaries, which may fuse seman-
tics in the target domain and degrade the classification per-
formance (bottom row, Fig. 1).

To extract dynamic features for recalibration, our basic
idea is to force the extracted semantic features across differ-
ent classes embedded in the initial-point subspace of a mani-
fold determined by an autonomous linear dynamical system.
The embedding representation contains the semantics, while
its spatial information in the manifold reflects the dynamic
features (as the dynamic trajectories are decided by its ini-
tial points). By compressing the dynamic feature as an initial
point, the intrinsic dynamics instead of discrete features for
each time stamp could be comprehensively considered. The
unified representation of Semantic and Dynamic (SD) fea-
tures facilitates unsupervised recalibration in two aspects. 1)
The manifold determined by the dynamical system is long-
term stable as discovered in (Gallego et al. 2020), which is
free from recalibration across domains. 2) In this manifold,
aligning the unified representation aligns semantics and dy-
namics autonomously, and we only need to focus on the SD
feature alignment in the recalibration.

Concretely, we use an observation module to extract the
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Figure 1: Illustration of the difference between other UDA
methods and ours when aligning sequence data. Top row:
other methods destroy the integrity of sequences (left) while
ours maintains the dynamics (right). Bottom row: in feature
space, other methods only consider marginal alignment, ne-
glecting semantics and confusing decision boundaries (left),
while ours additionally considers conditional alignment to
explicitly align decision boundaries (right).

feature of input sequences. To obtain the SD features, we
tailor 1) a classifier module that forces the extracted features
to encode the task-related semantics and 2) a motor decod-
ing module that forces the extracted features to embed in the
initial-point subspace of a dynamical system. We use seman-
tic labels and real motion trajectories in the source domain
as the supervision to train these three modules. As the un-
derlying dynamics of the motor cortex (MC) lie in a long-
term stable manifold and are invariant across days (Pandar-
inath et al. 2018b; Gallego et al. 2020), the recalibration of
motor-related neural signals could be achieved by fixing the
dynamical system (or the motor decoding module) and fine-
tuning the observation module (using data in the target do-
main). The classifier module is also fixed to keep the hypoth-
esis shared across domains. To avoid the semantic confusion
arising from marginal alignments (fuzzy decision boundary
as (Kang et al. 2019)), we adopt a joint distribution align-
ment, i.e., marginal and conditional alignments, explicitly
consider the semantics during alignment. Our contributions
can be summarized as follows.

• We propose an unsupervised recalibration method based
on the stable circuit assumption, which is robust to daily
changed motor-related neural signals.

• We present a feature extraction method that tailors a clas-
sifier and a motor decoding module, which successfully
embeds the semantics and dynamics into a unified feature
space.

• We introduce a feature alignment method that jointly
considers marginal and conditional alignments, which al-
leviates the fuzzy semantics after recalibration of motor-
related neural signals.

Related Work
The underlying dynamics extraction in brain signals.
The motor cortex signals, which have shown a high correla-
tion with the preparation and execution of the muscle move-

ments, have been widely used in BCI and neuroprosthesis
for intention or instruction estimation (Qi et al. 2022), and
research finds it strongly governed by the intrinsic dynamics
(Pandarinath et al. 2018a; Churchland et al. 2012). There
are several studies modeling the internal dynamical sys-
tem on the observed neural data (Pandarinath et al. 2018b;
Kao, Ryu, and Shenoy 2015), extracting low-dimensional
latent states as de-noised dynamics and trying to estimate
the motion-related parameters based on the dynamics. Such
linear dynamical system based approaches suppose that the
current latent state could be modeled as a linear function
of the previous states. With the internal factors interpreted
as smooth dynamics, some methods achieved more accurate
and robust BCI (Pandarinath et al. 2018b). However, these
methods still require a number of manual labels to fit param-
eters when facing new sessions or environments, and cannot
fully utilize the dynamic structure of the neural data itself
for future generalization.

Unsupervised domain adaptation (UDA). The preva-
lent UDA methods could be roughly categorized as the
discrepancy-minimizing methods and the adversarial do-
main adaptation methods. The discrepancy-based methods
adopt various domain distance measures and try to mini-
mize such domain discrepancy by matching the statistical
moments of different domains’ distributions (Long et al.
2014; Borgwardt et al. 2006; Sun, Feng, and Saenko 2016).
The adversarial domain adaptation (Ganin et al. 2016) is
based on the deep networks, and introduces an additional
discriminator to confuse features of different domains by
training the model as a two-player adversarial game. In addi-
tion to merely matching the marginal distributions, recently,
researchers have introduced joint distribution alignment or
conditional distribution alignment (Kang et al. 2019; Xie
et al. 2018; Chen et al. 2019) to handle more complex do-
main shift situations like concept shift (Zhao et al. 2020).
For the domain shift in brain signals, some related works
accomplish the recalibration for BCIs by supervised retrain-
ing (Ajiboye et al. 2017) or retraining with different kinds
of auxiliary information (Degenhart et al. 2020; Kao, Ryu,
and Shenoy 2015; Gallego et al. 2020; Wen et al. 2021).
To make BCIs close to practical application, recently, re-
searchers focus on unlabeled neural decoder recalibration on
different days (e.g., without motion trajectories) and taking
it as a UDA task (Dyer et al. 2017; Farshchian et al. 2018).
However, these methods focus on point-to-point alignment
without considering the global-sequence features, and only
use marginal alignment without using the intrinsic seman-
tics, still having limitations for complex drift scenarios.

Preliminary
Problem Definition
The recalibration of neural data is a UDA problem. We treat
the neural and motion data from different sessions (usually
from different days) as different domains. We have a la-
beled source dataset Ds = (Xs, Y s) where the neural data
Xs and motion data Y s are composed of several sequences
(xs

i,y
s
i) that Xs = {xi}N

s

i=1, Y
s = {yi}N

s

i=1 and an unla-
beled target dataset Dt = X t consisting of sequences xt

i
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Figure 2: The flow chart of our recalibration method.

that X t = {xi}N
t

i=1 without motion signals. In the follow-
ing, we organize the neural and motion data as a collec-
tion of sequences Xs ∈ RN s×T×c, X t ∈ RN t×T×c and
Y s ∈ RN s×T×2, where each sequence lasts for T time
stamps (a complete motion trial), the inputs’ dimension is c
and the total sequence numbers are N s and N t in source and
target domains respectively. Note that T and c are shared pa-
rameters across domains. Besides, we have a sequence-level
label Ls = {lsi}N

s

i=1 which indicates the intention of the whole
trial (like the target of the reaching movement) for the clas-
sifier module. In the domain shift scenarios, we supposed
the (Xs, Y s, Ls) and (X t, Y t, Lt) are sampled from different
distributions that P(Xs, Y s, Ls) ̸= P(X t, Y t, Lt).

For the estimated latent states, we have SD features Hs =
{hs

i}N
s

i=1 and Ht = {ht
i}N

t

i=1 in bottleneck and the cor-
responding latent dynamics as Zs = {zs

i}N
s

i=1 and Z t =

{zt
i}N

t

i=1, where hs, ht ∈ Rd, zt
i and zt

i ∈ RT×d where d de-
notes the hidden states’ dimension. The UDA task indicates
mapping the source and target data into one shared feature
space in which P(H s, Y s, Ls) = P(H t, Y t, Lt) ideally and
making the hypothesis learned on the source features work
on the target features.

Theoretical Analysis
Theoretically summarized in (Ben-David et al. 2010), given
the source and target domains Ds, Dt, we could measure the
error ϵt of a hypothesis π ∈ H as a summary of:

ϵt(π) ≤ ϵs(π) +
1

2
dH∆H(Ds, Dt) + λH, (1)

which could be roughly divided as the error of the hypothesis
on the source domain, the discrepancy between the source
and target domain, and the joint hypothesis error λH respec-
tively. Traditional marginal alignment methods measure the
discrepancy dH∆H by the distance of statistical momentum
or an additional discriminator and minimize it, taking λH
as an ignorable term. However, in the neural data shift case
only aligning the marginal distribution means ignoring the
conditional or label shift (Zhao et al. 2020) situations (e.g.,
changes of neural tuning functions) which are common in
BCI (Degenhart et al. 2020), causing great inter-class over-
lapping areas in the feature space and degrading the hypoth-
esis’ performance on the aligned target features.

Figure 3: The schematic diagram of the feature extraction
phase. Input xs

i is a sequence that describes a complete mo-
tion, and xij is the recording at timestamp j. SD-feature hs

i
is extracted for motion intention classification (top right) and
motion trajectory regression (bottom right), respectively.
Abbreviations: FC, Fully Connected layer; BN, Batch Nor-
malization layer; LSD, Linear Dynamical system.

Method
Our recalibration method is summarized in the flow chart
Fig. 2. In the feature extraction phase, we take the source
data Xs as inputs and extract the embeddings Hs by an ob-
servation module Hs = Os(Xs). Then two decoders includ-
ing the classifier module C and the motor decoding mod-
ule M predict the motion intention labels L̂s and the motion
trajectories Ŷ s from Hs, respectively. The whole process is
trained end-to-end with the supervision of intention labels
and motion trajectories. In the feature alignment phase, we
fine-tune the observation module Os and obtain the aligned
observation one Ot, which uses data X t from the target do-
main to align its feature space H t to Hs.

Feature Extraction
As discussed in (Pandarinath et al. 2018b,a), the neural ac-
tivity in MC could be reasonably translated into the intrinsic
dynamics, which is robust, noise-free, and more accurate for
its downstream tasks (like motion prediction). Some studies
(Tanji and Evarts 1976) indicate that given enough prepara-
tion time, signals like PMd may encode a complete motion
intention for the following piece of time. Considering the
brain as a dynamical system, such a preparatory state works
as the initial state for the following dynamics. Based on such
discovery, we build a model to extract the preparatory state
as a semantic embedding to encode the motion intention and
assume that the future neural dynamics are predictable based
on it. The schematic diagram of the feature extraction is dis-
played in Fig. 3.

Observation module Os. As shown in Fig. 3, the obser-
vation module is a multi-layer perception (MLP) network.
It first uses a fully connected (FC) layer for dimension re-
duction to extract spatial features. It then uses a flattened
layer to combine the channel dimension with the temporal
dimension as one feature dimension and introduce another
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FC layer to extract a fixed-length embedding hs
i (i.e., SD

features) to retain the temporal information of the sequence.

Motor decoding module M. Based on the assumption
that the underlying dynamics of short-term MC signals are
predictable (Pandarinath et al. 2018a) when well prepared,
we assume hs

i has taken the preparatory information. By
combining an autonomous linear dynamical system (LDS),
i.e., taking the embedding hs

i as the initial state, hs
i could

be used for complete motion trajectory extraction. An au-
tonomous LDS that let the dynamic trajectory zs

i evolve from
hs
i is constructed as:

Żs = F(Zs)W, zsi0 = hs
i , (2)

where Żs is the first derivative of Zs and F (Zs) in-
dicates the collection of candidate functions F (Zs) =
[f1(Z

s), f2(Z
s), ..., fk(Z

s)] (e.g., fi(Zs) = (Zs)2). W ∈
RT×d denotes the coefficients that is assigned to each term
in F(Z) where d is the dimension of the latent state zsi and
hs
i . For complex scenarios, a combination of different func-

tions fi(Z) is preferred (Luan, Liu, and Sun 2022). While
for the regular and short-term (about 1 second) movements
in our case, we use a simpler formation F(Z) = Z.

To estimate the parameter W , we introduce an RNN
(Mrnn) to predict the motion trajectory from zsi . Mrnn is
trained by a reconstruction loss. The parameters of Os, W
and Mrnn are estimated together by minimizing:

Lrec =

Ns∑
i=0

||ys
i −Mrnn(z

s
i )||2. (3)

Additionally, we introduce a regularization term on W to re-
strict |Żs| because a large |Żs|makes the dynamic trajectory
move rapidly in the unit feature space, causing lots of points
to pile up at the activation function boundary thus reducing
performance. Here we minimize an L2 loss Lreg = ||W ||2.

The autonomous LDS is simple and has only one equilib-
rium point, making the model explainable and easy to ana-
lyze. During experiments, the learned parameter W tends to
be negative-definite and zs

i tends to move towards the equi-
librium point in the vector field1. As the initial point, the
spatial information of hs

i represents the entire dynamic tra-
jectory zs

i evolved from it and due to the unique correspon-
dence between hs

i and zs
i in LDS, we will not get the same hs

i
for different trajectories to avoid semantic confusion. There-
fore, aligning (Hs, Ht) aligns (Zs, Z t). Moreover, the linear
dynamics cannot well describe the real complex movements
(e.g., motion perturbation) and the mapping from Zs to Y s

is unlikely to be directly fitted, so the non-linear RNN Mrnn

is introduced to link the linear dynamics to nonlinear obser-
vations in this module.

Classifier module C. Further, we propose to optimize the
semantic representation Hs by assigning it semantic infor-
mation. Concretely, we introduce an auxiliary classification

1Please find the experimental validation in our supplementary
material (sec. A)

task on Hs to make it clustered and semantically meaning-
ful. The classifier C is an MLP with a softmax layer for pos-
terior probability inference, which is trained by the cross en-
tropy loss:

LCLF =

Ns∑
i=1

Nc∑
j=1

lsi,j logl̂si,j , (4)

where l̂si = C(hs
i) and Nc is the number of classes.

We decode Ls and Y s from two modules M and C, re-
spectively, based on the assumption that P(Y s, Ls, Hs) =
P(Y s|Hs)P(Ls|Hs)P(Hs) but ignore the correlation of
P(Ls|Y s) or P(Y s|Ls) when Ls and Y s have been col-
lected.

Overall, the parameters of the encoder-decoder model
(Os,W,Mrnn,C) are optimized end-to-end by Lpretrain:

Lpretrain = Lrec + λ1LCLF + λ2Lreg. (5)

Feature Alignment
Several causes have been found behind the domain shift in
BCI (Degenhart et al. 2020) including neuron death, elec-
trode movement (marginal shift), and changes in neural tun-
ing functions (conditional shift). Instead of only aligning the
marginal distribution, we first separate the joint distribution
alignment problem into two subtasks: marginal alignment
and conditional alignment, and try to solve them separately.

The alignment of the joint distribution could be divided as
reducing the marginal and conditional distribution discrep-
ancy respectively (Tanwani 2021):

| log P(X s, Ls)− log P(X t, Lt)| =
| log P(Ls|X s)P(X s)− log P(Lt|X t)P(X t)| =
| log P(X s)− log P(X t)|+ | log P(Ls|X s)− log P(Lt|X t)|,

(6)

where we explain the | log P(Xs) − log P(X t)| term as
the marginal discrepancy and measure it approximately by
Lmarginal loss, and | log P(Ls|Xs)− log P(Lt|X t)| as the con-
ditional discrepancy and representing it by LCD loss, and
align by mapping Xs, X t into a shared feature space that
minimizes the distribution discrepancy.

Marginal alignment The initial target model parameters
Ot are copied from the pretrained Os, and we fix Os and the
hypothesis C,M (including W and Mrnn) in the following.
The marginal discrepancy is computed on the semantic fea-
tures Hs = Os(Xs), H t = Ot(X t) by the Kernel Maximum
Mean Discrepancy (KMMD) (Borgwardt et al. 2006):

Lmarginal = ||E[ϕ(H s)]− E[ϕ(H t)]||2H, (7)

where E means the expectation and ϕ(H) is the feature
mapping that ϕ : X → H. Here we avoid directly defin-
ing ϕ by using the known kernel trick: k(hs

i, h
t
i) =<

ϕ(hs
i), ϕ(h

t
i) >H where the kernel matrix is a positive-

definite matrix decided by k(hs
i, h

t
i) = exp(−||hs

i −
ht
i||2/(2σ2) .

Conditional alignment For conditional alignment, ide-
ally, Ot is optimized to get P(Ls|H s) = P(Lt|H t) while
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training it directly is intractable. Based on the Bayesian for-
mula, we convert the conditional distribution to:

P(Ls|Hs) =
P(Hs|Ls)P(Ls)

P(Hs)
∝ P(Hs|Ls)P(Ls) (8)

We make an assumption that the movements across different
days approximately obey the same distribution that P(Y s) =
P(Y t), P(Ls) = P(Lt). This is reasonable as in daily use of
BCI, subjects generally do not have a significant preference
for a specific direction. Then we get:

|P(H s|Ls)P(Ls)− P(H t|Lt)P(Lt)|
∝ |P(H s|Ls)− P(H t|Lt)|.

(9)

To minimize the discrepancy between P(H s|Ls) and
P(H t|Lt), we construct a conditional alignment loss LCD

to make the semantic features Hs and H t that from the same
category aligned to the same distribution: P(Hs|Ls = i) =
P(H t|Lt = i). Still, we use KMMD to measure the condi-
tional domain distance and accumulate the distance in each
subspace as LCD:

LCD =

Nc∑
i=1

||E[ϕ(H s
Ls=i))]− E[ϕ(H t

L̂t=i
)]||2H. (10)

Considering that the target labels Lt are inaccessible,
pseudo labels L̂t = C(H t) could be used as an alterna-
tive. With L̂t, the feature space of target domain could be di-
vided into several subspaces and conditional alignment will
be achieved by aligning samples in each subspace.

Selection for high confidence samples. However, directly
using C and its hyperplane on target X t and trusting the
divided subspace for alignment is risky and may even get
a negative transfer result. Before alignment, we assess the
confidence level for L̂t and remove the samples with low
confidence. We assess the posterior probability inferred by
C(Xt), sorting it and selecting the top n samples with the
highest posterior probability in each subspace. By such a
strategy, only the samples that are far from the decision hy-
perplane are trusted for alignment and the samples that are
easily misclassified are ignored. As the training of Ot, grad-
ually more samples will be trusted.

To make sure the shared feature space Hs, Ht still works
on the source data, similar to equation (3)(4) the intention
classification loss L′

CLF and trajectory reconstruction loss
L′

rec for H t are added to maintain the performance of Ot on
the source data. In summary, we align the joint distribution
by fine-tuning Ot on the target domain by minimizing:

Lalign = λ3L′
reg + λ4L′

CLF + λ5Lmarginal + λ6LCD. (11)

The process can be summarized as Algorithm 1.

Implementing Details
Encoder-Decoder model structure. The encoder Os and
Ot share the same structure: 1) one FC layer with d hidden
neurons and mapping Xs or X t into [B, T, d] size features,
where B denotes the batch size; 2) one flatten layer reor-
ganizing the features as the size of [B, T × d]; 3) another

Algorithm 1: Getting alignment loss terms of SD-Net at per
single loop.
Input:
batches of source samples: X̃s, Ỹ s, L̃s,
batches of target samples: X̃t

Parameter:
the fixed Os, Cs, Ms and the non-fixed Ot,
total number of batches Nb, sequence length T , number of
categories Nc

Output:
Lmarginal, LCD

1: Let b = 0, Lmarginal = 0, LCD = 0,
2: while b ≤ Nb do
3: b← b+ 1
4: L̂t

b = Cs(Ot(X̃t
b)) (Get pseudo labels)

5: Selection for high confidence samples.
6: Lmarginal ← Lmarginal + MMD(Os(X̃s

b ), O
t(X̃t

b))
7: for i = 0→ Nc − 1 do
8: X̂s

b ← X̃s
b [L̃

s
b = i] (Select by labels)

9: X̂t
b ← X̃t

b[L̂
t
b = i] (Select by pseudo labels)

10: LCD ← LCD + MMD(Os(X̂s
b ), O

t(X̂t
b))

11: end for
12: end while

FC layer mapping the features into the [B, d] size seman-
tic vectors Hs or Ht. Taking the SD features as the initial
states, the autonomous dynamical system W interprets Hs,
Ht into the corresponding dynamics Zs or Zt ∈ RB×T×d by
evolving itself from such initial points Hs or H t. Then the
decoder Mrnn takes Zs and Z t as inputs to induce the corre-
sponding movement trajectories. The decoder is a non-linear
RNN consisting of one layer and Tanh activation functions,
with totally d hidden neurons. The RNN is followed by an
FC layer, interpreting the RNN hidden states non-linearly
into the motion signals. In addition, a classifier C is trained
on Hs, consisting of only one FC layer and a softmax layer,
and tries to predict the labels of movement targets Ls. The ar-
chitecture is pretrained end-to-end by Lpretrain, optimized by
Adam with the learning rate of 0.002. For other settings we
select d = 50, b = 10 and T = 60, and λ1 = 0.1, λ2 = 0.1.

Domain adaptation strategy. We fine-tune the target do-
main observation module Ot to make the target feature dis-
tribution approach that of the source to construct a shared
feature space. Here we align the joint distribution of the in-
ternal features by minimizing Lalign on Ot with other mod-
els fixed. Ot is trained with 10 batch size, 60 epochs, 0.002
learning rate and optimized by Adam. For Lalign,, we set
λ3 = 0.1, λ4 = 0.1, λ5 = 0.1, λ6 = 1. We select the
pseudo labels with the top 75% highest posterior probabil-
ity and eliminate the others. Because there are fewer sam-
ples in the target domain after such selection, we randomly
resample on the high-confidence target samples to get the
same number of samples as the source domain, preventing
the model from preferring the source domain or even over-
fitting on it caused by the asymmetric domain size.
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R2/acc Linear decoder LSTM Dyer et al. WGAN Ours (not aligned) Ours (full method) Ours (Sup.)
D1 (C) 0.392/0.354 0.689/0.402 −/− −/0.75 0.845/0.867 −/− 0.845/0.867
D2 (C) 0.175/0.245 0.595/0.338 −/− −/0.72 0.773/0.859 0.875/0.924 0.883/0.811
D3 (C) < 0/0.262 0.323/0.219 −/− −/0.54 0.725/0.747 0.792/0.771 0.933/0.810
D1 (J) 0.386/0.349 0.887/0.500 0.44/− −/0.83 0.730/0.925 −/− 0.730/0.925
D2 (J) 0.340/0.261 0.442/0.292 0.42/− −/0.74 0.43/0.75 0.455/0.8 0.763/0.975
D3 (J) 0.199/0.261 0.338/0.204 < 0/− −/0.62 0.438/0.57 0.471/0.68 0.749/0.9
D4 (J) 0.423/0.317 0.431/0.227 < 0/− −/0.64 0.433/0.49 0.447/0.56 0.768/0.8

Table 1: Performance of our methods and several candidate methods on NHP dataset measured by R2 and classification accu-
racy. The dataset contains three-day (D1 ∼ D3) recordings of CHEWIE (C) and four-day (D1 ∼ D4) recordings of Jango (J).
All the models are only trained on the source domain including D1(C) and D2(J). The best results in each domain are bolded.

R2/acc Neuron death Electrode/tissue shift Tuning function changes Combination
w/o alignment 0.99/0.755 0.48/0.050 0.44/− 0.017 0.92/0.123

Alignment 0.98/0.865 0.96/0.839 0.96/0.838 0.98/0.779

Table 2: Our model’s performance on different neural shift scenarios on the simulation dataset.

Experiments
Datasets. For experiments we use the neural data pub-
lished in (Dyer et al. 2017), as well as its corresponding
movement trajectories Y s, Y t, and target point category Ls,
Lt as labels. The dataset contains neural data from two non-
human primates (NHPs) named ‘CHEWIE’ and ‘JANGO’ re-
spectively. In (Dyer et al. 2017) ‘CHEWIE’ performs an 8-
direction centre-out reaching task and ‘JANGO’ applies its
force of the wrist to move a cursor on the screen. The pub-
lished data were recorded by the same device across differ-
ent days (with a maximum span of one month). We apply our
method to the cross-session data recorded on three different
days of CHEWIE and four days of JANGO, and treat the first-
day recording as the source domain and the other days of
data as the target domain. More experimental protocols are
the same as (Dyer et al. 2017). The data preprocessing de-
tails are described in supplementary materials.

Simulation neural signals. To explore our method’s per-
formance on the various factors that lead to shifts in neural
data, we designed a simulation dataset based on the cosine
tuning curve model (Gilja et al. 2012). The tuning function
means the function relating the motor cortex signals to the
hand movement direction. Concretely some neurons prefer
a specific direction (named the preferred direction, PD) and
perform actively when the subject moves toward this direc-
tion. The biological tuning function could be simulated by a
cosine function:

fri(t) = ai,0 + ai,x cos θt + ai,y sin θt + ϵi, (12)
where fr denotes the estimated firing rates, ai,0, ai,x, ai,y
are the coefficients including baseline, cosPDi and sinPDi

respectively, the ϵ means the noise term and θt means the
moving direction at time t.

Referring to the scenarios summarized in (Degenhart et al.
2020), the neural instability could be divided as 1) baseline
shift; 2) neuron death; 3) electrode/tissue shift;4) changes
of tuning function; 5) complex situation. The baseline shift
could be removed by the normalization during preprocess-
ing, which will not be discussed in the following. The other

situations could be simulated by: 2) deleting part of the in-
put channels; 3) randomly shuffling the input channels; 4)
replacing part of the neurons with some reserved neurons
that have different tuning curves; 5) combing the mentioned
strategies.

Compared Methods. We compared our method with sev-
eral classical neural decoders used in BCI and some lat-
est methods for unsupervised sequence data domain adapta-
tion. 1) Traditional methods including linear regression and
LSTM that supervised trained on the source domain. 2) An
unsupervised alignment method in (Dyer et al. 2017), which
use a brutal searching strategy to align the distribution of
the low-dimensional neural representations with that of the
movements by minimizing their KL-divergence; 3) an ad-
versarial domain adaptation method WGAN (Drossos, Ma-
gron, and Virtanen 2019), which is designed for sequence
data (acoustic data). 4) our method that supervised trained
on each domain as a reference for the ideal neural decoder
(upper bound) after alignment, whose results are shown in
the rightmost column of Table 1. Here we do not compare
with (Azabou et al. 2021) since it does not focus on solving
cross-domain issues.

Metrics. As our model is a multi-task decoder that pre-
dicts both the motion trajectories (regression task) and the
intention labels (auxiliary classification task), we adopt the
classification accuracy for target prediction tasks and coeffi-
cient of determination (R2) for motion prediction tasks sep-
arately.

Overall Performance
Regression task. We compare our method with the can-
didate methods on the data of Chewie and Jango and the
results are shown in Table. 1 except WGAN (as is specially
designed for classification tasks). For (Dyeret al. 2017) we
only use the results reported in their paper. All methods are
trained on the first-day data of each subject (source) and only
accessible to the neural data in the following days (target).
The reconstructed trajectories with and without alignment
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Figure 4: The UDA results of our method. On the top row, we show the trajectory points predicted by aligned/non-aligned
models on the target data (D2 of CHEWIE). In the lower row, we show the distribution change of the embeddings (dimension
reduction by TSNE) before and after alignment by traditional WGAN and our method respectively.

are shown in Fig. 4 and can be seen that the chaotic tra-
jectory predicted on D2 is repaired by our method (Fig.4
right) and the fixed trajectory shows a high correlation with
the ground truth R2 = 0.875. The results show that when
applied to neural signals, our method is able to rescue the
performance degradation of BCI and performs significantly
better than other methods when the neural data drifts (more
results in supplementary materials).

Classification task. We also applied our method and the
candidate methods to the 8-direction classification task with
the same procedure as the regression task and show the clas-
sification accuracy in Table. 1. Visualized by TNSE(Van der
Maaten and Hinton 2008) in Fig. 4 (right) the embeddings
of the target domain data approach the source domain by
the joint distribution alignment strategy and perform better
(0.924 vs. 0.720 in accuracy) than that of the WGAN’s (Fig.
4 left). It shows that our method corrects several labels of
the misclassified trials and outperforms other methods. Be-
cause both of the movement tasks (arm moving for C but
wrist moving for J) and the neural cortices of signal acqui-
sition (arm region for C but hand region for J) are different,
we get slightly different performance between the subjects.

Ablation Study
An ablation study is conducted to explore the influence of
our alignment strategy. For the method without alignment,
we only train our model on the source domain and directly
test on the following days’ data without recalibration. The
cross-day results of our model trained with and without
alignment are shown in Table. 1, which indicates that the
alignment strategy brings improvement in our model’s gen-
erality on the target domain. Note that owing to the biologi-
cally plausible modeling, our model’s stability is still better
than some traditional methods even without alignment.

Results on Simulation Dataset

We design a simulation dataset to simulate a variety of fac-
tors that are likely to cause domain drift in neural data. The
performance of our method on these factors is shown in
Table.2. The death of neurons reduces the Signal-to-Noise-
Ratio (SNR) of the data such that the alignment has a lim-
ited role but still improves the BCI performance. For the
situations like disrupting the sequence of neural channels
or changes in the tuning functions, our model performs ex-
tremely well and is able to eliminate hypothesis failure in
the target domain. To get closer to the real scenario we com-
bine all the factors and show our method’s effect in Table 2
(right). Results show that our method successfully handles a
variety of distribution drifts on the neural data.

Discussion
In this work, we propose an unsupervised domain adapta-
tion method for the unlabeled BCI recalibration scenario.
Instead of matching the data points discretely, we align the
neural sequences at a semantic level. Concretely we extract
the intrinsic dynamics of the sequence, mapping a semantic
vector (SD feature) as the dynamic trajectory’s initial point
and assigning them into the same manifold (the vector field
of the dynamical system) eventually. Based on this we in-
troduce a joint distribution alignment strategy to align the
SD features, and the dynamic trajectories are also aligned
automatically. The promising results indicate that we could
model most neural data misalignment causes by adjusting
the observation matrix and by aligning it, we obtain a sta-
ble neural manifold, being able to build a long-term stable
BCI. Despite some existing limitations (refer to supplemen-
tary material), we have successfully achieved a stable neural
manifold and developed a long-term stable BCI.
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