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Abstract

Concept bottleneck models (CBMs) are interpretable neural
networks that first predict labels for human-interpretable con-
cepts relevant to the prediction task, and then predict the final
label based on the concept label predictions. We extend CBMs
to interactive prediction settings where the model can query
a human collaborator for the label to some concepts. We de-
velop an interaction policy that, at prediction time, chooses
which concepts to request a label for so as to maximally im-
prove the final prediction. We demonstrate that a simple policy
combining concept prediction uncertainty and influence of the
concept on the final prediction achieves strong performance
and outperforms static approaches as well as active feature
acquisition methods proposed in the literature. We show that
the interactive CBM can achieve accuracy gains of 5-10%
with only 5 interactions over competitive baselines on the
Caltech-UCSD Birds, CheXpert and OAI datasets.

1 Introduction
Deep learning-based AI systems have demonstrated signifi-
cant capabilities across a range of applications. However, in
many sensitive or safety-critical applications like healthcare
or toxicity detection, AI-based predictive systems are seldom
deployed in a standalone fashion; instead, they are used as
one component in the overall decision-making workflow (Lee
et al. 2021).

A concrete interactive setting that has received significant
attention in literature is that of active feature acquisition
(AFA) (Greiner, Grove, and Roth 2002; Kanani and Melville
2008). In this setting, a classifier can request additional fea-
tures at prediction time. There is a cost associated with each
feature acquisition, so the AFA algorithms have to reason
about the value of the acquired feature relative to the cost.
In this paper, we focus on a slightly different setting where
the classifier always has access to a basic set of features (like
pixels of an image). However, at prediction time, the clas-
sifier can request additional labels corresponding to human-
interpretable concepts that are relevant to the prediction task.
For example, when predicting bird species from a bird image,
the classifier can request access to the wing shape. A key dis-
tinguishing feature of this framework from the general active
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(a) Concept Bottleneck Model

(b) Interactive Prediction

Figure 1: Interactive Prediction: Panel (a) shows a concept
bottleneck model (Koh et al. 2020) that predicts a label y from
an input x through an intermediate “concept” prediction layer
(Figure adapted from Koh et al. (2020)). Panel (b) shows our
proposal: after predicting concepts, the system interactively
queries the human for true values ci for concepts chosen so
as to maximize prediction accuracy and minimize acquisition
cost.

feature acquisition setting is that the human-interpretable con-
cepts are potentially inferrable from the initial features input
to the model. In particular, we build on Concept bottleneck
models (Koh et al. 2020) which explicitly predict concept
labels from images and then predict the final label based
on the concept label predictions (Figure 1(a)). The authors
argue that CBMs show better explainability, performance
under distribution shift, and improvements in performance
when concept labels are made available at prediction time.
However, they only consider static policies for test time inter-
vention that request concept labels in a predetermined order.

We present Cooperative Prediction (CooP), a dynamic
interactive policy that can reason about the uncertainty asso-
ciated with a given test instance, and request only those con-
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Figure 2: Influence of interventions using queries from the CooP policy on a CUB trained model on two example images. Y-axis
denotes the difference between the probability assigned to the correct and top incorrect class.

cepts that improve predictive power on that instance. Thus,
for a given number of queried concepts (or, more generally, a
budget for concept acquisition cost), our interactive models
can achieve significantly higher levels of performance than
static baselines. Figure 2 illustrates with a pair of example
images how our approach selects different sequences of con-
cepts to be queried from the user, based on the ambiguity
inherent in the specific instances, in a bird species identifica-
tion task (Wah et al. 2011). The specific sequence of queries
allows us to rapidly improve our confidence in the true label.
We make the following contributions1:

• We develop a simple approach for training policies that
act on top of Concept Bottleneck Models (CBMs) from
Koh et al. (2020), with the objective of achieving a spec-
ified trade-off between interaction cost and predictive
performance. Our approach only has a couple of tunable
parameters and can be learned using a small validation set
separate from the training set used for the CBM.

• We compare our dynamic instance-based query policy
against static policies that determine a fixed order of
querying attributes for all examples (Koh et al. 2020), as
well as SOTA active feature acquisition strategies (Shim,
Hwang, and Yang 2018) that apply to more general set-
tings of acquiring features beyond human-interpretable
concepts.

• Our model incorporates and optimizes for a cost model of
feature acquisition; we show that our approach can adapt
to settings with non-uniform costs of querying attributes,
and demonstrate superior performance compared to the
baselines.

1Code is available at https://github.com/google-research/google
research/tree/master/interactive cbms

2 Related Work
The closest relevant work to our paper is that on Active Fea-
ture Acquisition and Concept-Aware Models. We review the
literature in both and explain how our work is distinguished
from this prior work:

Active Feature Acquisition (AFA): The goal of active
feature acquisition is to acquire a subset of features, in a
cost sensitive manner, for each instance in order to maximize
performance at test time. Zubek and Dietterich (2002) pro-
poses a AO* based learning algorithm to heuristically search
for classification policy. Ma et al. (2018) and Zannone et al.
(2019) uses a partial variational autoencoder to predict the
rest of features given the acquired ones to model the feature
importance and uncertainity and combine it with acquisi-
tion policy to maximize information gain. Shim, Hwang, and
Yang (2018) treats this as a joint learning problem trains both
the classifier and RL agent together to learn when and which
feature to acquire to increase classification accuracy while
maintaining cost-efficiency. Li and Oliva (2021) reformulate
Markov Decision Process (MDP) and learn a generative sur-
rogate model to capture inter feature dependencies to aid RL
agent with intermediate rewards and auxiliary information.

In this paper, we deal with a special case of the general
AFA problem where the classifier always has access to an
initial set of features (like the pixels in an image), but can
request additional human-interpretable concept labels for
each prediction. The goal of our work, just like in AFA,
is to select which concepts to acquire labels for in a cost
sensitive manner. However, we leverage the fact that we
are not acquiring arbitrary features but human-intepretable
concepts that have strong correlations to the input features
and the final label, and exploit the fact that we can train a
CBM to solve the prediction task. This makes our approach
more perfomant than the general AFA approach.

In Branson et al. (2010), the authors work in exactly the
same setting as us and even obtain results on one of the
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datasets we use. In this work, the authors posit a generative
model for the concept labels given the final label, and assume
that the concepts are independent of the input features given
the final label. They exploit this assumption to compute a
tractable posterior distribution on the label given additional
concept labels acquired. Our work does not make any such
assumptions, instead relying on the CBM to learn the cor-
relations between the input features and concepts, and the
influence of the concept labels on the final label. We achieve
stronger results empirically than the approach presented in
Branson et al. (2010).

Concept Aware Models: Concept bottleneck models
(Koh et al. 2020) were developed to show that building
models that explicitly predict concept labels from images
or other raw features helps with explainability, performance
under distribution shift and improvements in performance
when concept labels are made available at prediction time.
CBMs have been extended in various ways: Bahadori and
Heckerman (2021) performs causal reasoning to debias
CBMs, Antognini and Faltings (2021) develops textual
rationalizations based on concept interventions. However, of
these works, only Koh et al. (2020) explicitly considers test
time intervention, and even here they only consider static
policies for test time intervention that request concept labels
in a fixed predetermined order (learned on a validation set).
In this work, we allow for dynamic interactive policies that,
for each prediction, reason about which concept labels are
useful to improve the reliability of the prediction and request
only those. Thus, with the same number of concepts allowed
to be queried at prediction time, our interactive models can
achieve significantly higher levels of performance than static
baselines.

3 Methods
We outline the problem formulation as well as a simple ap-
proach to computing interactive policies on top of pretrained
predictive models.

3.1 Formalizing an Interactive Prediction System
Input, Concept and Label Spaces: We denote raw input fea-
tures by x (these can correspond, for example to images or
text or features derived from these), the labels y and the ac-
quired concepts c. We assume that c is a vector of m categor-
ical concepts and y is a categorical scalar taking K possible
values. Individual concepts are denoted ci, i = 1, . . . ,m. The
set of possible values c can take is denoted C (with the set
of possible values for ci being denoted Ci = {1, . . . , ni} so
that C =

∏
i Ci) and the set of possible values y can take is

denoted Y = {1, 2, . . . ,K}. We denote the space of possi-
ble inputs by X . We also note here that the term concept is
loosely applied - in some contexts, it may refer simply to
additional attributes (a user’s age or gender, for example) or
pieces of information that can be acquired at some cost at
prediction time. Hence we use the term concepts or attributes
interchangeably.

Concept Bottleneck Model: The CBM is the composi-
tion of an input-to-concept (X → C) model pθ(c|x) and

a concept-to-label (C → Y) model pφ(y|c). We assume
that both models make probabilistic predictions and that the
input-to-concept model makes an independent probabilis-
tic prediction for each concept ci, denoted by pθ(ci|x) for
each i = 1, . . . ,m. We assume that these models have been
trained and are available to us and do not make any assump-
tions about how the models were trained, or whether the
predictions output represent calibrated probabilities.

Intervention: In the absence of interactivity, the two stage
model makes predictions by first invoking the X → C model
and then passing the output to the C → Y model to get the
final prediction. However, in our setting, we allow for inter-
ventions on the concepts, i.e, replacing the predicted value
(or distribution over values) of a concept with its ground truth
value. We denote the prediction concept values as ĉ = pθ (·|x)
and the intervened concept values (i.e. the ground truth) as c.
We further denote the prediction of a C → Ymodel with par-
tial intervention on a subset of concepts S as pφ (y|cS , ĉS).
We also use the notation pφ (cS = v, ĉS) to denote the pre-
dictions given the intervention where the concepts cS are set
to a specific value v.

Interaction Cost Model: We denote the cost of acquiring
an attribute ci as qi > 0. We assume all costs are positive and
that the cost of acquiring a concept is the same independent
of the previously acquired concepts or the value the concept
takes. The total cost of acquiring a set of attributes S is
assumed to be

∑
i∈S qi. Extensions that don’t make these

assumptions are possible but we leave this to future work.
We assume that for each prediction made, there is a budget
B and that the interaction can only occur while the total cost
of concepts acquired so far is below B.

Interactive Policies: Given the two stage model, we define
an interactive policy ψ as follows: An interactive policy takes
as input a set of revealed concepts cS where S ⊆ {1, . . . ,m},
the X → C and C → Y models and interaction costs q and
outputs the new concept to acquire:

ψ (S, pθ, pφ, q, B) = i ∈ S = {1, . . . ,m} \ S

We will usually drop the dependence on pθ, pφ, q (as these are
assumed to be always available) and simply write ψ (S). A
rollout of an interaction policy corresponds to the Algorithm
1. The final prediction generated on an input x is denoted
rollout (ψ, x)

Separation of Policy and Model Learning: In this paper,
we restrict ourselves to learning an interactive policy as a
post-hoc step on top of a learned model. We do not make as-
sumptions about how the two-stage model (i.e., pθ(·), pφ(·))
is trained.

Dataset for Policy Learning: We assume that we can ac-
quire a dataset consisting of (x, c, y) triplets sampled iid from
an underlying unknown joint distribution Pdata. Our goal is
then to minimize

E
(x,c,y)∼Pdata

[` (y, rollout (ψ, x))] (1)

where ` is a loss function that measures the discrepancy
between the true label y and the label output by rolling out
the policy ψ.
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Algorithm 1: Policy Rollout
S ← ∅
while b ≤ B do

i← ψ (S)
if b ≤ B − qi then

Acquire the label for concept ci
S ← S ∪ {i}
b← b+ qi

else
b← B + 1

end if
end while
Output prediction argmaxy∈Y pφ (cS , pθ (cS |x))

3.2 Interactive Policy Learning with Cooperative
Prediction (CooP)

We present Cooperative Prediction (CooP), a lightweight
approach to learning interactive policies that attempt to opti-
mize the objective in equation (1).

The key intuition behind CooP is that deciding which
concept labels to acquire should be informed by three con-
siderations: a) The uncertainty associated with the concept
prediction - if we can already infer the concept label with
high confidence based on the input features, there is not much
value to acquiring it. b) The impact of the concept label on
the final label prediction - If knowing the value of the con-
cept does not change the predicted label confidence scores
by much, it is not very valuable. c) Cost of acquiring the
concept.
CooP uses a very simple measure of each of the three

components, and chooses concepts to acquire iteratively in a
greedy fashion by developing a score function based on the
three components and choosing the concept not yet acquired
that scores the highest. In particular we use the following
measures:

• Concept prediction uncertainty (CPU): We compute the
entropy of the distribution pθ (ci|x) for each concept ci
with i 6∈ S

H [pθ(ci|x)]

• Concept importance score: We compute the expected
change in the softmax score pφ (y|c) associated with the
final label prediction when the concept label for each
concept ci is changed in the inputs to the C → Y model,
i.e.:

CIS(ci;S, k) =∣∣∣E [pφ (y = k|ci = v, cS , ĉS\{j}

)]
− pφ (y = k|cS , ĉS)

∣∣∣
where k was the label predicted in the previous round of
the interaction and the expectation is taken over concept
values v ∼ pθ(ci|x).
• Acquisition cost: This is simply the acquisition cost of

each attribute qi.

The final score is simply a linear combination of normalized
versions of these scores (each score is normalized so the

Algorithm 2: CooP policy
Given pθ, pφ, q, set of concepts acquired so far S and high-
est scoring predicted label based on acquired concepts
k ∈ Y , and score importance weights α, β, γ ∈ R+

for all i ∈ S do
Compute scorei = αCPU(ci;S) + βCIS(ci;S, k) −

γqi
end for
Output argmaxi scorei

range of values it takes on the policy learning dataset lies
between 0 and 1) and the overall attribute selection algorithm
is outlined in algorithm 2. Each linear combination of scores
leads to a different interactive policy, and those weights are
tuned to optimize performance on a holdout validation set.

A primary advantage of the proposal is its ease of learning,
especially in sparse-data scenarios, as it only requires that we
estimate two mixing parameters. As the first paper proposing
this novel problem setting (to our knowledge), our primary
goal here is to demonstrate that careful policy selection can
indeed provide value. We leave further improvements and
theoretically principled approaches to this problem for future
work, here instead focusing on demonstrating that a sim-
ple approach works well for this novel problem setting and
formulation.

4 Experiments
4.1 Datasets
We experimented with the following datasets, with character-
istics summarized in Table 1:
CUB (Caltech-UCSD Birds): This dataset contains pictures
of birds coupled with human-labeled concept attributes iden-
tifying prominent characteristics (wing color, beak length,
undertail color, etc.) (Wah et al. 2011). The there are 28 such
categorical concepts, resulting in a total of 112 binary labels.
In an interactive setting, attributes are revealed at prediction
time only when the policy queries an attribute. In practice,
this could be seen as asking human labelers in an interactive
setting to provide specific hints on concepts they can easily
identify (like beak length or wing color) even if they are
unable to make the final prediction on what species of bird it
is, as most labelers will be unable to do this unless they are
specifically trained on this task.
CHEXPERT: This dataset contains chest X-rays accompa-
nied by binary concept labels extracted from a report gener-
ated by a radiologist, with the goal of predicting whether the
X-ray was normal or abnormal (Irvin et al. 2019). Each chest
X-ray is also accompanied by 13 binary attributes that include
concepts easily recognized by a non-expert (presence of a
fracture or any support devices on the patient), harder-to-label
attributes that need a nurse or physician (e.g., Cardiomegaly),
and, finally, attributes that require a radiologist to label.
OAI (Osteoarthritis Initiative): This dataset contains knee
X-rays, annotated with the Kellgren-Lawrence grade (KLG),
a 4-level ordinal variable (assumed to be categorical for train-
ing) that measures the severity of knee osteoarthritis. Each
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knee X-ray is also annotated with 10 ordinal attributes de-
scribing joint space narrowing, bone spurs, calcification, etc.,
resulting in a total of 40 binary concepts.

4.2 Base Models
Following the proposals made by Koh et al. (2020), we train
the following 2 kinds of concept-bottleneck models (CBMs):2
Independent model: The X → C and C → Y models are
trained separately, respectively mapping the inputs x to
the true concepts c, and the true concepts c to the labels y
respectively. The C → Y model sees true concept values as
input at train-time, and estimated values (probabilities) at
test time.
Joint model: Both X → C and C → Y models are learned
using a joint optimization criterion which combines the
concept prediction loss (cross-entropy) and label prediction
loss (cross-entropy). The probabilities output by the X → C
model are passed on to the C → Y model during training.

We build our interactive intervention models on top of
these CBMs, and propose and evaluate various methods of in-
tervention using each of these as the base CBM. Although we
performed extensive experimentation with both the Indepen-
dent and Joint models, due to space considerations we present
only results from the Independent CBM here. Findings on
the Joint model are qualitatively similar; please see Chauhan
et al. (2022) for more details.

4.3 Training and Evaluation
For each experiment, we split the data into 3 sets: train, vali-
dation, and test – the details are available in Table 1. We used
the training data to train the base CBMs, and validation data
to select parameter settings, if any, for intervention policies.
We then retrained the base model on pooled train + validation
datasets3, and finally reported performance of the policies on
the unseen test set. In case an intervention policy did not re-
quire parameter selection, we directly trained the base model
on the pooled train+val data. Finally, for CooP, we require
accurate measures of uncertainty in order to make effective
decisions; we, therefore, calibrate the pooled concept proba-
bilities across the training data for a given base model using
isotonic regression.

Our primary metric is accuracy for CUB and OAI, and
AUC for CHEXPERT at the classification tasks. For each
intervention policy, we start with performance using only the
input x. We then iteratively obtain true labels for intermediate
concepts c as specified by the policy, set the concept value
to the observed true value, and report the performance of the
updated prediction after adding the observed concept. In this
manner, we obtain a curve measuring the performance metric
as a function of the number of observed concepts.

2Although CooP is agnostic to the specific way the base CBM
has been trained, each base CBM may have idiosyncrasies in its
predictive power that interact with CooP; therefore, specific base
CBMs combined with CooP may perform overall better on any
given dataset.

3We did this due to data paucity in the datasets we studied. This
is common practice for the datasets, and does not compromise the

CUB CHEXPERT OAI

Input Dims (299, 299, 3) (320, 320, 3) (512, 512, 3)
Concepts 112 13 10
Data splits

train 4,796 178,731 31,370
val 1,198 22,341 4,426
test 5,794 22,342 4,522

Table 1: Details of the datasets used in our experiments.

4.4 Baselines for Comparison
Greedy: Select an ordering of attributes using a greedy rank-
ing scheme over the validation dataset; i.e., the first attribute
in the list is the one that improves the performance measure
the most on average over the validation set. Subsequent at-
tribute orders are determined in a similar greedy fashion after
conditioning on all previous attributes as being available.
Random: For each instance in the training set, choose the
next attribute to query at random.
Skyline: Evaluate an oracle greedy approach which
checks, for each instance in the test set, the specific greedy
order of querying attributes that provides maximum incre-
mental gains on each step for that test instance. This is an
oracular skyline since it uses the test label for optimization,
and is an approximate ceiling on the performance achievable
under any interactive policy.4
Active Feature Acquisition (AFA): We also compare
against the Active Feature Acquisition policy based on work
by Shim, Hwang, and Yang (2018). We use image embed-
dings from ResNet18 pre-trained on ImageNet as auxiliary
information, and ground truth concepts as features that can be
acquired; we train an RL policy to actively acquire features/-
concepts as described in Shim, Hwang, and Yang (2018).
This algorithm is relatively sensitive to the value of a hyper-
parameter r cost that determines the tradeoff between model
performance and acquisition cost. For evaluating AFA, we
performed a hyperparameter search for r cost in the range
of [-1e-5, -0.06] for each number of intervention steps using
the accuracy/AUC on the validation set. We also tried using
fine-tuned ResNet features instead of pre-trained features
as auxiliary information, but it resulted in severe overfitting
on training data. For a fair comparison, we use the same
data splits as other baselines and the policy is trained until
convergence.

4.5 Intervention Costs
In practice, it is likely that obtaining certain concept labels
has a higher cost, for example, due to the difficulty of the
annotation task or the data being purchased at a cost from a
data provider, or the privacy costs of asking for sensitive user
information. We studied the following cost models:

findings since all reported results are on an unseen test set.
4The reason this skyline is only approximate-oracular is that

searching all possible orderings of attributes for querying is com-
binatorially infeasible; as seen in our results, the proposed greedy
approximation quickly approaches 100% performance measure sug-
gesting it is a good approximation.
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Figure 3: Accuracy gains vs interaction cost (unit cost model) on different datasets. See text for details.

Figure 4: Cost-efficient interventions on different datasets. For CUB and OAI, we report mean results for 10 random cost
assignments. For CHEXPERT, we use the domain-informed cost model.

Unit cost: Each query made by the interactive policy incurs a
unit cost. This is largely appropriate for the CUB dataset since
the concepts are largely identifiable easily by a non-expert.
Random cost: To stress test our approach, we also experiment
with random cost models where a randomly chosen cost from
the range [1, 7] is assigned to each concept, which is then
normalized such that the total cost of all concepts is 100.
Systematic cost: In datasets like CHEXPERT , it is clear that
some attributes can be easily labeled by non-experts while
others require a specialized radiologist. Thus we assign sys-
tematic costs, that have a strong justification depending on
the difficulty of acquisition of a concept label. Based on con-
sultations with domain experts, we use concept acquisition
costs of 1, 3, and 10 for concepts that are very easy, mod-
erately difficult, and very difficult to annotate respectively.
Similar to random costs, we also normalize CHEXPERT’s
systematic costs such that the total cost of all concepts is 100.

The costs are factored into the learning of policies for
CooP as described in Section 3.2. For the CHEXPERT dataset
where a systematic cost was available, we used it to evaluate
our cost optimization procedure; for CUB and OAI, we used
random costs.

5 Results
We perform experiments that demonstrate the following valu-
able contributions from CooP :
Performance gains from adaptive interactive policies:

Section 5.1 shows that by querying just 5 additional concept
labels at prediction time, our interactive policies can improve
relevant performance metric (AUC or accuracy) by 20-25%
over any static baseline that determines in advance an order in
which attributes are queried. In some cases, CooP achieves
a sizable fraction of the possible gain determined by the sky-
line. Improving CooP further to fully close the gap to the
skyline is a compelling direction for future work.
Cost-aware acquisition: Relative to policies that only use
uncertainty to drive interactivity, CooP is cost-aware and ac-
quires concept labels only when they are valuable, achieving
a better tradeoff between cost and performance than simpler
policies (Section 5.2).
We conducted additional analyses, including sample effi-
ciency for CooP, and ablation studies probing the contri-
butions of different factors in our scoring function. Details
are available at Chauhan et al. (2022).

5.1 Predictive Performance Improvement
Figure 3 shows the results of our experiments on three differ-
ent datasets: CUB, CHEXPERT, and OAI.

Across all 3 datasets, we see that the simple Greedy
policy already outperforms Random consistently across the
range of intervention steps. This serves as a strong existence
proof of nontrivial intervention policies. Note that the greedy
policy requests concept labels in the same sequence regard-
less of the test data instance. In contrast, CooP uses instance-
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Figure 5: Comparison of the behavior of CooP and Greedy policies for the first five steps of intervention using two example
images. The bar plots show the probabilities assigned to top 5 ranking classes according to the model, with the first blue bar
representing the correct class. The bar plot titles represent the concept revealed by the respective policy.

specific uncertainties both in concept labels and final pre-
dictions, and as a result significantly outperforms Greedy,
again across datasets. In particular, CooP is able to sub-
stantially improve the performance metric with as few as 5
queries.

We also note that the AFA baseline has an uneven perfor-
mance across datasets and the range of intervention steps.
For instance, the initial performance of AFA is quite poor,
followed by a rapid rise in the CUB and OAI datasets. In
CHEXPERT, AFA fails to improve upon Random, a weak
baseline. Finally, on the OAI dataset, AFA does outperform
CooP, although only by small margins and after the key first
few queries. This variable performance is driven by two fac-
tors: the significant data need for the AFA algorithm, and the
need for selecting a particular tradeoff cost at training time,
rather than being able to smoothly adjust the cost-benefit
tradeoffs at test time on a per-instance basis.

An interesting finding is that for all datasets, Skyline5

performs noticeably better than both the other baselines and
CooP. Even though Skyline is an oracle, this finding sug-
gests the possibility of additional headroom available for
other sophisticated, potentially data-hungry policies.

Figure 5 illustrates CooP’s ability to customize interven-
tion queries to each instance, which is its key differentiating
feature as compared to Greedy. In the first image, Greedy
chooses to reveal concepts like bill shape and wing color,
which can be reasonably inferred from the image. CooP in-
stead chooses to reveal under tail color which is difficult to
see in the shadow, and the wing shape which can’t be inferred
since the bird’s wings are closed. Similarly, in the second
image, most concepts that Greedy chooses to reveal are
visible to some extent. CooP instead queries concepts like
upper tail color and head pattern which are hidden in the
shadows, and wing shape, which also can’t be inferred since
the wings are closed.

5Although additional information should never worsen perfor-
mance, we do see that adding certain concepts decreases accuracy,
particularly in the Skyline. This is due to the heuristic nature of
the Skyline, and the sparse-data settings that limit the base CBM’s
exposure to certain rare concepts in the training data.

5.2 Cost-Efficient Interventions

In the previous experiments, we assumed that all interven-
tions (concept labels) have unit cost; we now explore the
scenario where different concepts have different costs (see
Section 4.5 for details on the cost model). Figure 4 shows the
result of CooP when optimizing for intervention costs. The
presented data is similar to Figure 3, except that the tradeoff
is now accuracy versus total cost, as opposed to the total
number of steps previously. We see that CooP outperforms
the baselines, both without and with cost-sensitive selection,
and CooP with the cost is better. This demonstrates CooP’s
ability to incorporate cost structure into the optimization of
the interactive policy.

6 Discussion
We proposed a novel problem setting, that of iterative/inter-
active refinement of model predictions using human inputs,
and the cost-efficient optimization of this interactive loop.
We demonstrated a principled first-cut approach at learning
such optimization policies in the context of two-stage, or
concept-bottleneck models where interactions are simplified
to querying concept or attribute labels. We do not provide a
wide or exhaustive discussion of the advanced algorithmic
possibilities; indeed, we anticipate that future work will ex-
plore a number of alternate formulations both of learning
the base models, and of optimizing interactive policies on
top of those base models. In particular, one could hypothe-
size architectures other than the two-stage CBMs explored
here. Further, human inputs could include information other
than the bottleneck concepts – for instance, side information
that cannot be inferred from the input data, region-of-interest
annotations, etc. A key related challenge for our work (and
concept bottleneck models in general) is the need for interme-
diate supervision in the form of concept labels. Future work
could explore weak or distant supervision for obtaining these
concept labels. Finally, there would be a need to evaluate our
approach in realistic human-AI collaboration setups, where
UX or other psychological factors may impact the interactive
performance of the human-AI team (Bansal et al. 2021).
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Ethics Statement
Our goal is to increase the interpretability and robustness
of predictive models, a significant net positive especially
for applications such as medical diagnosis. As such, we do
not expect any adverse outcomes of our work or follow-on
research. For our experiments, we have used open-sourced
datasets collected with appropriate review processes; we have
not conducted human-in-the-loop experiments as it was out
of scope for this paper. For an eventual system that includes
humans in the predictive workflow, our proposal only lever-
ages additional instance specific data at test-time, as supplied
by the expert responsible for prediction; this minimizes the
potential for data misuse by our model.
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