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Abstract

We consider a setting in which a social planner has to make a
sequence of decisions to allocate scarce resources in a high-
stakes domain. Our goal is to understand stakeholders’ dy-
namic moral preferences toward such allocational policies. In
particular, we evaluate the sensitivity of moral preferences to
the history of allocations and their perceived future impact on
various socially salient groups. We propose a mathematical
model to capture and infer such dynamic moral preferences.
We illustrate our model through small-scale human-subject
experiments focused on the allocation of scarce medical re-
source distributions during a hypothetical viral epidemic.
We observe that participants’ preferences are indeed history-
and impact-dependent. Additionally, our preliminary exper-
imental results reveal intriguing patterns specific to medi-
cal resources—a topic that is particularly salient against the
backdrop of the global covid-19 pandemic.

Introduction
AI and ML tools are permeating society. These powerful
technologies are applied in numerous policy domains to in-
form or make consequential decisions impacting people’s
lives. In particular, they increasingly inform or automate
high-stakes allocation decisions in domains such as lend-
ing, employment, and healthcare. The past decade has wit-
nessed an overwhelming body of evidence establishing the
need for AI and ML to reflect collective values, such as jus-
tice and fairness. However, translating these principles into
computationally tractable and verifiable forms has proven
challenging. Majority of the efforts towards formulating fair-
ness for ML have adopted a static point of view to capture
fairness in terms of certain predictive parity condition across
demographic groups. These notions are useful in guiding the
design of one-shot algorithmic interventions, but as demon-
strated in D’Amour et al. (2020); Liu et al. (2018), such in-
terventions may be insufficient to attain long-term fairness
and justice goals. Due to the dynamics in decision contexts
and the context-dependent nature of moral ideals, incremen-
tal and evolving remedies are often needed to promote jus-
tice in the long run (Elster 1992).

A growing body of work has called on the AI-ethics com-
munity to bring stakeholders’ judgments into the process of
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formulating values, such as fairness, for AI. Following this
human-centric view, we first posit that moral judgments are
seldom invariable across situations and contexts. In particu-
lar, the ethical principles they prioritize are often informed
by numerous consideration, including the historical contexts
and the future implications of policies. Even absent of dis-
agreement regarding the right answer to the above questions,
how they inform the choice of allocational policies could
be a genuine point of normative disagreement. To further
complicate the task, allocational policies are often sequen-
tial in nature, and their deployment may shift the above de-
terminants of moral judgments, giving rise to a new context
tomorrow. So an ethically-minded social planner has to un-
derstand and potentially reflect stakeholders’ dynamic moral
judgments. Understanding such dynamics allows the plan-
ner to design effective and acceptable interventions that stir
society in the appropriate direction over time.

Along with the increasing recognition that moral judg-
ments are context dependent, e.g. Sinnott-Armstrong
(2008); van Baar, Chang, and Sanfey (2019); Andrejević
et al. (2020), there has been rising interests in quantifying
moral judgments, e.g. Armstrong and Skorburg (forthcom-
ing); Awad et al. (2022). An important gap in literature is
how to concretely capture moral judgments’ evolution with
the decision contexts. In this work, we consider a stylized
setting in which a social planner or policymaker has to make
a sequence of decisions regarding the allocation of scarce
resources in a high-stakes domain. Stakeholders’ moral pref-
erences regarding such allocation policies are influenced by
various ethical/moral principles. We aim to understand these
preferences, in particular, to evaluate their sensitivity to the
history of allocations and the expected future impacts on so-
cially salient groups.

As a concrete example, consider a central agency in
charge of allocating scarce medical resources (e.g. vaccines
or hospital beds) to patients during a viral epidemic. The al-
location decisions today influence the urgency and demand
for the resources in question tomorrow. Such context shifts
influence people’s judgments over who should be prioritized
for allocation, thus reflecting different normative moral prin-
ciples as explained below.

Moral principles from bioethics. There is a robust his-
tory of debate in bioethics about normative principles for
the distribution of scarce medical resources across a vari-
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ety of contexts, e.g. Cohen, Schapire, and Singer (2009);
Bayer et al. (2011); Wertheimer and Emanuel (2006). These
contexts can range from non-emergency, such as organ do-
nation and hospital triage, to emergency situations, such as
natural disasters and pandemics (where the health of an en-
tire population is impacted). One solution to this problem is
to simply distribute resources randomly by either a lottery
or other randomization policy (Peterson 2008). There is an
Egalitarian justification for lotteries, and they are commonly
implemented in non-emergency contexts under “first come,
first served” schemes. However, in emergency contexts, the
policies of hospitals and governments will almost always fa-
vor certain groups over others. As Savulescu, Persson, and
Wilkinson (2020) declare: “there are no egalitarians in a
pandemic.” We focus on the normative principles typically
used to justify these types of emergency policies. We group
these normative principles into three broad categories (Fur-
ther discussion in Appendix A):

• Prioritarian: This approach favors the most vulnerable
members of a population, such as those who are the sick-
est, youngest, or oldest, regardless of how and why one
is vulnerable. The concern is only about those who are
most likely to be impacted severely by a lack of resources
allocated to them (e.g., low probability of survival, given
no treatment).

• Distributive: This approach attempts to maximize the
overall benefits and minimize overall losses, which
might mean favoring those who have “the most to lose”
(e.g., those with high expected chance of survival given
the resource), and those with instrumental values at a lo-
cal (family) or global (society) level.

• Restorative: This approach favors those who are owed
compensation because of their eligible actions or charac-
teristics, usually some form of qualifying past behavior
like lifestyle choices, effort, and social service.

Our work draws motivation from a key observation, that
is, the collective judgments about which normative prin-
ciples are relevant can change as the underlying situation
shifts. In the famous case-study of Memorial Medical Cen-
ter in New Orleans, when not all patients could be evacuated
from the storm-ravaged hospital, the staff changed their nor-
mative principles over the course of several days from a Pri-
oritarian to a Distributive approach. It is, therefore, crucial
to understand the ways in which not only static but also dy-
namic features of a situation play a role in the development
of policies for resource allocation.

The present work. We propose a mathematical model to
capture and infer stakeholders’ dynamic moral preferences.
Our model utilizes a Markov Decision Process (MDP) to
represent sequential resource allocation. We assume that the
stakeholders’ moral judgment regarding alternative alloca-
tional policies can be captured by comparing a so-called “re-
ward” each policy leads to on the MDP. Using this moral
preference model, we infer a stakeholder’s dynamic pref-
erences by learning the reward function they associate to
each state-action pair. Utilizing an active preference-based
reward learning framework, we design an interactive pro-

cess to elicit stakeholders’ preferences through a series of
pairwise comparison questions. We illustrate our framework
through small-scale human-subject experiments, designed to
elicit crowd workers’ moral judgments regarding the alloca-
tion of scarce medical resources during a hypothetical vi-
ral epidemic. We observe that participants’ preferences are
indeed context-dependent, and the qualitative justifications
they offer for their choice closely match our model’s pre-
dictions. While we cannot establish statistical significance
due to our small sample size, our preliminary results reveal
intriguing patterns specific to medical resource allocation.

Related Works

Eliciting ethical judgements for moral AI. While AI lit-
erature has a long history of studying preferences, the re-
cent wave of moral AI has inspired questions related to
preference modeling, learning and elicitation. Rossi (2016)
propose moral preference as one concrete way to approach
moral AI. These preferences characterize how people’s
actions and the implications of such, encode their per-
sonal moral/ethical beliefs. Recent works, e.g. Hiranandani,
Narasimhan, and Koyejo (2020); Jung et al. (2019); Zhang,
Bellamy, and Varshney (2020), study the elicitation of static
ethical judgement under different setups. Yaghini, Krause,
and Heidari (2021) propose methods of learning context fea-
tures that could influence ethical judgments. Different from
their work, we use ethical principles to select features and
focus on inferring moral preferences over these features.

Preference learning via inverse reinforcement learn-
ing. One conventional approach to modeling an agent’s pref-
erence is to use numeric utility functions, e.g. Luce (2012),
which associate greater utilities to more preferable options.
When the preference is partially or fully unknown, there
lacks information to state its utility definition. Preference
learning aims to infer the missing information. For example,
Kim, Menzefricke, and Feinberg (2007) study spline util-
ity functions and propose a Bayesian approach to infer the
spline knots and shapes of individual pieces. Rothkopf and
Dimitrakakis (2011) formalize inverse reinforcement learn-
ing (IRL), a reinforcement learning (RL) inspired frame-
work aiming to learn the reward functions from feedback
signals on optimal or near-optimal policies, as a framework
for preference learning by viewing the reward function as a
preference-capturing utility function.

Active preference-based reward learning. Rothkopf
and Dimitrakakis also highlight the use of active learning
to design IRL-based interactive preference elicitation frame-
works, where each query is selected based on the previ-
ously collected information from an agent. In recent litera-
ture, Sadigh et al. (2017) propose an active volume removal
method for selecting queries; intuitively, the algorithm se-
lects queries to remove uncertainty in the belief distribu-
tions about the reward function parameters. The follow-up
work Bıyık et al. (2019) propose an alternative query selec-
tion method that aims to optimize the mutual information
between belief distributions and query responses.
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Figure 1: A query of trajectories of three future phases starting from the same initial state; Policy 1 (Left) prioritizes the elderly,
while Policy 2 (Right) prioritizes the public-health compliant.

A Mathematical Framework for Dynamic
Moral Preferences

We consider a Markov Decision Process (MDP) model rep-
resenting the sequential allocation of scarce resources. For
simplicity, we work with a single type of resource, such
as, hospital beds during an epidemic, admission decisions
to college applicants. We suppose the allocation policy pro-
ceeds in phases: in each phase, the policy prioritizes peo-
ple with certain features, such as specific age ranges, oc-
cupations, etc. We select features based on the relevant
ethical principles, so that stakeholders’ moral preferences
over these principles are reflected via their opinions on who
should be prioritized next. As the allocation unfolds over
time, stakeholders’ moral preferences may shift in line with
the evolving societal context.

MDP Model
A standard MDP is defined with a tuple, M = ⟨S,A, P,R⟩,
where S is a set of states, A is a set of actions, P : S ×A×
S → [0, 1] is the state transition probability function, with
P (s′|s, a) denoting the probability of action a transitioning
state s to state s′, R : S → R is a state-based reward func-
tion. We use the medical resource allocation setting adopted
in our human-subject experiments as the running example,
but we note that the MDP model is generally applicable in
other scenarios.

A state st ∈ S in our running example describes the cur-
rent state of affairs. We consider n ethically relevant fea-
tures, and uses these features to assign people to groups.
We define st with the group features: st = (st,1, . . . , st,n),
where st,i is a vector representing the profile of group i at
step t. Note that we do not require mutually exclusive fea-
tures, namely, a person may have multiple features, thus be-
longing to multiple groups simultaneously. In our running
example, st,i = (xt

i, v
t
i , d

t
i), which respectively are the pro-

portion of group i that, at step t, have received the resource
(a cure to a hypothetical virus); require the resource (are sus-
ceptible to viral infection); and have suffered negative out-
comes due to not receiving the resource (have passed away

from contracting the virus). We skip the superscript t when
time step is not specified. As we are not aiming to use the
most efficient state representations, it may be possible to re-
duce the size of S with alternative state definitions.

An action at ∈ A represents the current time step’s re-
source allocation decision. Similar to the state notation, we
can define at with the group based action features: at =
(at1, . . . , a

t
n), where ati is the proportion of the current step’s

available resources allocated to group i.
Next, to define the transition probabilities, we suppose the

MDP model is deterministic, namely P(s′|s, a) ∈ {0, 1} for
all s′, s and a. The deterministic assumption fits the resource
allocation setting when the population under consideration
is large. Because, in this case the statistical effect of the al-
location can be estimated with accuracy. Under this assump-
tion, taking action at at state st gives a deterministic transi-
tion to the new state st+1. Through possible group overlaps,
the resources given to one group can spread to other groups.
We show an example from our experiment to illustrate fur-
ther. Figure 1 demonstrates the state shifts from two poli-
cies where each phase allocates a fixed number of resources
to one group. Since all groups are overlapping, we see that
each phase’s allocation impacts all groups.

Lastly, we assume the reward function captures a stake-
holder’s dynamic moral preferences on the resource dis-
tribution contexts. A stakeholder will associate higher cu-
mulative rewards to states that s/he views as more ethi-
cally acceptable. In literature, such as Bıyık et al. (2019);
Sadigh et al. (2017); Wirth et al. (2017), the cumula-
tive reward of a state is commonly defined as a linear
combination of the relevant state features. In our running
example, a possible linear cumulative reward function is
R(s;w) := R(x1, . . . , xn;w1, . . . , wn) =

∑n
i=1 wixi,

where the weights reflect the degrees of prioritization given
to each group. When an action shifts state s to s′, the
immediate reward is gained at constant rates w, namely,
r(s′, s;w) := R(s′;w) − R(s;w) =

∑n
i=1 wi(x

′
i − xi).

We note that R(s;w) and r(s′, s;w) capture a fixed moral
preference, where the importance ranking among groups re-
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main unchanged throughout state shifts. Therefore, a linear
reward is insufficient for modeling changing priorities across
groups over time.

A more flexible alternative is to use a spline reward
function (i.e. a piece-wise polynomial function) to model
changes in priorities resulted from the shifting contexts in
states. Suppose a spline reward function R consists of m
pieces R1, . . . , Rm. For k = 1, . . . ,m, each piece repre-
sents a different type of moral preference, characterized by
a slope vector w(k), in its corresponding domain, defined
as a n-dimensional box [c

(k−1)
1 , c

(k)
1 ] × . . . × [c

(k−1)
n , c

(k)
n ].

We can interpret w(k) as the weights used to prioritize the
groups. The domain boundary points indicate where the
weights change, namely the preferences shift.

Our primary focus in this work is the expression of piece-
wise linear/constant reward functions. In high-stakes set-
tings such as the allocation of cures during an epidemic, one
natural expression of the reward for providing cures is,

R(s;w, c) := R(x1, . . . , xn;w, c) :=

n∑
i=1

wi min{xi, ci}. (1)

In this reward function, we skip the piece index in w(k), c(k)

to simplify notation. Throughout the allocation process,
group i’s feature xi increases as the group receives more
resources. In the beginning, when xi ≤ ci, allocations to
group i are rewarded linearly with the weight of wi. After
xi increases to exceed ci, the cumulative reward will stay
fixed at wici, namely, further allocations to group i gain 0
additional rewards. ci can be viewed as the resource level
that is considered sufficiently high for group i so that fur-
ther allocation to the group will not be rewarded. Using the
two-piece reward function, we can model changes in the im-
portance ranking among groups.

Based on the MDP model, we use a trajectory τ =
(s1, a1, . . . , sT , aT , sT+1) to denote a sequence of alloca-
tion decisions and the resulting state changes. The trajec-
tory reward is a discounted sum of the immediate reward
gained at each state of the trajectory, namely, R(τ ;w, c) =∑T

t=1 γ
tr(st+1, st;w, c) =

∑T
t=1 γ

t(R(st+1;w, c) −
R(st;w, c)) with γ > 0 as the discount factor. R(τ ;w, c)
represents a stakeholder’s perceived gain from shifting the
societal context from s1 to sT+1 through a sequence of allo-
cation policies a1, . . . , aT overtime.

Moral Preference Model. We take the perspective of a
policy planner who wishes to infer a stakeholder’s prefer-
ence by learning her/his reward function. We follow the
framework of preference-based reward learning studied in
literature, e.g. Bıyık et al. (2019); Sadigh et al. (2017). The
reward learning involves an interactive process where the
planner asks a stakeholder to answer a sequence of queries,
and uses the query answers to iteratively update the esti-
mates of w and c. Each query is a comparison between two
trajectories both starting from the same initial state and of
equal length/number of phases. A sample query in the set-
ting of our running example is shown in Fig. 1.

We use the Bradley-Terry model, a standard human choice
model (Luce 2012), to represent a stakeholder’s moral pref-
erence. Suppose a query asks to compare trajectories τ1

and τ2. If a stakeholder prefers τ1 to τ2, we denote it with
τ1 ≻ τ2. A stakeholder with reward function R(s;w, c) will
choose τ1 as more preferable, namely, more ethically accept-
able with probability:

P (τ1 ≻ τ2|w, c) =
expR(τ1;w, c)

expR(τ1;w, c) + expR(τ2;w, c)
. (2)

By choosing a trajectory, the stakeholder indicates that they
consider it morally more acceptable compared to the uncho-
sen alternative trajectory.

An Active Learning Scheme to Learn Moral
Preferences
Suppose a stakeholder’s true reward function is parameter-
ized by weight w∗ and threshold c∗, then our learning goal is
to estimate w∗ and c∗ using the preference queries. Let W,C
denote the random variables representing the inferred be-
liefs about w∗, c∗ based on query responses. We begin with
prior probability distributions on W and C, then update the
posterior distributions with Bayesian inference. Using this
Bayesian setup, we adopt the active preference-based reward
learning method introduced in Sadigh et al. (2017). We next
provide a brief summary of the learning framework and give
further details, e.g. our prior choices, in Appendix C.

With the initiated priors of W and C, each iteration
of the active learning process has two steps: generate a
new preference query, then use the query response to com-
pute the posteriors on W,C. Each query is a compar-
ison between two trajectories. We define Uw,c(Q) as a
Bernoulli random variable representing a user’s response
to a given pairwise query Q = ⟨τ1, τ2⟩ when their prefer-
ence is parametrized by w and c. In iteration t, let Qt :=
⟨τ t1, τ t2⟩ denote the selected query, and ut ∼ Uw∗,c∗(Qt)
denote the user’s response, then we apply the stan-
dard Bayesian update P (w, c|u1, . . . , ut;Q1, . . . , Qt) ∝
P (u1, . . . , ut;Q1, . . . , Qt|w, c)P (w, c).

Mutual Information-based Query Selection. For effi-
cient learning, we seek to use a small number of queries to
obtain accurate estimates. In literature on reward learning,
various query selection methods have been proposed for the
common linear reward. We extend the approach from Bıyık
et al. (2019) which selects queries to optimize the informa-
tion gain about W . Specifically, we choose queries via maxi-
mizing the mutual information between the joint distribution
on W,C and the query response distribution Uw̄,c̄. Similar to
Bıyık et al. (2019), we implement the selection via sample-
based approximations based on a sample Ω drawn from the
current belief distribution on W,C and a pre-generated set
Q of pairwise queries to select from. Details on the selection
step are provided in Appendix C. We note that the choice
of Q and the generation of Ω both involve trade-offs be-
tween computational costs and learning performances. Us-
ing a larger Q or advanced sampling methods to generate
Ω could improve the inference accuracy of w∗, c∗, but each
iteration’s query selection problem would become compu-
tationally more expensive. As the active learning process
depends on repeated interactions between the learner and
stakeholders as the respondents, it is impractical to have re-
spondents wait an extended amount of time for each new
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query. In our experiments, as discussed in the next section,
we utilize heuristics to reduce the query selection time.

Experimental Design
We evaluate the effectiveness of our framework through
human-subject experiments on Amazon Mechanical Turk.
Figure 2 provides a brief description of the experimental
goals as presented to survey respondents. Each participant
is introduced to a hypothetical pandemic scenario in which
they choose how to allocate a limited number of cures based
on their personal moral assessments. Over a series of 20
questions, each participant is shown two potential cure allo-
cations and a description of how many people from different
groups (e.g., the elderly) will be cured, will die, or will re-
main susceptible depending to their choice (Figure 1). Once
a participant chooses an allocation of cures, they are then re-
quired to briefly justify their choice in order to allow us to
validate our framework against an individual’s stated moral
preferences. We obtain 33 responses satisfying our worker
and acceptance criteria stated in Appendix D. For more de-
tail, we include a full set of instructions, and example ques-
tions in Appendix D as well. Before performing this study,
we received approval to run this survey from our university’s
Institutional Review Board (IRB).

A note on our choice of groups. Our group choices are
driven by the moral principles that we introduced in previous
sections. Prioritizing the elderly and/or the medically vul-
nerable reflects Prioritarianism. The past-oriented Restora-
tive principle is reflected in two ways: prioritizing people
compliant with public health recommendations rewards their
past responsible behaviors; prioritizing military personnel
represents reciprocity for their past services. Lastly, prior-
itizing caregivers and essential workers respectively pro-
motes instrumental value for local communities (e.g. fam-
ily) and global communities (e.g. society), which reflect the
future-oriented Distributive principle.

Data Generation. In order to ensure that our scenario
is realistic, we constructed a synthetic population of 10000
adults using three real-world data sources: (1) 2020 National
Health Interview Survey, Adult interview results; (2) 2020
Labor Force Statistics, Employed persons by industry and
age; (3) United States Census Data. We utilized this syn-
thetic population as the basis of all our queries. To deter-
mine the state shifts from a given cure allocation policy, we
simulate the synthetic population at the individual level. The
state shifts include two types of changes in a group’s profile:
(1) a susceptible individual contracts the virus and succumbs
to it (2) a not-yet-immune individual (either susceptible or
infected) receives the cure, thus becoming fully immune. In
Appendix D, we describe in detail each data source, and how
we generate the population and simulate state shifts.

Heuristics for Query Generation and Selection. Recall
from previous sections, we utilize heuristics for generating
and selecting queries to minimize delays incurred by respon-
dents during the survey. For query generation, we generate
Q to include a mix of start states and allocation policies over
the next three phases (leading to trajectories of length 4).
For query selection, we pre-generate the possible query se-

✄

✂

�

✁

Background and Task Description The goal of this survey is
to understand your moral judgments regarding the sequential
allocation of scarce medical resources.
Hypothetical Scenario Imagine a viral epidemic that has in-
fected millions of people around the world leading to a disease
with a very high mortality rate. There is currently only a sin-
gle highly effective cure for the disease—those who receive
the cure will fully recover (if currently infected) and become
immune to the virus in the future. Unfortunately, the num-
ber of cure doses that can be produced and administered ev-
ery month is limited, so public health officials need to decide
which groups should be prioritized at any given time. In the
questionnaire that follows, we will present you with additional
information about several possible states of the epidemic and
ask you to choose your preferred allocational policy between
two cure allocation policies.
Taking numerous considerations into account, public health
officials have decided to adopt a phased cure distribution
program among adults. Each phase consists of allocating the
small number of available cure dosages to one of the following
demographic groups. (Note that groups can be overlapping.
For example an individual may be a member of the elderly
group as well as the medically vulnerable).
G1 (Elderly): people who are 65 years old or older;
G2 (Medically Vulnerable): people with pre-existing medi-
cal conditions that increase their susceptibility to contracting
the virus. (Conditions include cancer, heart conditions, chronic
lung/liver/kidney diseases, diabetes, immunosuppression, and
pregnancy);
G3 (Caregivers): people who have dependents (e.g. young
children);
G4 (Public-health Compliant): people who are compliant
with public health recommendations (which include, for ex-
ample, reducing unnecessary commutes and convenings);
G5 (Military Personnel): people who have previously or cur-
rently served in the military;
G6 (Essential Workers): people who are essential workers
across industries like agriculture, manufacturing, transporta-
tion and utilities, education services, and health services.
Officials are now debating which group should be prioritized
for receiving the cure at each phase. In the questions that fol-
low, you will be presented with the initial state of the epidemic
(broken down to group-dependent risk profiles), two alterna-
tive allocational policies along with their projected impact on
the population. You will then be asked to indicate which pol-
icy you believe is more acceptable from a moral standpoint.
We will provide further details on the above key terms next.

Figure 2: Task Description Screen Shown to Participants

quence scenarios up to 10 iterations from a fixed starting
query as a query tree, then use the tree to select queries in
our experiments. Further details on both generation and se-
lection heuristics are provided in Appendix D.

Establishing Viability through Simulations. As a proof
of concept, we use simulations to demonstrate the perfor-
mance of the active learning framework at inferring the
true parameters w∗ and c∗ underlying a participant’s re-
ward function. In addition, we aim to justify two design
choices: asking 20 questions to each participant, and the
query selection heuristic. Suppose w∗, c∗ capture a partici-
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(a) Cosine similarity between w∗ and esti-
mates w over 100 iterations

(b) Cosine similarity between c∗ and esti-
mates c over 100 iterations

(c) Predictive accuracy on 1000 random
queries every 20 iterations

Figure 3: Means from 20 instances, the shaded region is 95% confidence interval for the means. Dashed line indicates the
values after 20 iterations. Predictive accuracy improves from running more iterations. The gaps between heuristic and mutual
information are no more than 0.05.

pant’s true preference in the reward function R(τ ;w∗, c∗),
and {wt, ct}t=0,1,...,T is the sequence of point estimates
w̄, c̄, sample means of each iteration’s inferred belief dis-
tributions. We are interested in two types of performance
measures. One is the estimation accuracy: we use the ex-
pectations of cosine similarity to measure how well the in-
ferred belief distributions on W,C characterize w∗ and c∗.
The other one is the prediction accuracy on new queries,
that is, how well an estimate ŵ, ĉ can predict one’s pref-
erences over new pairs of trajectories. We use the public
Github repository APReL (Bıyık 2020) as the basis to im-
plement the simulations. Additional details are discussed in
Appendix D.

Figures 3 show the simulation results. From these plots,
we observe that 20 iterations are sufficient to achieve reason-
ably high cosine similarities and predictive accuracy. While
running more iterations leads to further improvement in esti-
mate and prediction performances, the rate of improvement
begins to decline around iteration 20 and appears to stabilize
around iteration 40. In human subject experiments, it is de-
sirable to ask a smaller number of questions due to people’s
limited attention span, so we restrict the learning process to
20 iterations. By comparing results from our query selection
heuristic and the full mutual information based selection, as
we expect, the heuristic improves computational efficiency
at the cost of learning performances. Since the drop in per-
formances is relatively minor, we argue that the heuristic is
an effective choice.

Experimental Findings and Discussion
On the responses collected from 33 surveys, we examine
the preference estimates w, c and the written justifications
to understand participants’ ethical judgments, and provide
insights on the practicality of our model. Additional valida-
tion tests are discussed in Appendix E. Since participants’
true rewards are not accessible, we cannot compare the in-
ferred estimates against the ground truth as in the previous
simulation. Instead, we rely on the written justifications as a
proxy for participants’ true preferences.

An overview of individual participants’ responses. We
begin by checking individual surveys separately to evalu-
ate whether the learned preference is consistent with the
justifications given by participants. Given the small num-
ber of questions, we individually examine each participant’s
top priority group(s) and/or ethical position by reading their
free-form justifications. In Figure 4, we show examples
of two participants’ inferred preferences and justifications.
Overall, we observe that participants’ ethical judgments are
highly diverse; they often hold explicit opinions towards
specific groups and are overt with their preferences when
writing justifications, which provides a convenient mecha-
nism for verifying their inferred rewards. In Appendix E, we
discuss in detail the notable patterns in the responses and
additional evidence for the inference validity.

An overview of collective responses. Next we look at
the aggregate preference from all respondents to offer a bet-
ter sense of the data as a whole. It is important to note that
that we don’t endorse simple averaging as an an appropriate
mechanism of aggregating preferences. Rather, due to space
constraints we cannot detail every participant’s preferences;
we use it as one heuristic approach to offer a glimpse of the
entirety of the responses. Fig. 4c displays the average cu-
mulative reward associated with each group.The question of
how such multi-dimensional preferences should be aggre-
gated appropriately is outside the scope of the current paper.
We observe that each average reward has a concave shape,
which fits the intuition that marginal benefits of cure alloca-
tion decrease as more people receive the cure.

Based on these average rewards, we observed that when
all groups are at relatively low cured levels, caregivers, cor-
responding to the Distributive principle, is the most priori-
tized group. As cure allocation continues, the public-health
compliant and the elderly, respectively corresponding to
Restorative and Prioritarian principles, become more impor-
tant to our participants. In other words, public-health com-
pliant and elderly groups will gain greater priority once care-
givers are viewed as sufficiently cured. The medically vul-
nerable and essential workers have similar reward trends as
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(a) 18-25 years old, male, undergraduate,
asian, liberal

(b) 41-60 years old, male, graduate, white,
other

(c) Average group rewards based on aggre-
gate survey responses

(a): “Large number of elderly and medically
vulnerable are cured”.
(b): “I don’t feel justified in spending a pre-
cious limited resource (medicine) on a group
that has the shorter lifespan ahead of them.
Also, while the elderly group has likely pro-
vided a great deal for society in the past, in
the future they are likely to provide less than
the essential workers group”.

(d) Sample justifications from respondents (a)
and (b) shown above (e) Group ranking distribution based on aggregate survey responses

Figure 4: (a,b) Samples of survey responses and corresponding preference estimates. Groups’ reward rankings reflect their
priority orderings in a respondent’s ethical judgments. (c) Average reward for each group over all participants. (e) Distribution
of participants’ highest ranked preferences as the proportion of the cured population increases; color legends apply to all figures.

the elderly. Lastly, the military personnel group has slightly
higher rewards than the medically vulnerable and essen-
tial workers in the beginning, but drops to the least priori-
tized for the rest of the allocation process, reflecting a belief
that Restorative principles were of greater importance when
many individuals were vulnerable. Fig. 4e displays such dy-
namics from an alternative view: each stacked bar shows the
distribution of the top priority groups when all groups are
cured to the same level. Caregivers are the most common top
priority at lower cured levels. As more people are cured, it
becomes increasingly desirable to prioritize essential work-
ers, public-health compliant and elderly groups.

Conclusion and Future Directions
We study the modeling and inference of stakeholders’ moral
preferences regarding the sequential allocation of scarce re-
sources. We propose a human-in-the-loop approach to quan-
tify the dynamic shifts in people’s moral judgments as the
decision contexts evolve. Our approach provides a useful
middle ground between the primarily qualitative social sci-
ence aspects of moral judgment and quantitative modeling
of moral preferences. As the running example, we consider
stakeholders’ moral judgments towards allocating medical
resource during a public health emergency driven by the Pri-
oritarian, Distributive and Restorative principles.

We apply our framework to a small-scale human subject
experiment on Amazon Mechanical Turk. Our key finding

is that the inferred ethical preferences are consistent with
the respondents’ reported ethical reasoning. The responses
demonstrate that people’s ethical judgments are context de-
pendent and evolve with resource distribution shifts.

The limitations of our work suggest several directions for
future work. First, the proposed model has methodological
limitations due to our modeling assumptions. For example,
out of computational considerations, we focus on one of
the simplest spline formats to define reward function and
rely on heuristics to streamline the query selection in our
human-subject experiments. A natural extension is to use
more expressive reward formats. On a related note, it can
be useful to study whether and how the selected queries af-
fect the learned preferences. The findings could lead to more
efficient query selection. Second, the practice of abstract-
ing moral preferences into mathematical models comes with
inherent limitations as the abstract model is unable to cap-
ture all subtleties and nuances of moral judgments. Future
research is needed to better understand the potentials and
limits of moral preference modeling. Lastly, our reliance on
crowdworkers to illustrate our framework should not be mis-
interpreted as us advocating for the crowdsourcing of high-
stakes moral judgments. Rather, we hope our illustration of
the nuanced dynamic nature of stakeholders’ moral prefer-
ences serves as evidence that policy planners or decision
makers should seek better understandings of these prefer-
ences before designing allocation policies and interventions
in socially consequential domains.
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