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Abstract

In sequential machine teaching, a teacher’s objective is to
provide the optimal sequence of inputs to sequential learn-
ers in order to guide them towards the best model. However,
this teaching objective considers a restricted class of learners
with fixed inductive biases. In this paper, we extend the ma-
chine teaching framework to learners that can improve their
inductive biases, represented as latent internal states, in order
to generalize to new datasets. We introduce a novel frame-
work in which learners’ inductive biases may change with
the teaching interaction, which affects the learning perfor-
mance in future tasks. In order to teach such learners, we pro-
pose a multi-objective control approach that takes the future
performance of the learner after teaching into account. This
framework provides tools for modelling learners with inter-
nal states, humans and meta-learning algorithms alike. Fur-
thermore, we distinguish manipulative teaching, which can
be done by effectively hiding data and also used for indoctri-
nation, from teaching to learn which aims to help the learner
become better at learning from new datasets in the absence of
a teacher. Our empirical results demonstrate that our frame-
work is able to reduce the number of required tasks for on-
line meta-learning, and increases independent learning per-
formance of simulated human users in future tasks.

Introduction
Pedagogical systems can be described as intelligent systems
in which an agent, called the teacher, transmits informa-
tion to a second agent, called the learner in order to help
them learn a target concept (Shafto, Goodman, and Griffiths
2014). Machine teaching has emerged as a computational
model for pedagogical systems, which addresses the prob-
lem of finding the best training data that can guide a learner,
human or machine alike (Patil et al. 2014; Chen et al. 2018),
to a target model with minimal effort (Zhu 2015; Goldman
and Kearns 1995). However, conventional machine teaching
considers a restricted class of learners which have fixed in-
ductive biases (e.g. parameter initialization, model family,
network architecture, variable selection etc.) and hyperpa-
rameters. Learners in this class are not able to update their
inductive biases during the learning process, which excludes
machine learning methods such as meta-learning and human
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learners who can learn to learn, to achieve better general-
ization amongst similar learning tasks (Griffiths et al. 2019).
The optimal strategies for teaching learners with fixed in-
ductive biases differ from the strategies for learners who are
able to learn better inductive biases.

The mathematical framework we present in this paper
shows that if a learner’s initial biases are unsuitable for the
current task and cannot change, the teacher may have no
choice but to hide parts of the training data from the learner
in order to teach them a good model. More specifically, the
learner can be taught a better model by hiding parts of the
data than by providing the full dataset. For teaching machine
learning algorithms, this teaching strategy is close to data-
poisoning (Mei and Zhu 2015), and for teaching humans, it
is undesirable behaviour which attempts to manipulate the
learner. However, considering that the learner’s biases can
change and be influenced by the teacher induces a com-
pletely different teaching strategy: helping the learner refine
their internal state, essentially teaching them better induc-
tive biases. This empowers the learners by teaching them to
perform better during the learning phase, with assistance of
the teacher, but also in future tasks, even in the absence of a
teacher. We refer to this more advanced teaching strategy as
Teaching to Learn (TtL).

In this paper, we present a mathematical framework for
TtL. We formalize this setting as a two-player game involv-
ing a learner and a teacher, and take the perspective of the
teacher. We unify the definition of inductive biases in ma-
chine learning algorithms (e.g. model family, initialization
etc.) and in humans (prior task knowledge, meta-knowledge,
etc.), and model both cases as a latent internal state of the
learner. A key difference of the new framework from con-
ventional machine teaching is that the internal state of the
learner changes over time as a result of the teacher’s actions.
Thus, in the new framework, the task of the teacher consists
not only of guiding the learner towards a model close enough
to the best model possible, but also of guaranteeing that the
learner will be able to learn good models without supervi-
sion in future similar tasks. To do so, the teacher needs to
lead the learner to an internal state which consists of induc-
tive biases that are suitable for current and future tasks.

The main contributions are: (i) We generalize sequential
machine teaching to a setting where the learner has an in-
ternal state which affects their preferences over models, and
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evolves over time in response to the teacher’s actions. Un-
like conventional machine teaching, the new generalization
leads to a multi-objective formulation of teaching goals. (ii)
We show that when the learner’s internal state is static and
suboptimal, optimal teaching is possible only at the price of
data manipulation, defined in detail below. (iii) We show that
augmenting machine teaching by considering the teacher’s
influence on the learner’s internal states allows the teacher
to avoid manipulative strategies and help the learner learn
to perform better later, even in the absence of the teacher.
Our work bridges a gap between machine teaching and auto-
mated human teaching, and proposes a mathematical frame-
work that can bring the two closer together.

An Illustrative Example
Consider an explorative data analysis setting where an AI
assistant is helping its users build linear models such as
Y = Xξ + ϵ with ϵ ∼ N (µ, σ2), for their data D =
{(Xi, Yi)}i=1...n, where Xi ∈ Rd and Yi ∈ R. In partic-
ular, the AI assists the human user in the selection of co-
variates, to discover linear relationships between inputs X
and outputs Y. Here, the end goal is not to just get a good
predictive model, but also for the human to uncover impor-
tant covariates and their relationship to the output. If the AI
knows the human is an expert statistician, it can automati-
cally compute which covariates are important, present all the
facts to the human, and be confident that the user will draw
the right conclusions. In this case, no pedagogical behaviour
is needed from the AI. However, if for instance the user
does not know what collinearity means, they may wrongly
think that collinear variables with strong output correlation
must all be included in the regression. On the contrary, when
one of the collinear variables is included, the rest will not
improve the regression, and their inclusion would result in
unidentifiable regression weights. In this case, the AI can-
not assist effectively, since its recommendations for which
covariates to include/exclude may get rejected. This issue
cannot be resolved easily with explanations or data visu-
alization, since understanding the explanations requires the
conceptual knowledge of collinearity. If the AI assistant can
teach the user about collinearity during the interaction, this
will improve things for both the current and future model
building tasks. However, when there are many such concepts
as collinearity involved, the AI cannot simply present tuto-
rial material on everything to a user. Thus, the AI assistant
must infer what the user knows and may not know, and try
to tutor only when necessary.

In the scenario above, the AI assistant can model its user
as a learning algorithm which, given data as input, produces
a linear model as output. The task of the assistant is to help
the learning algorithm converge to a good model with min-
imal effort. Evidently, this setting can be modelled as ma-
chine teaching where the system is the teacher, and the user
is the learner. If we apply conventional machine teaching
here by treating covariate suggestions as data, the teacher’s
optimal behaviour would be to avoid suggesting collinear
covariates. Such a strategy is optimal in terms of the pre-
existing optimality criteria in machine teaching, since it pre-
vents the user from including collinear covariates. However,

the model would then be built by effectively hiding from the
user information that they could misinterpret: Had the user
observed the entire dataset by themself, they would have in-
cluded collinear covariates and ended up with a different
model. This is not satisfying since it implies they will not be
able to choose a good model for future datasets, unless the
teacher is there to supervise them. Moreover, this discrep-
ancy between the model built with and without the super-
vision of the teacher can be interpreted as resulting from a
manipulative teaching strategy. Manipulation is particularly
undesirable in the case of human learners.

The situation above can be avoided by allowing the
teacher to influence the modelling biases and preferences of
the learner, corresponding to their internal state. If a teacher
can infer that the learner’s modelling preferences do not de-
pend on collinearity, it can follow an alternative strategy that
helps the learner understand the notion of collinearity, and
therefore changes their internal state for the better. However,
the current optimality criteria used in machine teaching are
based only on the final model obtained, thus a new criterion
is needed to learn such teaching strategies.

The mathematical framework we present in this paper for-
malizes the intuitions described above. In particular, we will
demonstrate in Proposition 1 below that unless the teaching
aims at changing the learner’s internal state, the teacher’s
choices are either to manipulate the data seen by the learner
or end up with suboptimal learning results. A crucial insight
of our work is that, if the teacher takes the learner’s fu-
ture modelling performance in the teacher’s absence into ac-
count, the induced optimal teaching strategy can lead to ben-
eficial changes in the learner’s internal state, utilizing what-
ever actions are available. The optimality of such a teaching
policy will be exposed in Proposition 2.

Teaching to Learn (TtL)
In this section, we formalize the intuitions discussed above
and present the mathematical framework of Teaching to
Learn.

Sequential Teaching of Models
Learning task. The learning task of a learner is defined
as inferring a model θ ∈ Θ to describe a dataset D, where
Θ denotes the model space. We define a discrepancy d :
Θ × Θ 7→ [0,∞) as a function that satisfies the property
d(θ1, θ2) = 0 ⇐⇒ θ1 = θ2. For instance, in the case of
probabilistic modelling, if θ is the posterior distribution over
model parameters then d is a discrepancy measure between
probability distributions such as KL-divergence.

The multi-agent model of teacher—learner interaction.
We consider two agents: a learner and a teacher. The teacher
has better inductive biases than the learner, and therefore can
identify a better model θ∗ ∈ Θ. The learner aims to select
a model to describe the data. The interaction between the
two agents is modelled as a sequential game. At each time
step t, the teacher selects an action at ∈ A to perform, the
learner responds with an action bt ∈ B and updates its se-
lected model θt. Every action of the teacher at can be con-
sidered as suggesting a model or a hypothesis to the learner.
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The learner may accept or reject this suggestion, or simply
ignore it when updating its model. We do not have direct
control over the learner, thus we take the perspective of the
teacher whose goal is to identify the optimal sequence of
actions minimizing d(θT , θ

∗) for a certain horizon T .

Learner’s internal states. The learner’s internal state
space Z is represented as the product of a function space F
and a set of learning algorithms Π. An internal state is then
an element of Z , defined as the tuple z = (f,Alg(D; f,Θ)),
where f is a real-valued function inducing a preference or-
dering in Θ for the data D. The f models the learner’s in-
ductive biases and prior knowledge as an a priori preference
over models. The Alg(D; f,Θ) denotes the learning algo-
rithm the learner uses to build a model of the dataset D,
parameterized by the model space Θ and modelling prefer-
ences. The definition of Alg is general: it can be stochas-
tic or deterministic, can output a single model, distribution
over models, or the average model. A learner’s state is the
tuple sℓ = (z, θ), thus Sℓ = Z × Θ. The probability of
a learner with internal state z responding to the teacher ac-
tion at with bt is denoted as πℓ(bt|at, sℓ,t = (zt, θt)). We
refer to the supplementary material 1 for an in-depth discus-
sion and guidance on the design of F and Π. We model the
evolution of the learner’s internal state with transition prob-
abilities p(zt+1|sℓ,t, at, bt), which induce an internal state
dynamics. In many cases, the zt evolves conditionally inde-
pendently of the θt, since the two are only coupled by the
data. Thus, in our experiments, we will assume the factor-
ization p(zt+1|sℓ,t, at, bt) = p(zt+1|zt, at, bt). For ease of
exposure, we will group any teacher action a that can influ-
ence a learner’s internal state under an action called tutor.
This is not a modelling restriction per se, but simply a place-
holder for a simpler exposure of our model.

Teacher’s decision-making task. We model the teacher’s
decision-making for teaching a learner with learner’s pol-
icy πℓ as a POMDP M = (S,A, T ,R,Ω,O), where S =
Θ × Z is the state space, A the space of actions introduced
earlier, T the transition kernel, Ω the set of observations, O
a set of conditional observation probabilities and R a cost
function that will be discussed in the conclusion of the next
section. A state s ∈ S is composed of two components
s = (θ, z), where θ is the model selected by the learner
and z is the learner’s internal state. The θ is fully observ-
able, but z cannot be directly observed by the teacher. How-
ever, it can be inferred from the learner’s policy πℓ(bt|at, s),
therefore Ω = B and O = πℓ. The transition dynamics
T (s′ | s, a) is induced by the learner’s algorithm Alg which
governs how the θ component evolves, and its internal state
dynamics. Fixing a teacher policy πτ induces the state chain
pπτ (st+1|st).

The Non-manipulative Teaching Objective
As described in the illustrative example, we would like the
teacher to avoid manipulating the data the learner gets to
observe. We formalize this notion as follows: Manipulation
level measures the discrepancy between the model learned

1Supplementary material available at arXiv:2009.06227

by a learner by interacting with a teacher and the model
that the learner would infer from the whole dataset, with-
out assistance from a teacher. Intuitively, manipulation level
measures how much the teacher has influenced the learning
outcome.
Definition 1 (Manipulation). Given a learner’s internal
state z = (f,Alg), let θℓ = Alg(D; f,Θ) denote the model
the learner infers from the dataset D without a teacher. The
manipulation level of a teacher-learner interaction for the
same task is given by Manip(z,D, θτ ) = d(θℓ, θτ ) where
the θτ is the model learner infers at the end of teaching.

For some internal states, achieving zero manipulation can
be possible. If the learner reaches these states, then it does
not need a teacher to manipulate the data it receives. Triv-
ially, if Alg ignores data, the learner guarantees zero ma-
nipulation. We will exclude such internal states, as they are
unrealistic.
Definition 2 (Enlightened Internal State). Inspired by Im-
manuel Kant’s definition of enlightenment, we say that an
internal state z ∈ Z is enlightened for dataset D toward
model θ if Manip(z,D, θ) = 0.

In the following propositions (proofs in supplementary
material), we demonstrate the importance of modelling
the internal state transitions to provide optimal and non-
manipulative teaching. We denote the set of all enlight-
ened internal states for data D towards the model θ by
Z∗(θ,D) ⊂ Z . We will denote an objectively good (or
optimal) model for the dataset D with θ∗.
Proposition 1. Suppose that the initial internal state of the
learner is z0 ̸∈ Z∗(θ∗,D), and that for all t > 0, pπτ (zt ∈
Z∗|z0) = 0. Let θ be chosen by the learner at time t during a
teaching process, such that θt = θ. Then for any t > 0, with
probability 1 at least one of the two following statements is
true: (1) Manip(zt,D, θ∗) > 0 or (2) There exists a model
θ′ such that d(θ′, θ∗) < d(θ, θ∗) and p(θt = θ′|z0) > 0.

Proposition 1 states that a teacher who would not en-
lighten the learner (e.g. by not triggering any change in
learner’s internal state) is necessarily limited to either being
manipulative or being sub-optimal. This impossibility result
applies in particular to machine teaching techniques which
allow the teachers to alter the data distribution by filtering
out samples or providing data that is inconsistent with the
data distribution as shown by Peltola et al. (2019).

The following proposition states that, when internal states
can be influenced by the teacher, the teacher can guide the
learner towards an internal state where θ∗ could be inferred
without assistance.
Proposition 2. If there exists an enlightened internal state
z∗ that is reachable with probability p∗ from the initial state
z0 under a teacher policy πτ , then there exists a teacher pol-
icy π such that, with probability of at least p∗, the θT ob-
tained by teaching interaction is optimal (θT = θ∗) and the
teaching is non-manipulative (Manip(zT ,D, θ) = 0).

These two propositions imply that optimal teaching can
be made non-manipulative by allowing the teacher to help
the learner switch to an enlightened internal state. Here, non-
manipulative teaching means that the learner is eventually
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able to make the same choice of a model without any super-
vision. Another desirable property of learning is the ability
for the learner to perform correctly on new datasets.
Corollary 1. Let (D, θ∗) and (D′, θ′∗) be two learn-
ing tasks with datasets and associated target models,
and suppose that z∗ ∈ Z∗(θ′∗,D′) ∩ Z∗(θ∗,D). Then
Algz∗(D′; fz∗ ,Θ) = θ′∗ and Algz∗(D; fz∗ ,Θ) = θ∗.

Corollary 1 highlights the inherent connection between
our framework and meta-learning, also commonly referred
to as learning to learn (Thrun and Pratt 2012; Vanschoren
2019). Indeed, a meta-learner aims to learn good inductive
biases for a similar set of datasets. In our case, the induc-
tive biases of a learner are represented by its internal states,
and datasets that are similar for a learner have overlapping
enlightened internal states.

A cost function for non-manipulative teaching. We have
identified three desirable properties for a teaching policy
in our framework: (O1) Assist the learner to select the op-
timal model θ∗ for D; (O2) Make the learner able to se-
lect the best model θ∗ ∈ Θ for D without assistance;
(O3) Make the learner able to select the optimal model
for tasks similar to D without assistance. The (O1) is the
standard machine teaching objective, whereas (O2) cap-
tures the objective of enlightening the learner to make non-
manipulative teaching optimal. It follows from corollary 1
that (O2) implies (O3). Using these insights, we propose a
multi-objective cost function given by: (O1) the final model
discrepancy d(θT , θ

∗); (O2) the final manipulation level
Manip(z,D, θT ); and (O3) model discrepancy for related
tasks D′:

∑
D′ d(AlgzT (D′; fzt ,Θ), θ∗(D′)). Since the D

can be seen as a future task, (O3) includes the (O2). We use
the linear scalarization method to map the multi-objective
cost to a single objective function gT (zT , θT ) with weights
u = (u1, u2) controlling which objective the teacher should
prioritize.

gT = u1d(θT , θ
∗) + u2

∑
D′

d(AlgzT (D′; fzt ,Θ), θ∗(D′))

(1)

Case I: Interactive Variable Selection with
Users

We now apply our framework to the setup presented in the
illustrative example, where the teacher helps a (simulated)
user build linear models.

Description of the task. The goal of the learner is to
choose which variables to include in the linear model. A
variable can be excluded from the regression by setting its
weight to zero as ξi = 0. Thus, the model space is the space
of d-dimensional binary vectors Θ = {0, 1}d with each di-
mension denoted as θi = I(ξi ̸= 0) where I is the indicator
function. At each time-step the teacher can select a variable
i ∈ {1, . . . , d} from the dataset to display or provide ex-
plicit explanations about the design of linear models (which
corresponds to an action called tutor). Therefore, the action
space of the teacher is A = {1, . . . , d}∪{tutor}. At time t,
the learner observes action at from the teacher and picks a

response bt ∈ {0, 1} corresponding to rejecting or accepting
the suggestion of the teacher. In case at = i ∈ {1, . . . , d} is
not a tutoring action, the learner updates the model θt based
on whether they accepted to include the suggested variable
or not, therefore θit = bt.

Learner’s internal state space. When making modelling
decisions, different learners pay attention to different statis-
tics in the data and the model, but to extents unknown to the
teacher. Based on this observation, the teacher formulates
the learner’s modelling preferences as functions of the form
f(ϕ(θ, a);wz) = wT

z ϕ(θ, a) where ϕ(θ, a) is an embedding
of the statistics, for a model suggested by the teacher through
action a ∈ {1, . . . , d}. The wz is an unknown weight vec-
tor capturing how much the learner pays attention to each
statistic. Therefore, the space of preference functions F (in-
troduced in Sequential Teaching of Models) is defined as set
of linear functions from the embedding space to R. Since the
learner is doing linear regression, the space of algorithms Π
consists of a single algorithm which performs the regression.

The feature map ϕ (embedding) encodes the quanti-
ties of interest to the learner, i.e. here the correlation of
the shown variable to the output, and (maximal) corre-
lation with already included variables as ϕ(at, θt−1) =
(|corr(at, Y )|,maxj:θj

t−1 ̸=0 |corr(at, j)|).
With this internal state space, the general policy of the

learner is then given by

bt|at, zt ∼ Bernoulli (σ(fzt(ϕ(at, θt−1)))) . (2)

As discussed in the illustrative example, two classes of be-
haviours can be observed depending on whether the learner
knows collinearity. Formally, we observe that this corre-
sponds to the decomposition of Z into two subspaces: Z =
Z(0) ∪ Z(1). The subspace Z(0), associated to F (0) = {f :
x 7→ wTx : w = (w1, 0), w1 ∈ R}, describes the behaviour
of learners who do not know collinearity, whereas Z(1), as-
sociated to F (1) = {f : x 7→ wTx : w = (w1, w2), w1 ∈
R, w2 < 0}, describe learners who understand collinearity
and would avoid including collinear variables in a model
since this would make the coefficients difficult to interpret
in an exploratory data analysis task.

Learner’s internal state dynamics. We consider the fol-
lowing model for the transitions between learner’s states.
The transitions of internal states can only be triggered with
the action at = tutor, with probability η, resulting in
the following dynamics: p(zt+1 ∈ Z(1)|zt ∈ Z(0), at ̸=
tutor) = 0, p(zt+1 ∈ Z(1)|zt ∈ Z(0), at = tutor) = η
and p(zt+1 ∈ Z(1)|zt ∈ Z(1)) = 1. As a consequence,
the data-generating process for feedback bt is a Markov-
switching model (Hamilton 1989). This model extends the
well-known Bayesian knowledge tracing (BKT) (Corbett
and Anderson 1994) by creating a hierarchy where internal
states are treated similarly to BKT, while the behaviour of
the student is treated like a learning algorithm

Teacher’s cost. We define a stage cost function g : A →
[0,∞), and take g(a) constant for all a ∈ {1, . . . , d}, but this
can be generalized to variable-specific costs (e.g. if some
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Figure 1: Comparison of a manipulative and a tutoring
teacher (bars indicate 95% CI). Top: when only the perfor-
mance on the current dataset matters for the terminal cost
observed at the last time-step, the manipulative teaching
(red) policy is cost-optimal and there is no need to tutor.
Bottom: tutoring teacher (blue) leads to type changes from
naive to enlightened.

features are more difficult to assess by the learner). We as-
sume that the cost of the tutoring action g(tutor) is higher
than the cost of a variable recommendation. This is due to
the fact that we expect tutoring actions to be intrusive to the
task, and incur higher cognitive costs on the human learner.
We complete the teaching with the terminal cost introduced
in Equation 1.

Algorithm. In the POMDP with state s = (θ, z), the
model θ is observed, but the learner’s internal state z is not.
It can be inferred with the posterior, p(zt|Ht), where the
Ht denotes the interaction history. The detailed expression
of this posterior is provided in the supplement. We solve
this POMDP by using problem approximation (Bertsekas
2019) and turning this into a simpler fully-observed stochas-
tic dynamic programming problem by repeating the follow-
ing process: We take posterior expectations ᾱt, w̄|Ht and
sample from the space Z(nt) of the internal states ñt ∼
Bernoulli(ᾱk). We then use Monte Carlo rollouts by sim-
ulating the decision trajectory with a fixed parameter w̄,
based on the learner’s state transition dynamics and policy
given by Equations 2. We perform the first action at+1 of
the Monte Carlo planning solution. After getting learner’s
feedback bt+1, the belief p(αt+1, w|Ht+1) is updated and
the process is repeated.

Experimental Results
Setup. We use the data generation method provided by
Ghosh and Ghattas (2015) for comparing method perfor-
mances in collinear datasets, and generate random regres-
sion datasets with 10 independent and 15 collinear variables

(details in the supplementary materials). Such high degree
of collinearity is a typical feature of large-panel macroe-
conomic data (De Mol, Giannone, and Reichlin 2008). All
results have been replicated with 10 random seeds and we
present averaged values with 95% confidence intervals (CI).
We simulate the learner’s behaviour using the presented
model (policy 2 and learner’s internal state dynamics). Un-
less stated otherwise, the value for η is 0.5. Sensitivity analy-
sis is in the supplement. The optimal variable selection strat-
egy is to include all independent variables, and choose only
one from the collinear variables. Once the variable selection
is done, the learner pays a unit cost (1.0) for each missed
independent variable and every extra collinear variable se-
lected, which corresponds to a penalty d(θ, θ∗), d(., .) being
the Hamming distance

Experiment 1: Manipulative teaching is optimal for the
current dataset. In standard iterative machine teaching,
the goal is to guide the learner into the best possible model
with minimal cost for a given dataset, which corresponds to
the scalarization u1 = 1, u2 = 0 (only the current dataset is
considered in the terminal cost). The cumulative cost in Fig-
ure 1 shows the performance of our rollout method (blue)
against a teacher who is hard-coded to never choose the tu-
tor action, which reduces to the standard iterative machine
teaching (red). According to Proposition 1, such a teacher
is expected to have a non-zero level of manipulation. Due
to the stochasticity of the rollout approximation, our method
chooses tutor action in multiple time-steps and thus has a
higher cumulative cost. The optimal policy in this setting
should never tutor, and can simply manipulate the learner
by never showing more than one variable from a collinear
group.

Experiment 2: Manipulative teaching leads to low per-
formance in independent learning. In order to evaluate
how the two types of learners (knows vs does not know
collinearity) perform without the presence of a teacher,
we generated 10 test datasets, having the same degree of
collinearity as the sets used for teaching in Experiment 1.
We observe that, on 10 datasets sampled from the task dis-
tribution, the enlightened learner gets a mean terminal cost
of 2.18 (stdev 0.44), while the learner that does not know
about collinearity gets 12.34 (stdev 0.29). As expected, in
the absence of a teacher, the enlightened learner performs
much better since it takes collinearity into account. This also
highlights the importance of educating the learner for future
learning tasks, even if it does not benefit the teaching of the
current dataset.

Experiment 3: Including an estimate of independent
learning performance to the cost leads to enlightenment.
We generated a set of 10 additional datasets from the same
generation process with the same degree of collinearity.
Differently from test datasets, we use these to estimate
the learner’s independent performance in future tasks, i.e.
the second term (with coefficient u2 in equation 1) in the
teacher’s cost formulation. We set u1 = 0.5, u2 = 0.5,
hence, the current and future performances are considered
equally important. As seen in Figure 2, this makes the tutor-
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Figure 2: Comparison of mean teaching performances for
manipulative, tutoring and random teachers with 95% CI.
Top: TtL induces a lower cumulative cost than manipula-
tive teaching, since an estimate of the learner’s independent
learning performance after interaction is included in the ter-
minal cost observed at the last time-step. Bottom: TtL leads
to a type change early on, whereas manipulative teaching
does not cause any type changes.

ing teacher the best choice compared to the manipulative and
random teachers: the cumulative cost of the tutoring teacher
outperforms all, and the learner transitions to an enlightened
internal state, as seen in our model’s confident inference
of the probability of the learner being enlightened. Since
the learner becomes enlightened, its generalization perfor-
mance improves drastically, as shown with Experiment 2.
Details on how the tutoring teacher method induces internal
state changes and how our model detects these changes in an
episode are provided in the supplementary materials for two
different values of η.

Case II: Teaching Online Meta-Learners
We next apply our framework to the case of teaching an on-
line meta-learner to learn a good initialization. This section
demonstrates that our framework is capable of bridging the
gap between teaching humans and teaching machine learn-
ing algorithms.

Description of the task. Consider a learning task T ∼
P (T ) represented by a tuple T = (Dtr,Dtest) consisting
of a training and a test dataset. All learning tasks that come
from P (T ) have some common statistical properties. If a
learner can exploit these common properties via inductive
biases, it can generalize to new tasks faster. The goal of
meta-learning is to learn these inductive biases from a set
of tasks.

Model-agnostic meta-learning (MAML) (Finn, Abbeel,
and Levine 2017) is a general framework for meta-learning

applicable to any model that is trained by gradient descent.
The goal of MAML for neural networks (NN) is to learn an
initialization of the NN parameters θ0 that quickly leads to
good models for any task from P (T ). The initial model θ0
can be seen as a form of modelling preferences and biases
since the starting point on the parameter space indirectly in-
duces a preference over the model space Θ due to finite data.

In order to learn a good θ0, MAML uses a set of task
samples {Ti}i=1,...,M and minimizes the meta-learning loss
F (θ) = 1

M

∑M
i=1 L(Alg(Dtr

i , θ),Dtest
i ), where θ ∈ Θ cor-

responds to the parameters of the model. An online variant
of this problem has been studied by Finn et al. (2019) where
the meta-learner can get tasks only one by one.

In this section, we consider the new problem of teaching
online meta-learners a good initialization θ∗0 .

Learner’s internal state space and dynamics. For the
type space of online meta-learners, the space of algorithms
Π (see Sequential Teaching of Models) consists of a single
learning algorithm Alg which is stochastic gradient descent.
In this setting, the space of modelling preference functions
F is implicit, yet we can assume F is parameterized by θ0
since each initialization induces a preference. Thus, instead
of F we will use Θ. The meta-learner always accepts pro-
posed datasets (πℓ(bt = 1) = 1) and updates θ0 by using
the sublinear regret method introduced by Finn et al. (2019),
called follow the meta-leader: FTML(θt, {Ti}i=1,...,t) =

argminθ

{
1
t

∑t
k=1 L(Alg(Dtr

k , θ),Dtest
k )

}
.

Teacher’s decision-making task. The tutoring actions of
the teacher correspond to the choice of a task to present to
the learner: A = {Ti}i=1,...,M , since they directly affect θ0.
Once a task T is chosen, the entire training dataset Dtr for T
is used. Then the teacher has only the objective (O3) to con-
sider. We choose to model the cost as the Euclidean distance
to θ∗0 denoted by d(θ, θ∗0). It would be possible to include an
inner-loop teacher that optimizes (O1) given Dtr further, but
this makes it harder to demonstrate the benefit of optimizing
(O3), thus we chose not to.

Algorithm. The interaction again defines a sequential
leader-follower game. The teacher, as the leader, chooses
which task to add to the current sequence of tasks. The
learner responds by applying the FTML algorithm to up-
date its initialization θ0. The Stackelberg equilibrium for the
stage game at time t + 1 can be computed by solving the
following bi-level optimization task:

min
T

d(θ, θ∗0) s.t. θ ∈ FTML(θt, {Ti}i=1,...,t ∪ T ).

FTML is a myopic follower and the dynamics are fully
controlled by the leader’s policy. Either of these properties
sufficiently admits a dynamic programming solution to the
computation of a strong Stackelberg equilibrium (Bucarey
et al. 2019). Our rollout approximation uses one-step look-
ahead minimization and chooses the task that minimizes
d(θt+1, θ

∗) at time t by applying the difficulty and useful-
ness decomposition given by Liu et al. (2017a) on the meta-
gradient.
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Figure 3: Left: by optimizing the choice and order of tasks,
we can guide the online meta-learner towards a good initial-
ization. Right: TtL leads to faster improvements on two-shot
prediction loss for the online meta-learner.

Experimental Results
Setup. We generated 100 randomly selected non-linear re-
gression tasks by using the class of sine functions as de-
scribed in (Finn, Abbeel, and Levine 2017). The meta-
learner employs a neural network and we aim to find a good
initialization θ0 ∈ Θ for this network. Here, Θ is a real-
valued vector space and d(., .) is the Euclidean distance. We
first trained a neural network to perform regression using
all 100 tasks with model-agnostic meta-learning and took
the resulting initialization of this offline-trained neural net-
work as θ∗, the optimal network initialization we would like
to guide a learner towards. The learner employs the online
meta-learning method with the follow-the-meta-leader algo-
rithm (Finn et al. 2019). We have limited the number of tasks
to 50, where the online meta-learner receives 50 tasks from
the set of 100 training tasks sequentially. All experiments are
conducted with 10 seeds and mean results are reported for
visual clarity. Standard deviations are provided in the sup-
plement.

Result. Figure 3 shows that TtL is able to guide the online
meta-learner towards θ∗, which leads to quick improvements
in 2-shot prediction loss compared to random task selection.
The 2-shot prediction loss is evaluated by a test task the net-
work has never seen before, randomly sampled from the dis-
tribution over sine functions.

Related Works
Machine teaching (Zhu 2015; Goldman and Kearns 1995)
addresses the inverse problem of machine learning, where
a teacher must select an optimal dataset to present to a
learner. A machine teaching method aims to select a min-
imal dataset D such that the model θ = Alg(D) learned by
a machine learner, based on algorithm Alg, is close to an op-
timal model θ∗ (Zhu et al. 2018). An iterative variant (Liu
et al. 2017a) assesses the iterative nature of some learning
algorithms and shifts the problem from minimizing the size
of a dataset to minimizing the number of steps. This method
still assumes that the learner is fully-observed by the teacher
(in particular that the learning algorithm is known) and that
the teacher can only exchange data points. The method in-
troduced by Liu et al. (2017b) alleviates these two problems,
by considering that the learner and the teacher have differ-
ent views of the same data and that the teacher does not

know the algorithm of the learner, in a same way as pro-
posed for the batch-version by Dasgupta et al. (2019). This
is still different from what we propose, since they consider
an unobserved but fixed algorithm for the learning, while our
setting is built upon the possibility for the teacher to cause
changes in the algorithm of the learner. Also, we do not re-
strict the actions of the teacher to the choice of data points.
While Liu et al. (2017b) apply gradient-based methods,
other alternatives have been proposed, based for instance on
optimal control (Lessard, Zhang, and Zhu 2019), or models
for sequential tasks where the learner is an inverse reinforce-
ment learner (Cakmak and Lopes 2012; Haug, Tschiatschek,
and Singla 2018; Parameswaran et al. 2019; Tschiatschek
et al. 2019). A multi-agent formulation has been proposed
by Hadfield-Menell et al. (2016) for teaching inverse rein-
forcement learners. In all these methods, the learner adapts
to the teacher by updating only their estimated model and
this line of work considers only the states of the world,
whereas in our work we take one step further to considering
the teacher’s influence on the inner states of the learner (e.g.
its priors, learning rate...) which affects both the learner’s
model and their learning algorithm. Finally, Peltola et al.
(2019) proposed manipulative teaching of active sequential
learners, where a manipulative teacher can steer the learner
towards the parameters of its liking and showed that manip-
ulation is more effective if the teacher has a model of the
learner. However, this teaching strategy cannot achieve gen-
eralization on future tasks.

Multiple human teaching tasks have been formulated in
terms of MDPs or POMDPs. In particular, the method pro-
posed by Fan et al. (2018) considers that the teacher uses
an MDP to adapt its teaching policy to the learner during
the teaching process. In the domain of Intelligent Tutor-
ing Systems, the use of multi-arm bandits has been sug-
gested by Clément et al. (2015) as a way to adapt to multiple
types of learners. As an alternative, POMDPs have been pro-
posed to alleviate the uncertainty over the learner’s cognitive
state (Rafferty et al. 2016). Unlike our method, these papers
only consider adapting to various profiles of learners, but do
not consider the possibility of switching from one to another.

Conclusion
We proposed a novel mathematical framework that gener-
alizes machine teaching to learners who can change their
inductive biases. This induces a novel multi-objective ap-
proach to teaching, which can model problems that involve
both machines and humans. This setting opens up vari-
ous future research directions. From a theoretical point of
view, it extends the question of teaching dimension to the
minimal number of interactions necessary to teach without
data manipulation to reach the optimal model. For practi-
cal applications, our method presents a rigorous mathemat-
ical framework that can be used to design interactive peda-
gogical systems for humans. Designers can choose to define
the learner’s internal state space and transition dynamics, or
these can be learned interactively as well. The learner’s in-
ternal state dynamics can also be learned with Bayesian re-
inforcement learning, where the teacher’s decision-making
task becomes a Bayes-adaptive POMDP instead.
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Broader Impact
The proposed contribution can be seen from two differ-
ent perspectives: teaching of machines and teaching of hu-
mans. Teaching of machines is intrinsically related to meta-
learning and to the possibility of making a machine learner
able to choose its algorithm by itself.

In the context of teaching human learners, which is on
the rise with the emergence of Intelligent Tutoring Systems
(ITS) (du Boulay 2016), the question of designing high-
quality artificial teachers is a priority. However, as exposed
in (Cochran-Smith 2003), even if there is a consensus on the
need for good-quality teachers, the characteristics of good
teaching are less clear. In a public opinion poll (Hart and
Teeter 2002), it has been observed that only 19% of the par-
ticipants mentioned that good-quality teaching entailed for
the teacher to have a thorough understanding of the subject,
against 42% for designing learning activities that inspired
pupil interest. This observation highlights the perceived im-
portance of pedagogy and points out that a teacher with only
excellent knowledge would not be sufficient. The proposed
framework alleviates this question, based on three consid-
erations: (1) The thorough understanding of the subject is
modelled by the access to θ∗, but teaching θ∗ to the learner
is not the sole priority unlike in standard machine teaching
for instance; (2) The teacher plans a sequence of interactions
with the learner, which corresponds to an understanding of
teaching in the long-term; (3) The priority of the teacher is to
help the learner progressing in their understanding. Thus, the
framework we propose paves the way for high-quality auto-
matic teaching. An important consideration is the concep-
tion of the models of learners, which needs to be learned au-
tomatically from observed interactions, or designed by hu-
man experts. An inaccurate choice for the model family can
have harmful consequences, since seemingly innocent ad-
vice may lead to unexpected behaviours. As an illustration,
the study proposed in (McNee, Kapoor, and Konstan 2006)
shows that one irrelevant recommendation is enough to lose
the trust of the user. Such a phenomenon would be of dra-
matic importance in a context of teaching.

Teaching human learners need not be limited to interac-
tive tutoring systems though. The illustrating example and
Case I illustrate the possibility of advanced modelling tools
for scientists who are not expert statisticians, but use statis-
tical analysis to draw conclusions from data. Such assistants
could help scientists design statistical models by identifying
the need for technical explanations and by sorting the rele-
vant information from the data. In these domains, guarantee-
ing a non-manipulative teaching is of major importance, so
that the users can gain and maintain a perfect understanding
of their data. As such, the problem is very close to the ques-
tion of understandability of Automatic ML (AutoML). Re-
cent studies show that interpretability and visualization are
key elements requested by users of AutoML systems (Droz-
dal et al. 2020). Our method would increase the understand-
ability of such systems by making the users participate in
the choice of the model and providing them explanations on
modelling.

Finally, even though our work takes an important step to-
wards the direction of non-manipulative teaching, we still

need further research to protect learners against manipula-
tive teaching algorithms. Even if we can guarantee to detect
a naive manipulative teacher who would impose a model by
force by selecting data, we have no guarantee over a teacher
who would adapt their target model θ∗ to pretend to be non-
manipulative.
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