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Abstract

In reinforcement learning (RL), a reward function that aligns
exactly with a task’s true performance metric is often sparse.
For example, a true task metric might encode a reward of 1
upon success and 0 otherwise. These sparse task metrics can
be hard to learn from, so in practice they are often replaced
with alternative dense reward functions. These dense reward
functions are typically designed by experts through an ad hoc
process of trial and error. In this process, experts manually
search for a reward function that improves performance with
respect to the task metric while also enabling an RL algorithm
to learn faster. One question this process raises is whether the
same reward function is optimal for all algorithms, or, put dif-
ferently, whether the reward function can be overfit to a par-
ticular algorithm. In this paper, we study the consequences
of this wide yet unexamined practice of trial-and-error re-
ward design. We first conduct computational experiments that
confirm that reward functions can be overfit to learning algo-
rithms and their hyperparameters. To broadly examine ad hoc
reward design, we also conduct a controlled observation study
which emulates expert practitioners’ typical reward design
experiences. Here, we similarly find evidence of reward func-
tion overfitting. We also find that experts’ typical approach
to reward design—of adopting a myopic strategy and weigh-
ing the relative goodness of each state-action pair—leads to
misdesign through invalid task specifications, since RL algo-
rithms use cumulative reward rather than rewards for individ-
ual state-action pairs as an optimization target.
Code, data: github.com/serenabooth/reward-design-perils.

1 Introduction
In their authoritative introductory text on reinforcement
learning, Sutton and Barto (2018) assert: “The reward sig-
nal is your way of communicating to the agent what you
want achieved, not how you want it achieved.” This state-
ment implies that a reward function should exclusively en-
code the true task performance metric. Such metrics are of-
ten sparse: did the agent succeed at the task or not? Sparse
reward functions are rarely used in practice, since it can be
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hard to learn from sparse signals (for examples, see Yu et al.
(2020); Andrychowicz et al. (2020); Knox et al. (2023)).
As such, the practice of reward design seldom adheres to
this adage.1 Instead, reward functions are typically designed
through an ad hoc process of trial and error. In a survey of
24 expert RL practitioners, we found that 92% reported us-
ing trial and error to design their most recent reward func-
tion (Apdx. A). This finding echos the literature: Knox et al.
(2023) found that, in a survey of RL for autonomous driving,
all of the surveyed publications reported designing reward
functions by trial and error. Despite the prevalence of trial-
and-error reward design, the consequences of this process
remain almost completely unexamined by the RL commu-
nity. It is urgent and crucial for our community to understand
the effects of this widespread practice and ultimately to craft
specific guidance for practical reward design.

When employing trial-and-error, experts often optimize
the reward function by manually searching for a reward
function that meets the goals of both maximizing the task
performance metric and enabling an RL algorithm to learn
quickly. This practice raises the question of whether a re-
ward function that is effective with one algorithm can be in-
effective with others: can a reward function be overfit to an
algorithm? This concern of overfitting raises troubling ques-
tions about evaluation in RL. Overfitting a reward function
to one RL algorithm undermines fair comparisons to another
algorithm using the same reward function, especially since
the reward function is often also used to measure success.

Consider an ablation study which assesses whether an
algorithmic component improves learning. If the reward
function is overfit to the algorithm when the component is
unablated, observing that learning performance decreases
in the absence of the component may merely reflect that
the reward function is overfit, giving no clear signal about
whether the component is an improvement. Concerns about
fair evaluation are already pervasive in RL, and are thought

1Sutton and Barto disregard their own advice when designing a
Dyna-Q+ agent. To encourage exploration, they replace the reward
function r with r+κ

√
τ , where κ is a hyperparameter and τ is the

number of timesteps (Sutton and Barto 2018, p. 168).

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

5920



to limit RL’s applicability outside of the laboratory (Ibarz
et al. 2021). Most such concerns focus on hyperparameters,
network architectures, and observed high variance, coupled
with the high costs of experimentation (Henderson et al.
2018). This paper adds an additional perspective: that the
oft-overlooked design process behind the reward function
must also be considered for fair comparisons.

To assess reward function overfitting, we first conduct
computational experiments to test whether certain reward
functions enable different RL algorithms and hyperparam-
eters to perform better with respect to the true task perfor-
mance metric. From these experiments, we find evidence
that reward functions can indeed be overfit to a partic-
ular discount factor, learning rate, or algorithm: in such
cases, changing the discount factor, learning rate, or algo-
rithm significantly diminishes the task metric performance.
Across numerous experiments, we find that when we rank
reward functions by the learned policies’ resultant task met-
ric scores, these rankings are largely uncorrelated across
experiment variations. Though the idea of reward function
overfitting may be unsurprising to seasoned RL experts, the
extent of this overfitting problem is nonetheless remarkable.

To learn about the implications of trial-and-error reward
design, we also conducted a user study. One goal of this user
study was to confirm that our computational experiments’
findings correspond to practical effects in realistic RL set-
tings. Specifically, we challenged 30 expert RL practition-
ers to choose an RL algorithm, hyperparameters, and a re-
ward function to train the best agent they could, as measured
by the cumulative task performance metric. The majority of
experts overfit their reward functions to their choice of al-
gorithms or hyperparameters (68%). More alarmingly, the
majority of experts also constructed reward functions which
failed to encode the task (53%)—meaning these reward
functions encoded optimal policies which significantly de-
viate from the experts’ intent, despite these tests being con-
ducted in a simple gridworld environment. We then applied
thematic analysis to qualitatively analyze experts’ reward-
design process, and we discovered that some types of re-
ward misdesign stem from mismatched perspectives of what
the reward function communicates. For the RL algorithm,
reward is an additive component that is used to calculate
discounted return—the evaluation metric. We find that ex-
perts instead typically view reward as a direct evaluation of
the relative goodness of each state-action pair. This disparity
contributes to reward function misdesign as a consequence
of ad hoc trial-and-error reward design.

2 Related Work
Reward Shaping One of the known, common conse-
quences of ad hoc reward design is reward shaping. In re-
ward shaping, the reward function is overloaded to both
communicate the underlying performance metric and guide
an agent’s learning toward a desired policy. Reward shaping
can be designed in such a way that the optimal policy is un-
changed (Ng, Harada, and Russell 1999). However, ad hoc
reward shaping is known to be typically unsafe—meaning
that a shaped reward function is likely to change the opti-
mal solution to a given reinforcement learning task (Amodei

et al. 2016; Knox et al. 2023). Our work affirms that ad hoc
reward design amplifies this type of misdesign: the resulting
optimal policies are often unrecognizable from the expert’s
known intent. Our work also contributes a new perspective
on how trial-and-error reward design results in reward func-
tion overfitting, in which reward functions are unintention-
ally over-engineered for use with a specific algorithm.

Designing Rewards for Fast Learning Singh, Lewis,
and Barto (2009) asked the philosophical question: where
do rewards come from? They established a computational
framework for quantifying the performance of reward func-
tions, in which they assess whether ‘intrinsic’ motivation is
helpful—i.e., whether reward functions benefit from reward-
ing subgoals. We build off of this work, especially the com-
putational framework for assessing reward functions.

Similarly, Sowerby, Zhou, and Littman (2022) observe
that certain reward functions result in faster learning, and
they put forth principles of reward design in accordance with
this observation. To find fast-learning reward functions, they
use linear programming to construct reward functions which
meet a correctness criteria of encoding the optimal policy.
To test the fastness of learning from these reward functions,
they assess how many training steps are needed for a Q-
learning agent to converge to the optimal policy. The authors
note this work is preliminary and has mostly been tested
with a single Q-learning algorithm with fixed hyperparame-
ters. Our work contributes a related perspective: fast learning
may not be an intrinsic property of a good reward function,
but also a consequence of the paired choice of algorithm and
hyperparameters that were used to test that reward function.

AutoRL is another approach, which is gaining increasing
traction (Niekum, Barto, and Spector 2010; Faust, Francis,
and Mehta 2019; Chiang et al. 2019; Zheng et al. 2020; Wu
et al. 2021; Parker-Holder et al. 2022). AutoRL frames RL
as a meta-learning problem, in which the reward function
should be learned, perhaps using an evolutionary method.
Our work has interesting implications for AutoRL. Cur-
rently, these methods usually first optimize a reward func-
tion and then fix this function to optimize other RL design
choices, such as the neural network architecture. Our work
suggests this method—of first fixing the reward function and
then optimizing other design choices—may be suboptimal
relative to employing a joint optimization strategy.

Inferring Reward Functions Since specifying reward
functions is both known to be hard and requires expertise,
many research threads explore how to learn reward func-
tions from intuitive signals like demonstrations (Ng, Rus-
sell et al. 2000; Ziebart et al. 2008), preferences (Christiano
et al. 2017; Knox et al. 2022), and feedback (Knox and Stone
2009; MacGlashan et al. 2017). Inverse reward design is an
approach that requires experts to specify reward functions
but recognizes that these designed reward functions are only
observations about the true goal. As such, inverse reward de-
sign works try to infer a true reward function based on these
observations (Hadfield-Menell et al. 2017; Ratner, Hadfield-
Menell, and Dragan 2018). Our work provides empirical
support for this approach, as we find evidence that this
assumed human behavior—of designing reward functions
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as observations and not as true problem specifications—is
common in practice. He and Dragan (2021) similarly view
reward design is an iterative process. Their work contributes
a mechanism for surfacing environments where the reward
incentivizes the wrong behavior to the human expert to sup-
port them in revising their reward function. Our work rein-
forces the importance of these types of debugging tools.

3 Preliminaries
Reinforcement Learning In RL, an agent learns a behav-
ioral policy based on experience interacting with its environ-
ment. An RL task can be modeled by a Markov decision pro-
cess (MDP), which is defined by a tuple ⟨S,A, T, γ,D0, r⟩.
S and A are the sets of states and actions, respectively. T is
a transition function, T : S × A × S → [0, 1]. γ is the dis-
count factor and D0 is the distribution of start states. Lastly,
r is a reward function, r : S ×A× S → R. An MDP\⟨γ, r⟩
is an MDP with neither a discount factor nor a reward func-
tion; we use this formulation for studying humans’ reward
design processes, wherein we ask humans to select the dis-
count factor and reward function. Actions in an MDP can
be prescribed by a policy π : S × A → [0, 1], and τπ =
(s0, a0, s1, ...) is a trajectory of states si ∈ S and actions
ai ∈ A experienced over time by executing π. Discounted
return is the discounted sum of reward over a trajectory,
G(τ) =

∑n
t=0 γ

tr(st, at, st+1). In this work, we learn π by
applying one of four algorithms: Q-learning (Watkins and
Dayan 1992), PPO (Schulman et al. 2017), DDQN (Mnih
et al. 2015), or A2C (Mnih et al. 2016). Unless otherwise
noted, we use the hyperparameters in Apdx. D. The short-
hand πr,D denotes the policy learned with reward function r
and some solver D (i.e., an algorithm and hyperparameters).

Reward Function Overfitting Let M : τ → R be the true
task performance metric. For example, this metric might en-
code whether the agent reached a goal state or not. Let a
learning context be a tuple of an RL algorithm, hyperpa-
rameter values, and an MDP\r; given a reward function, a
learning context can be used to train a policy. We claim a
reward function r1 is overfit with respect to one or more
learning contexts, D1 ∼ D, if there exists an alternative re-
ward function r2 such that the task performance metric is
optimized over D1 but not over the larger distribution, D:

E
τ∼πr1,D1

[M(τ)] > E
τ∼πr2,D1

[M(τ)]

E
τ∼πr1,D

[M(τ)] < E
τ∼πr2,D

[M(τ)]
(1)

where D1 is a set of one or more learning contexts, D1 =
{d1, d2, . . . , dn}. This definition is adapted from supervised
learning overfitting: the hypothesis space corresponds to the
space of possible reward functions and the training and test
sets correspond to potential RL algorithms, hyperparame-
ters, and environments (Mitchell and Mitchell 1997).

Optimal Reward Functions Optimal reward functions
are related to overfitting: these reward functions are the best
performing in a given a learning context. A reward function
r∗D is optimal under some distribution D of learning con-
texts if it maximizes the expected value of learned policies,
i.e., r∗D = argmaxr Eτ∼πr,D [M(τ)].

Figure 1: Hungry Thirsty (4 × 4 grid). Food and water are
each located in a corner. Red walls are impassable. The cur-
rent state is abbreviated as H∧¬T, which corresponds to the
agent being hungry and not thirsty. The 6 × 6 grid Hungry
Thirsty is depicted in Singh, Lewis, and Barto (2009).

Hungry Thirsty Domain We use a modified Hungry
Thirsty domain (Singh, Lewis, and Barto 2009) as a testbed.
This gridworld domain has a fixed time horizon of 200 steps.
Food is located in one randomly-selected corner; water in
another. Some transitions are blocked by walls (Fig. 1). At
each timestep, the agent can choose one of six actions: move
in a cardinal direction, eat, or drink. The agent’s goal is
to have sated hunger for as many timesteps as possible.
The agent is hungry if and only if it did not eat in the last
timestep. However, the agent can only successfully eat if it
is co-located with the food and has quenched thirst. On each
timestep, the agent stochastically becomes thirsty with 0.1
probability, and only becomes not thirsty if it drinks while
co-located with the water. The agent’s state is described by
its location, as well as two boolean predicates: H and T, cor-
responding to hunger and thirst. Time remaining is omitted.

For this task, the performance metric is simply the num-
ber of timesteps the agent has sated hunger: M(τ) =∑200

t=1 1(¬H ∈ st). This specific metric can be formulated as
a sparse Markovian reward function, r(s, a, s′) = 1(¬H ∈
s).2 Under the optimal policy for this reward function, the
agent alternates between navigating to the water or drink-
ing when thirsty, and navigating to the food or eating when
not thirsty. While it is often possible for RL algorithms to
learn with this sparse reward function, shaped reward func-
tions that reward the not thirsty (¬T) subgoal or punish time
spent hungry (H) let many RL algorithms solve this domain
faster and more easily. These properties make this domain
an interesting testbed for studying reward design.

For our experiments, all reward functions take the form:

r(H ∧ T) = a r(H ∧ ¬T) = b

r(¬H ∧ T) = c r(¬H ∧ ¬T) = d

where a, b, c, d ∈ R. Since there are no reward compo-
nents for location, opportunities for shaping—and, thereby,

2Such reformulation as a Markovian reward function is not uni-
versally possible across all task performance metrics.
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overfitting—are limited but still possible. For shorthand, we
write reward functions as [a, b, c, d]. We say reward func-
tions encode the task when the optimal policy matches
the optimal policy derived from the sparse reward func-
tion. Singh, Lewis, and Barto (2009) found the highest-
performing reward function to be [−0.05,−0.01, 1.0, 0.5]
for a continuing version of this domain; this reward function
is dense and notably rewards drinking water as a subgoal.

When conducting large experiments, we as-
sign each of a, b, c, and d to a value from the set:
{±1,±0.5,±0.1,±0.05, 0}. We chose these values based
on the reward function from Singh, Lewis, and Barto
(2009). Reward functions that meet the following criteria
trivially do not encode the task and are thus excluded:
r(H ∧ ¬T) ≥ r(¬H ∧ T) and r(H ∧ ¬T) ≥ r(¬H ∧ ¬T).
Such reward functions encode an incorrect optimal policy
of navigating to the water and consistently drinking. This
filtering leaves 5,196 reward functions.

4 Computational Experiments
We first assess overfitting in reward functions by conduct-
ing large-scale performance comparisons, in which we mea-
sure a learning context’s ability to optimize the task perfor-
mance metric given a reward function. As an intuitive exam-
ple, we speculate that when using an RL algorithm with a
high learning rate, a high magnitude reward function might
be less likely to lead to convergence within a fixed training
duration than a lower magnitude reward function.

To study this relationship between reward function de-
sign and hyperparameters empirically, we assess the mean
task performance metric accumulated over all 200-timestep
episodes of training achieved by learning with different re-
ward functions across varied Q-learning hyperparameters: γ
(the environment discount factor) and α (the learning rate).
While γ is formally defined as a parameter of the envi-
ronment, and not the learning algorithm, it is typically se-
lected to construct a viable horizon for applying an RL al-
gorithm (Jiang et al. 2015) and can thus be equally consid-
ered a hyperparameter of the learning algorithm. We addi-
tionally study whether the reward functions are overfit to
the learning algorithm itself by comparing performance met-
rics with several deep RL methods: A2C (Mnih et al. 2016),
DDQN (Mnih et al. 2015), and PPO (Schulman et al. 2017)
in the 6× 6 Hungry Thirsty domain. Unless otherwise spec-
ified, we train 10 agents per experimental setting.

H1: Reward functions that are effective in one learn-
ing context can be ineffective in another. There exist two
different learning context samples (D1 and D2) and a reward
function r1 such that r1 achieves high cumulative perfor-
mance (as measured by the true performance metric) when
tested with D1 but low cumulative performance with D2. In
formal terms, there exists a reward function r1 such that

E
τ∼πr1,D1

[M(τ)] > β1 and E
τ∼πr1,D2

[M(τ)] < β2,

where β1 is some high threshold (e.g., performing among the
top 25% of reward functions when tested with D1) and β2

is some low threshold (e.g., performing among the bottom
25% of reward functions when tested with D1).

H1 tests whether some reward functions enable success-
ful learning in some learning contexts but not in others. In
other words, this hypothesis assesses whether reward func-
tion overfitting can occur. Although the learning contexts in
D2 could be chosen adversarially—i.e., to include an RL al-
gorithm incapable of learning—we assume all learning con-
texts in D2 aim to maximize expected return and are gener-
ally capable of doing so.

H2: Reward functions that are optimal in one learn-
ing context can be suboptimal in another. Given a reward
function r∗D1

that is optimal with respect to D1, a different
reward function r∗D2

may be optimal with respect to D2. In
formal terms, there exist two learning context samples D1

and D2 such that r∗D1
̸= r∗D2

.
H2 tests tests whether the reward functions which

are found to be best-performing are consistently best-
performing across multiple learning contexts. As in H1, we
assume that all considered learning contexts aim to maxi-
mize expected return and are generally capable of doing so.

H3: The performances of different reward functions
are uncorrelated across learning contexts. If reward func-
tions are ranked by their average cumulative performance
metric scores (e.g., ra > rb > rc > ... for a learning con-
text sample D1), the ranked reward functions from D1 will
be uncorrelated with the ranked reward functions from a dif-
ferent sample, D2. In formal terms, for some set of reward
functions r1, r2, . . . , rn, Eτ∼πri,D1

[M(τ)] will be uncorre-
lated with Eτ∼πri,D2

[M(τ)] for 1 ≤ i ≤ n.
H3 examines the commonality of reward function overfit-

ting. If this phenomenon is rare, correlation across learning
contexts should be high. If it is common, correlation should
be low. Of these hypotheses, confirmation of H3 is most con-
cerning as it indicates extensive reward function overfitting.

4.1 Overfitting to Hyperparameters
We first assess whether reward functions can be overfit to ei-
ther the discount factor, γ, or the learning rate, α. For this
experiment, we use a Q-learning agent trained over 2000
episodes. For evaluating overfitting to the discount factor,
we vary γ for each learning context: γ = 0.99, γ = 0.8, and
γ = 0.5. For evaluating overfitting to the learning rate, we
consider α = 0.05 and α = 0.25. The standard hyperparam-
eters are described in Apdx. D. We average performance, as
measured by the cumulative true reward, over 10 trials to
account for stochasticity stemming from the environment or
from the learning process (i.e., randomized weights).

H1: Reward functions that are effective in one learning
context can be ineffective in another. For all experiments,
we find some reward functions which result in policies
which achieve high task performance scores when trained
with one learning context but low task performance scores
when trained with a different learning context. Some such
reward functions are highlighted in Fig. 2 and Apdx. Fig. 3.
To assess whether these differences are not just a conse-
quence of stochastic policy learning, we re-ran these exper-
iments with the reward functions which resulted in maxi-
mally different true performance for 1000 additional trials.
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Figure 2: A parallel coordinate plot showing the paired rank-
ings of reward functions. Each line corresponds to a reward
function, with cumulative performance averaged over 10
independently-trained agents. The many intersections por-
tray the uncorrelated nature of these rankings. The two re-
ward functions with the largest cumulative difference in per-
formance are highlighted. These reward functions result in
low cumulative performance when γ = 0.99, but high per-
formance when γ = 0.8. See Apdx. C for more examples.

We then computed the 90% Hoeffding Bound (Hoeffding
1994), which bounds the average cumulative task perfor-
mance metric across trials with 90% probability, and we
separately performed a Mann Whitney U-test (Nachar et al.
2008) to assess whether the mean cumulative true task per-
formance values were drawn from the same underlying dis-
tribution. We find, in all cases, we can reject the null hy-
pothesis that these underlying distributions are the same as
the observed differences are all statistically significant (p <
0.05). We conclude that, across varied hyperparameters, re-
ward functions that are effective in one learning context can
be ineffective in another. See Tab. 1 and Apdx. Tab. 3.

H2: Reward functions that are optimal in one learn-
ing context can be suboptimal in another. Across each
pair of tested learning contexts, we find that the best-
performing reward function differs (Apdx, Fig. 4). We fur-
ther confirm this finding by fixing an experimental learn-
ing context and assessing whether the best-performing re-
ward function for that learning context outperforms the
top-3 reward functions from a different experimental learn-
ing context, testing the cumulative task performance met-
ric for each reward function over 1000 trials. For ex-
ample, the best-performing reward function function for
γ = 0.99 was [−0.05,−0.05, 0.5, 0.5], which outper-
formed the best-performing reward function for γ = 0.5,

Reward Function Experiment Hoeffding Bound p-value

[-1.0, -1.0, -1.0, 0.1] γ = 0.99 [4,965; 20,234]
< 0.01

γ = 0.8 [86,653; 101,922]

[-0.1, 0.2, 0.5, 1.0] DDQN [94,790; 182,944]
< 0.01A2C [-29,040; 59,114]

Table 1: A comparison of reward function performance
assessed over 1000 trials (Q-learning) or 30 trials (deep
RL methods). Performance is assessed with the Hoeffding
Bound, which is akin to a confidence interval, and a Mann
Whitney U-test. This data confirms that the same reward
function can lead to very different performance with differ-
ent hyperparameters or algorithms.

# of Reward Fns D1 D2 τb p-value

5196

γ = 0.99 γ = 0.8 0.07 < 0.01
γ = 0.99 γ = 0.5 0.04 0.07
γ = 0.8 γ = 0.5 0.12 < 0.01
α = 0.25 α = 0.05 0.11 < 0.01

107

PPO A2C 0.25 0.01
PPO DDQN −0.04 0.62
PPO QLearn 0.13 0.08
A2C QLearn −0.08 0.29
A2C DDQN −0.01 0.87

DDQN QLearn −0.06 0.41

Table 2: Kendall’s τb correlation over the 5196 tested reward
functions for hyperparameter experiments and 107 tested
reward functions for algorithm experiments. τb ∈ [−1, 1].
|τb| < 0.1 indicates the variables are uncorrelated; |τb| <
0.2 indicates a weak correlation. In our experiments, H3
is supported with low τb values (even with high p-values).
Almost all comparisons are either uncorrelated or weakly
correlated; H3 is supported for all experiments except PPO
vs. A2C. This data confirms that the choice of reward func-
tion is highly sensitive for RL algorithm performance.

[−1.0,−1.0, 0.0, 1.0]. We then compute the 90% Hoeffding
Bound for the mean cumulative task performance metric,
and we separately conduct a Mann Whitney U-test to as-
sess whether the distribution of the best-performing reward
function’s performance is greater than that of the alterna-
tive tested reward function (which is best-performing for a
different experimental condition). We find that we can re-
ject the null hypothesis that these reward functions result
in equal performance distributions in 16 of 18 experiments
(p < 0.05). In general, the best-performing reward function
for one learning context outperforms the top-3 reward func-
tions for another learning context. See Apdx. Tab. 4.

H3: The performances of different reward functions
are uncorrelated across learning contexts. We compute
Kendall’s tau rank correlation to assess H3. This measures
the strength and direction of the monotonic association be-
tween rankings, without considering the difference in mag-
nitude of the performance metric since some learning con-
texts may be consistently ‘better’ or ‘worse’ in terms of raw
performance. We used a nonparametric test, since the cu-

5924



mulative scores were not found to be normally distributed
over many trials. In this setting, the null hypothesis is that
two random variables are independent (i.e., τb = 0). H3 is
supported with low τb values, even with high p values. Gen-
erally, the closer τb is to 0, the more samples are needed to
show significance. We find that reward function performance
is uncorrelated (|τb| < 0.1) or weakly correlated (|τb| <
0.2, see Table 2) in all discount factor and learning rate ex-
periments. We conclude that performance across varying hy-
perparameters is sensitive to reward function choice.

From these experiments, we find consistent evidence that re-
ward functions can be overfit to RL hyperparameters.

4.2 Overfitting to RL Algorithms
For the Section 4.1 Q-learning experiments with varied hy-
perparameters, we trained 5196 agents, 10 times each. The
protocol for generating these reward functions is described
in Section 3. In the deep RL setting, this scale of training
is infeasible because training each agent takes between 3
and 11 minutes (Apdx. F). To test overfitting in this set-
ting, we instead consider a restricted set of reward functions
to reduce the computational burden. We source these re-
ward functions from the user study; specifically, we consider
the set of unique reward functions that experts handcrafted
at any point during their sessions and that also encode the
desired optimal policy in easy environment configurations
(Section 5). In total, we analyze 107 reward functions in this
deep RL setting. For each reward function, we train A2C,
DDQN, PPO, and Q-learning agents. We train each agent
over 5000 episodes, and average performance over 10 trials.

H1: Reward functions that are effective in one learn-
ing context can be ineffective in another. We again find
that every experiment variation uncovers reward functions
which enable successful learning in one experimental learn-
ing context, but not the other. For example, the reward func-
tion [−0.1, 0.2, 0.5, 1] achieved a high mean cumulative per-
formance metric score of 232055 for DDQN, but a low
mean cumulative score of 107—indicative of never learn-
ing the optimal policy—for A2C. We then ran this specific
test an additional 30 times, and found evidence that we can
again reject the null hypothesis that these true task perfor-
mances were drawn from the same underlying distribution
(p < 0.05). See Table 1 and Appendix Fig. 5, in which
the reward functions that achieve maximally different per-
formance metric measures are highlighted.

H2: Reward functions that are optimal in one learning
context can be suboptimal in another. In 5 of 6 experi-
ments varying the RL algorithm, the optimal reward func-
tions differ. The only case in which this is not true is in
the PPO and A2C comparisons. In this case, the true per-
formance metric function itself ([0, 0, 1, 1]) is the optimal
reward function for both algorithms. See Appendix Fig. 5.

H3: The performances of different reward functions
are uncorrelated across learning contexts. Again using
Kendall’s τb for assessment, we mostly find evidence that re-
ward functions’ cumulative true performance metric scores
are uncorrelated when varying the RL algorithm (|τb| <

0.1, see Table 2). Specifically, we find the PPO vs. DDQN,
A2C vs. Q-learning, A2C vs. DDQN, and DDQN vs. Q-
learning agents to be mutually uncorrelated. We find ev-
idence of weak correlation between PPO and Q-learning
(|τb| < 0.2). Lastly, we find evidence of some correlation
(τb = 0.25) for the PPO vs. A2C comparison. Statistical
significance—which allows us to reject the null hypothesis
that the two random variables are independent—is generally
not established due to the reduced sample size.

From these experiments, we find consistent evidence that re-
ward functions can be overfit to RL algorithms.

5 Expert Human Subject Experiments
To assess how experts design reward functions and whether
this problem of reward function overfitting caries over to re-
alistic settings, we conduct a controlled observation study.

Study Population We conducted 2 pilot studies, followed
by 30 studies with expert participants drawn from four US
research universities (R1). To qualify as an expert, partic-
ipants were required to meet one or more of the follow-
ing criteria: (1) have experience conducting research on RL
methods; (2) have used RL methods in research; or (3)
have passed a class which covered reinforcement learning in
depth. Of the 30 participants, 1 was a post-doctoral scholar,
17 were PhD students, 5 were research-based master’s stu-
dents, and 7 were advanced undergraduates. Participants are
each assigned a study ID, ranging from P0 to P29.

Study Protocol The study session took one hour and was
primarily conducted in-person (19 of 30 sessions). Partici-
pants were compensated $40 USD. The study used a Jupyter
notebook, in which participants were required to select a re-
ward function, algorithm, and hyperparameters to train an
agent to solve the Hungry Thirsty task (Apdx. B). Partic-
ipants were asked to speak aloud as they worked, and the
experimenter took detailed notes. The experimenter occa-
sionally asked open-ended questions (such as “what are you
trying to do now?”) to prompt the participant to continue
speaking. Five minutes before the end of the session, par-
ticipants were asked to submit their best configuration con-
sisting of some reward function ri and some algorithm and
hyperparameter selection, Di. Afterwards, participants were
asked to answer five structured questions (Apdx. B.3).

The participants were informed that the research team
would independently train an agent using their submitted re-
ward function, algorithm, and hyperparameters, and that if
this trained agent performed in the top ten across all par-
ticipants’ agents in terms of cumulative performance, they
would receive a $10 USD bonus. Participants were required
to train at least three different agents—though the experi-
menter explicitly noted that they could simply re-train the
same agent three times to meet this requirement.

The first 12 participants used a 6× 6 grid for the Hungry
Thirsty domain. After observing participants struggling to
solve this task, we reduced the size of the grid to 4 × 4 for
the remaining 18 participants. The study was IRB approved.

Experts Often Design Invalid Reward Functions The
Hungry Thirsty domain has harder and easier environment
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configurations. In total, there are 12 different configurations,
which correspond to different placements of the food and
water. In a 6 × 6 grid, the food and water can either be lo-
cated 5 steps apart in the best case or 16 steps apart in the
worst case. In a 4× 4 grid, these distances are 3 and 9 steps
in the best and worst cases, respectively. As in the original
version of Hungry Thirsty (Singh, Lewis, and Barto 2009),
the locations of the food and water are randomly resampled
each time the user trains a new agent, but remain consistent
throughout the lifetime of the agent. In this study, the user is
tasked with designing a reward function which is invariant
to any choice of environment configuration.

To determine whether a reward function is valid for a
given task configuration (i.e., for fixed food and water posi-
tions), we empirically assess whether a policy—learned with
value iteration—is the same as the optimal policy under the
sparse reward function. Specifically, we use value iteration
(with θ = 0.01 as the end criteria) to solve for an approxi-
mately optimal policy using the sparse reward function and
γ = 0.99. We then use value iteration to solve for a policy
using the user’s submitted reward function and choice of γ.
We run 100 test episodes for each agent with a fixed random
seed, and use the average cumulative undiscounted task per-
formance metric for comparison. If the policy learned with
the user’s reward function has the same cumulative undis-
counted task performance as the policy learned with the
sparse reward function, we consider it valid. If the user’s
reward function is valid for all environment configurations,
we say it encodes the task.

The majority of participants (83%) successfully selected
reward functions which were valid with the easier place-
ments of the food and water on adjacent corners (10 of 12
in the 6× 6 setting; 15 of 18 in the 4× 4 setting). However,
only 47% of participants selected reward functions which
were valid when the food and water are maximally distant,
at opposite corners (4 of 12 in the 6 × 6 setting; 10 of 18
in the 4 × 4 setting). For example, P23’s reward function
[−0.05, 0.5, 0.5, 1.0] is valid in the easier adjacent case but
not the opposite-corners case, because when the food and
water are maximally distant the optimal policy causes the
agent to remain in the state H∧¬T. Finding this form of mis-
design, where reward functions are only valid in some envi-
ronment configurations, adds support to the research pursuit
of inverse reward design methods (Hadfield-Menell et al.
2017), which is built upon the perspective that reward func-
tions should be considered an observation about the expert’s
intended reward function and not as a perfect specification.

Experts Overfit Reward Functions to Algorithms Even
when experts wrote reward functions which encode the task,
they typically continued to edit their reward functions. Each
expert tried a sequence of reward functions r1, r2, . . . , rn
and finally settled on some reward function ri where i ∈
[1, n]. The user evaluated each of these reward functions
alongside potentially-changing algorithms and hyperparam-
eters, D1, D2, . . . , Dn and settled on some choice Di. Be-
cause every aspect of the user’s solution may be changing
simultaneously, this setting is messier and harder to evaluate
than the purely-computational setting. To evaluate overfit-

ting, we test all of the user’s reward functions with standard
implementations for DDQN, PPO, and A2C and fixed hy-
perparameters (Apdx. D). We discard the user’s algorithms
(i.e., Di) and exclusively test the user’s reward functions.

In this setting, we define overfitting to have occurred if
one or more of the user’s tested reward functions (rj , where
j ∈ [1, n] and rj ̸= ri) significantly outperforms their final
selection with respect to one or more of the three tested RL
algorithms. We define this performance difference threshold
to be 20000, accumulated over 5000 training episodes and
averaged over 10 trials. This overfitting assessment is differ-
ent from the computational setting, which requires compar-
ing the rankings and not absolute performance between dif-
ferent reward functions. Since each user tried only a small
handful of reward functions (on average, 4.1 unique reward
functions), these rankings are less meaningful.

Of the users who tried multiple reward functions and
submitted a best-case-valid reward function, 68% (15 of
22) overfit their reward functions. For example, participant
P20 tried the reward function [−0.1, 0.1,−0.1, 1], which
achieved a mean cumulative performance of 138,092 using
DDQN. In their final selection, this user instead chose the
reward function [−5, 15, 5, 100], which achieved a mean cu-
mulative performance of 1,031 using DDQN. We include an
alternative metric for overfitting in the user study in Apdx. E.

Assessing the Design Process with Thematic Analysis
To analyze not just experts’ reward design outcomes, but
also their design process, we applied qualitative analysis in
the form of thematic analysis (Braun and Clarke 2006; Hop-
kins and Booth 2021). Thematic analysis is a system for ex-
tracting patterns from qualitative data by systematically cod-
ing and analyzing transcripts. To perform thematic analysis,
every statement of each transcript is first assigned a sum-
mary (also known as a code). Each of these summaries is
then further distilled into a detailed, low-level theme. These
low-level themes are finally distilled into high-level themes.
Thematic analysis is generally considered successful if the
resulting themes are consistent and coherent, and describe
the data they incorporate well. In such cases, the extracted
themes provide insight into the unstructured data. In our ap-
plication of thematic analysis, the first summary step of this
process generated 990 codes. The second step generated 212
low-level themes. And, finally, the third step resulted in the
extraction of 10 high-level themes. We include the full anal-
ysis in the supplementary material. Here, we discuss these
themes and their implications for reward design.

Experts’ Approaches to RL and Reward Design The-
matic analysis showed that experts use one or more of the
following strategies when tasked with crafting and solving
an RL task: folklore-based, intuition-based, trial-and-error-
based, hypothesis-based, random-based, or reason-based.
For example, P25 declared, “I’ve heard that reward scaling
is pretty important”, and this quote is an example of using
a folklore-based process. Concerning this same parameter
choice, P27 declared, “The reward scaling factor must be
very large, I think, since you might only see little food,” and
this quote is an example of using a reason-based process.
Experts often switched between two or more strategies.
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Trial-and-Error Reward Design is Typical This user
study was designed to be naturalistic; participants could
choose to focus primarily on any combination of the three
axes of choice, between specifying the reward function, al-
gorithm, and hyperparameters. Conventional reward design
wisdom suggests that experts should try to align a reward
function as closely as possible with the task completion cri-
teria, and should only adjust the reward function if it is found
to not encode correct measurements of task outcomes.

93% of experts tried at least two reward functions (only
P2 and P4 stuck to a single reward function). Experts tried
4.1 unique reward functions on average. In this study setting,
shaping was unnecessary: any of the available algorithms
could learn from the sparse reward function. Despite this,
and almost all users (97%) shaped their reward functions.
This finding is compelling: even in the absence of a need to
shape, experts gravitate towards doing so.

Analyzing study transcripts, we find that half of experts
(P5-13, P15-17, P20, P23, P27-28) explicitly noted a per-
ceived error at least once before modifying their reward
function (thus employing a reason-based process). For ex-
ample, P5 stated: “I realized I’m penalizing the H ∧ T state
too much, because the agent knows it will be penalized on
the way back [to the water].” In contrast, some experts indi-
cated they were relying on trial and error: P28 stated, “The
worst possible state to be in is H ∧ T, so I’m going to assign
-1. The best possible state to be in is ¬H ∧ ¬T, so I’m as-
signing that to 1. H∧¬T is not particularly as bad as H∧T...
Setting that to -0.25. Reward for ¬H∧T: not too close to -1;
I’ll just assign some arbitrary small value.”

A Common Misdesign Cause: Weighing State Goodness
Weighing state goodness to design a reward function was a
recurring low-level theme. Most experts (83%) stated some-
thing to the effect of: “It’s best to be ¬H∧¬T, so I’ll set that
to the max, 1. Being ¬T is better than being ¬H. Worst is at
H∧T; setting that to -1” (P25; this statement corresponded to
their invalid reward function [-1.0, 0.3, -0.35, 1.0], for which
the optimal policy is to remain drinking water indefinitely).
This reward design practice—of using the reward function
to rank the goodness of immediate states and/or actions, ap-
plying a myopic design strategy without assessing how the
reward function will be used as an optimization target for
computing expected discounted return—often led to reward
misdesign, as it did for P25.

Though less often, some experts did recognize the im-
portance of reward accumulation and state visitation fre-
quency (another recurring low-level theme). For example,
P23 stated “A positive reward for H ∧ ¬T is not the way
to go. A combination with a negative reward for H ∧ T
makes it worse, since it would rather accumulate positive
rewards at the water instead of searching for food.” This de-
sign process—of considering summed reward, which aligns
with the RL optimization objective—was relatively rare (i.e.,
30% of experts noted something to this effect). From this
qualitative analysis, we found this lack of emphasis on re-
ward accumulation and expected discounted return to be the
main cause of explicit reward misdesign, wherein reward
functions were invalid and did not correctly encode the task.

This observation—that humans assume a myopic inter-
pretation of reward functions, in which reward accumula-
tion is largely ignored—has previously been observed in an-
other setting of reinforcement learning from human feed-
back. Knox and Stone (2015) discovered that when learning
a reward function from non-expert human feedback, humans
adopt a similarly myopic teaching strategy. Finding that this
myopic interpretation is echoed across both non-expert and
expert users can inform future efforts to support humans in
designing reward functions, and can help reinterpret how hu-
mans’ reward functions should be used for optimization.

6 Limitations
While we studied the Hungry Thirsty domain in depth in this
work, we only evaluated reward design practice in this one
domain. Hungry Thirsty is a rich testbed for assessing re-
ward design practice, but understanding this practice across
multiple domains with diverse properties equally deserves
attention. This domain in particular allows us to assume the
existence and specification of a true task performance met-
ric, but in many circumstances, specifying such a metric is
itself a challenging problem. In such cases, the methodology
we use to study reward design would not readily reapply.

Another limitation of this work concerns the definition of
reward function overfitting. Our definition omits a tempo-
ral aspect to the distribution (D, consisting of algorithms,
hyperparameters, and tasks) that makes samples from D de-
pendent (i.e., not i.i.d.). For example, if an expert has tested
a reward function r with one RL algorithm and a set of
hyperparameter values, we suspect such an expert is more
likely to next test the reward function r with the same algo-
rithm and different hyperparameter values than with a differ-
ent RL algorithm. This temporal component is omitted from
our overfitting definition—as it similarly tends to be in the
supervised learning setting—and future work could explore
the consequences of this omission.

7 Discussion
Despite the prevalence of trial-and-error reward design, the
implications of this widespread practice remain underex-
plored. In this first analysis of the consequences of this
practice, we identify two problems: reward function over-
fitting and the frequent design of invalid task specifications.
In overfitting, reward functions are designed with respect to
a fixed algorithm or hyperparameter set, and the resulting
reward functions bias toward better learning given these de-
sign choices. This finding contributes to concerns around re-
producibility in RL: we find the performance of the reward
function is often dependent on the choice of algorithm. For
RL practitioners, one takeaway from this work is that the re-
ward function—like the discount factor (Jiang et al. 2015)—
should be defined twice: once to specify the true problem as
part of the MDP, and once as a form of hyperparameter for
the RL algorithm to facilitate learning. This separation ac-
commodates the need to design a reward function for suc-
cessful learning while also supporting fair evaluations.

In addition to overfitting, we find that ad hoc trial-and-
error reward design leads to misdesign in the form of invalid
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task specifications, wherein experts design reward functions
which fail to encode the desired task even in a simple grid-
world domain. One candidate cause for this misdesign is
that experts typically adopt a myopic interpretation of re-
ward, and this interpretation is at odds with the RL objective
of optimizing cumulative and perhaps discounted rewards.
Given this finding, one direction for future work would as-
sess the systemic errors humans make when designing re-
ward functions, and try to construct better mechanisms for
inferring the humans’ true intent given these systemic er-
rors. Such a mechanism could build off of inverse reward
design (Hadfield-Menell et al. 2017).

While there is great optimism around the flexibility of re-
ward as the optimization target for learning (Silver et al.
2021), this paper contributes to mounting evidence that
most people are ineffective reward designers in current
practice (Amodei et al. 2016; Krakovna et al. 2020; Knox
et al. 2023). As future work, we assert that the commu-
nity should also explore mechanisms to support humans—
including experts!—in this reward design endeavor. Specifi-
cally, one could develop guidance for the human reward de-
signer’s process such that it more directly reflects the RL
optimization target of expected discounted return. Addition-
ally, it is worth exploring whether incorporating explanation
mechanisms can improve reward design outcomes (for ex-
ample, by assisting experts in assessing the contributions of
decomposed reward components (Juozapaitis et al. 2019)).

Alternative models of reward should also be considered
and evaluated both for their propensity for overfitting and
for their propensity for other forms of misdesign. Reward
machines (Icarte et al. 2018) and hybrid reward architec-
tures (Van Seijen et al. 2017) are two such candidates. In
reward machines, reward functions are described as a type of
finite state machine instead of directly as a function. While
reward machines may elicit feature engineering and are thus
taboo in RL, humans may be better able to design reward
functions which correctly encode a task if they use sufficient
structure for guiding the design process. In hybrid reward
architectures, the reward function is decomposed into n dif-
ferent reward functions, each of which is then used to op-
timize a policy. These policies are subsequently aggregated
into a single policy. These methods both induce supporting
structures for designing reward functions, and this support
may help humans write better reward functions with low-
ered propensity for overfitting or other forms of misdesign.
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