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Abstract
The Shapley value (SV) is adopted in various scenarios in ma-
chine learning (ML), including data valuation, agent valuation,
and feature attribution, as it satisfies their fairness require-
ments. However, as exact SVs are infeasible to compute in
practice, SV estimates are approximated instead. This approx-
imation step raises an important question: do the SV estimates
preserve the fairness guarantees of exact SVs? We observe
that the fairness guarantees of exact SVs are too restrictive
for SV estimates. Thus, we generalise Shapley fairness to
probably approximate Shapley fairness and propose fidelity
score, a metric to measure the variation of SV estimates, that
determines how probable the fairness guarantees hold. Our
last theoretical contribution is a novel greedy active estima-
tion (GAE) algorithm that will maximise the lowest fidelity
score and achieve a better fairness guarantee than the de facto
Monte-Carlo estimation. We empirically verify GAE outper-
forms several existing methods in guaranteeing fairness while
remaining competitive in estimation accuracy in various ML
scenarios using real-world datasets.

1 Introduction
The Shapley value (SV) is widely used in machine learn-
ing (ML), to value and price data (Agarwal, Dahleh, and
Sarkar 2019; Ohrimenko, Tople, and Tschiatschek 2019;
Ghorbani and Zou 2019; Ghorbani, Kim, and Zou 2020;
Xu et al. 2021b; Kwon and Zou 2022; Sim, Xu, and Low
2022; Wu, Shu, and Low 2022), value data contributors in
collaborative machine learning (CML) (Sim et al. 2020; Tay
et al. 2022; Agussurja, Xu, and Low 2022; Nguyen, Low,
and Jaillet 2022) and federated learning (FL) (Song, Tong,
and Wei 2019; Wang et al. 2020; Xu et al. 2021a) to decide
fair rewards, and value features’ effects on model predic-
tions for interpretability (Covert and Lee 2021; Lundberg and
Lee 2017). We consider data valuation as our main example.
Given a set N of n training examples and a utility function v
that maps a set P of training examples to a real-valued utility
(e.g., test accuracy of an ML model trained on P ), the SV ϕi

of the i-th example is
ϕi = ϕi(N, v) := 1/(n!)

∑
π∈Π σi(π)

σi(π) := v(Pπ
i ∪ {i})− v(Pπ

i )
(1)

*These authors contributed equally.
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where π is a permutation of the N training examples and Π
denotes the set of all possible permutations. The SV for the i-
th example is its average marginal contribution, σi(π), across
all permutations. The marginal contribution σi(π) measures
the improvement in utility (e.g., test accuracy) when the i-th
example is added to the predecessor set Pπ

i containing all
training examples j preceding i in π.

The wide adoption of SV is often justified through its
fairness axiomatic properties (recalled in Sec. 2). In data
valuation, SV is desirable as it ensures that any two training
example that improves the ML model performance equally
when added to any data subset (i.e., all marginal contribu-
tions are equal) are assigned the same value (known as sym-
metry). However, a key downside of SV is that the exact
calculation of ϕi in Equ. (1) has exponential time complex-
ity and is intractable when valuing more than hundreds of
training examples (Ghorbani and Zou 2019; Jia et al. 2019).
Existing works address this downside by viewing the SV
definition in Equ. (1) as an expectation over the uniform
distribution U over Π, ϕi = Eπ∼U [σi(π)], and applying
Monte Carlo (MC) approximation (Castro, Gómez, and Te-
jada 2009) with mi randomly sampled permutations, thus
ϕi ≈ φi := 1/mi

∑mi

t=1 σi(π
t), πt ∼ U (Ghorbani and Zou

2019; Jia et al. 2019; Song, Tong, and Wei 2019).
However, this approximation creates an important issue —

(i) do the fairness axioms that justify the use of Shaplay value
still hold after approximation (Sundararajan and Najmi 2020;
Rozemberczki et al. 2022)? The answer is unfortunately no
as we empirically demonstrate that the symmetry axiom does
not hold after approximations in Fig. 2. For two identical
training examples, their (approximated) SVs used in data
pricing are not guaranteed to be equal. We address this unre-
solved important issue by proposing the notion of probably
approximate Shapley fairness for SV estimates φi, for every
i ∈ N . As the original fairness axioms are too restrictive, in
Sec. 3, we relax the fairness axioms to approximate fairness
and consider how they can be satisfied with high probability.
We introduce a fidelity score (FS) to measure the approxima-
tion quality of φi w.r.t. ϕi for each example i and provide
a fairness guarantee dependent on the worst/lowest fidelity
score across all training examples.

In data valuation, computing the marginal contribution of
an i ∈ N in any sampled permutation is expensive as it in-
volves training model(s). (ii) How do we achieve probably
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approximate Shapley fairness with the lowest budget (number
of samples) of marginal contribution evaluations? While it is
difficult to achieve the highest approximate fairness possible,
we show that we can instead achieve a high fairness guar-
antee (i.e., a lower bound to probably approximate Shapley
fairness) via the insight that the budget need not be equally
spent on all training examples. For example, if the marginal
contribution of example i, σi(π

t) in many sampled permuta-
tions are constant, we should instead evaluate that of example
j with widely varying σj(π

t) sampled so far. Our method
may use a different number of marginal contribution sam-
ples, mi, for each example i and greedily improve the current
worst fidelity score across all training examples.

Lastly, to improve the fidelity score, we novelly use pre-
vious samples, i.e., evaluated marginal contribution results,
to influence and guide the current sampling of permutations.
In existing MC methods (Owen 1972; Okhrati and Lipani
2020; Mitchell et al. 2022) the sampling distribution that gen-
erates π is pre-determined and fixed across iterations. In our
work, we use importance sampling to generate π for φi as it
supports using an alternative proposal sampling distribution,
qi(π). For any example i, we constrain permutations π with
predecessor set of equal size to have the same probability
qi(π). The parameters of the sampling distribution qi are ac-
tively updated across iterations and learnt from past results
(i.e., tuples of predecessor set size and marginal contribution)
via maximum likelihood estimation or a Bayesian approach.
By doing so, we reduce the variance of the estimator φi

as compared to standard MC sampling, thus improving the
fidelity scores efficiently and the overall fairness (guarantee).

Our specific contributions are summarized as follows:
• We propose a probably approximate Shapley fairness for

SV estimates and exploit an error-aware fidelity score to
provide a fairness guarantee via a polynomial budget com-
plexity.

• We design greedy selection, which by iteratively prioritis-
ing φi with lowest FS, can obtain the optimal minimum
FS given a fixed total budget m and improve the fairness
guarantee (Proposition 1).

• We derive the optimal categorical distribution (intractable)
for selecting permutations, and obtain an approximation
for active permutation selection. We integrate both greedy
and active selection into a novel greedy active estimation
(GAE) with provably better fairness than MC.

• We empirically verify that GAE outperforms existing meth-
ods in guaranteeing fairness while remaining competitive
in estimation accuracy in training example and dataset
valuations, agent valuation (in CML/FL) and feature attri-
bution with real-world datasets.

2 Preliminaries
Fairness of SV. SV (Equ. (1)) is often adopted (Agarwal,
Dahleh, and Sarkar 2019; Sim et al. 2020; Song, Tong, and
Wei 2019; Xu et al. 2021a; Sim, Xu, and Low 2022) for guar-
anteeing fairness by satisfying several axioms (Chalkiadakis,
Elkind, and Wooldridge 2011):
F1. Nullity: (∀π ∈ Π, σi(π) = 0) =⇒ ϕi = 0.

F2. Symmetry: (∀C ⊆ N \ {i, j}, v(C ∪ {i}) = v(C ∪
{j})) =⇒ ϕi = ϕj .

F3. Strict desirability (Bahir et al. 1966): ∀i ̸= j ∈
N, (∃B ⊆ N \ {i, j}, v(B ∪ {i}) > v(B ∪ {j})) ∧
(∀C ⊆ N \ {i, j}, v(C ∪ {i}) ≥ v(C ∪ {j})) =⇒
ϕi > ϕj .

Nullity means if a training example does not result in any
performance improvement (marginal contribution is 0 to any
permutation), then its value is 0. It ensures offering useless
data does not give any reward (Sim et al. 2020)). Symmetry
ensures identical values for identical training examples. Strict
desirability implies if i gives a larger performance improve-
ment than j in all possible permutations, then i is strictly
more valuable than j. We exclude the efficiency axiom as it
does not suit ML use-cases (Ghorbani and Zou 2019; Bian
et al. 2022; Kwon and Zou 2022),1 and exclude the linearity
(Jia et al. 2019) and monotonicity (Sim et al. 2020) axioms
for fairness analysis as we restrict our consideration to one
utility function v (Bian et al. 2022). Note that the fairness of
exact SV is binary: either satisfying all these axioms or not.

Sampling-based estimations. These methods typically ex-
tend the MC formulation of ϕi ≈ φi := Eπt∼U [σi(πt)] by
changing the sampling distribution of πt. Importantly, in all
these methods, for each sampled permutation πt, a single
marginal contribution σi(πt) is evaluated and used in φi.
Thereafter, we consistently refer to this single evaluation as
expending one budget (i.e., one permutation) and the corre-
sponding marginal contribution σi(πt) as one sample.

Formally, a sampling-based estimation method estimates
ϕi via the expectation of the random variable σi(π) (which
depends on the permutations randomly sampled according
to some distribution q): ϕi ≈ Eq[σi(π)]. Hence, such meth-
ods differ from each other in the distribution q as well as
the selection of entry i ∈ N to evaluate in each iteration.
The estimates φi’s can be independent of each other such as
MC (Castro, Gómez, and Tejada 2009), and stratified sam-
pling (Maleki et al. 2013; Castro et al. 2017), or dependent
such as antithetic Owen method (Owen 1972; Okhrati and
Lipani 2020) and Sobol method (Mitchell et al. 2022). We
provide theoretical results for both scenarios when the esti-
mates φi’s are independent and dependent.

3 Generalised Fairness For Shapley Value
Estimates

3.1 Fairness Axioms For Shapley Value Estimates
We propose the following re-axiomatisation of fairness for
SV estimates (based on axioms F1-F3) using conditional
events, by analysing multiplicative and absolute errors.
A1. Nullity: let EA1

be the (conditional) event that for any
i ∈ N , conditioned on ϕi = 0, |φi| ≤ ϵ2.

A2. Symmetry: let EA2 be the (conditional) event that for all
i ̸= j ∈ N , conditioned on ϕi = ϕj , then |φi − φj | ≤
(ϵ1|ϕi|+ ϵ2) + (ϵ1|ϕj |+ ϵ2).

1Efficiency requires
∑

i ϕi = v(N) which is difficult to verify
in practice for ML (Kwon and Zou 2022); it does not make sense to
“distribute” the voting power in feature attribution (interpretation of
efficiency) to each i (Bian et al. 2022).
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A3. Approximate desirability: let EA3 be the (conditional)
event that for all i ̸= j ∈ N , conditioned on (∃B ⊆
N \ {i, j}, v(B ∪ {i}) > v(B ∪ {j})) ∧ (∀C ⊆ N \
{i, j}, v(C ∪ {i}) ≥ v(C ∪ {j})), then φi − φj >
−(ϵ1|ϕi|+ ϵ2)− (ϵ1|ϕj |+ ϵ2).

Thereafter, satisfying A1-A3 refers to the events EA1-EA3

occurring, respectively. To see A1-A3 generalise the original
axioms F1-F3:2 A1 requires the SV estimate to be small for a
true SV with value 0 (as in F1); A2 requires the SV estimates
for equal SVs be close (generalised from being equal in F2);
A3 requires the ordering of φi, φi for some i, j from F3 to
be preserved up to some error, specifically a multiplicative
error ϵ1 (to account for different |ϕi|) and an absolute error
ϵ2 (to avoid degeneracy from extremely small |ϕi|) where
F3 has no such error term. Intuitively, smaller errors ϵ1, ϵ2
mean φ are “closer” (in fairness) to ϕ. In addition, the ratio
ξ ≡ ϵ2/ϵ1 denotes the tolerance (to be set by user) of relative
(multiplicative) vs. absolute errors where a larger ξ implies a
higher tolerance for absolute error (i.e., favours A1 over A2
& A3) and vice versa. In contrast to existing works that only
consider the concentration results of φi w.r.t. ϕi for each i
(Castro, Gómez, and Tejada 2009; Castro et al. 2017; Maleki
et al. 2013), we additionally consider the interaction between
i, j to define the following:
Definition 1 (Probably Approximate Shapley Fairness).
For fixed ϵ1, ϵ2, and some δ ∈ (0, 1) s.t. φ satisfy A1-A3
jointly w.p. ≥ 1−δ, then we call φ satisfy (ϵ1, ϵ2, δ)-Shapley
fairness.

In Definition 1, φ are probably (w.p. ≥ 1 − δ) approx-
imately (w.r.t. errors ϵ1, ϵ2) Shapley fair. Hence, given the
error requirements ϵ1, ϵ2, a smaller δ means a better fair-
ness guarantee. In particular, ϕ satisfy the optimal (0, 0, 0)-
Shapley fairness. Despite the appeal, analysing existing es-
timators w.r.t. Definition 1 is difficult because most do not
come with a direct variance result (Zhou et al. 2023). The
only expect is the MC method (Castro, Gómez, and Tejada
2009; Maleki et al. 2013) which we analyse in Sec. 4.

3.2 Fairness Guarantee Via The Fidelity Score Of
Shapley Value Estimates

Inspired by the concept of signal-to-noise ratio (SNR) widely
adopted in optics (de Boer et al. 2003) and imaging (Rose
2012), we design a metric for the variation of φi, named
fidelity score, expressed in Definition 2.
Definition 2 (Fidelity Score). The fidelity score (FS) of
an (unbiased) SV estimate φi for ϕi is defined as fi ≡
FS(φi, ϵ1, ϵ2) := (|ϕi| + ϵ2/ϵ1)

2/V[φi] where V[φi] is the
variance of φi.3

The FS exactly matches the SNR in φi when ϵ2 = 0.4
A higher fi implies a more accurate φi. fi is higher when
the variance V[φi] is small. This occurs when the marginal
contributions, σi(π), are close for all permutations π ∈ Π or

2An equivalent formulation for F1-F3 using conditional events
are in (Zhou et al. 2023).

3Our implementation estimates |ϕi| and V[φi] to obtain fi.
4For a fixed FS, an example i with a larger SV (signal) can

contain more noise.

when the number of samples mi used to compute φi is large.
As mi → ∞, V[φi] → 0 and fi → ∞. Additionally, we
introduce an error-aware term ξ := ϵ2/ϵ1 in the FS numerator
to better capture estimation errors and allow examples with
SV of 0 to have different FSs.

Moreover, we empirically verify that fi is a good reflection
of the approximation quality and analyze the impact of ξ. For
the former, we compared fi vs. absolute percentage error
(APE) of φi := |(φi − ϕi)/ϕi|.5 Fig. 1 shows the negative
correlation between FS (fi) and estimation error (APE) (note
that we plot APE−0.5). This will justify our proposal to prior-
itize improving the estimate φi with the lowest fi in Sec 4.1.
For the latter, we compare the correlation between FS, fi and
the inverse estimation error, APE−0.5, for different values of
ξ in Tab. 1 and find that ξ = 1e-3 leads to a strong positive
correlation and is a sweet spot (second best in both settings).

Figure 1: Average (standard error) of fi,APE−0.5 over 20
trials (sorted in increasing order of APE−0.5 of 50 training
examples) with ξ = 1e-3. Left (right) is logistic regression
(k-nearest neighbors) using breast cancer (MNIST) dataset.

ξ breast cancer (logistic) diabetes (ridge)

1e-5 6.89e-01 (1.41e-02) 5.49e-01 (2.24e-02)
1e-4 6.89e-01 (1.41e-02) 5.48e-01 (2.24e-02)
1e-3 6.78e-01 (1.50e-02) 5.53e-01 (2.20e-02)
1e-2 -1.94e-01 (2.59e-02) 5.67e-01 (2.32e-02)
1e-1 -1.47e-01 (2.60e-03) 5.00e-01 (2.55e-02)

Table 1: Spearman coefficient between fi and APE−0.5. Av-
erage (standard error) over 20 independent trials. Higher is
better.

Definition 2 allows us to leverage the Chebyshev’s inequal-
ity to derive a fairness guarantee, through the minimum FS
f := mini∈N fi.

Proposition 1. φ satisfy (ϵ1, ϵ1ξ, δ)-Shapley fairness where
δ = 1−(1−1/(ϵ21f))

n if all φi’s are independent; otherwise
δ = n/(ϵ21f).

Proposition 1 (its proof is in (Zhou et al. 2023)) formalises
the effects of the variations in φ in satisfying probably ap-

5We fit a learner on 50 randomly selected training examples
from breast cancer (Street 1995) and MNIST (LeCun et al. 1990)
(diabetes (Efron et al. 2004)) datasets and set test accuracy (negative
mean squared error) as v using data Shapley (Ghorbani and Zou
2019) with mi = 50. fi is approximated using sample evaluations.
Additional details and results are in (Zhou et al. 2023).
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proximate Shapley fairness where a larger minimum varia-
tion (i.e., f ) results in larger δ, hence lower probability of φ
satisfying the fairness axioms. To see whether φi’s are inde-
pendent, it is equivalent to checking whether any permutation
sampled is used for estimating multiple φi’s (proof in (Zhou
et al. 2023)).

The fidelity score, fi, is sensitive to the number of sampled
permutations and marginal contributions, mi, as the variance
of the SV estimator uses mi independent samples to produce
V[φi] = V[σi(π)]/mi. Therefore, we define an insensitive
quantity, the invariability of i, ri, as the FS with only one
sample of π. Hence, ri ∝ 1/V[σi(π)] and here π ∼ U .
A higher ri implies that i-th marginal contribution is more
invariable across different permutations. The fidelity score
is product of the invariability and number of samples, i.e.,
fi = miri, used in proving the following corollary.
Corollary 1. Using the notations in Proposition 1, the
minimum total budget m =

∑
i∈N mi needed to satisfy

(ϵ1, ϵ1ξ, δ)-Shapley fairness is at most O(nϵ−2
1 (1 − (1 −

δ)1/n)−1) if φi’s are independent; and O(n2ϵ−2
1 δ−1) o/w.

The budget complexity is an upper bound in a best/ideal
case in the sense that our derivation (in (Zhou et al. 2023))
uses ri which cannot be observed in practice. While it is
not shown to be tight, our O(n) budget complexity for the
independent scenario is linear in terms of the number of
training examples, and the O(n2) budget complexity for the
dependent scenario seems necessary for the O(n2) pairwise
interactions between φi’s. Sec. 4 describes an estimation
method that runs in the budget complexity upper bound given
in Corollary 1.

4 Fairness via Greedy Active Estimation
To achieve probably approximate Shapley fairness with the
lowest budget (number of samples) of marginal contribution
evaluations, we propose a novel greedy active estimation
(GAE) consisting of two core components - greedy selection
and importance sampling. The first component efficiently
split the training budget across examples while the second
component influence and guide the sampling of permutations
and reduce the variance V[φi] for each example i. In this
section, we outline these components and show that they
improve the minimum fidelity scores, f . The details and full
pseudo-code of the algorithm is given in (Zhou et al. 2023).

4.1 Greedy Selection Using Pigou-Dalton
From Proposition 1, we can observe that a larger f decreases
the probability of unfairness. Hence, to efficiently achieve
probably approximate fairness, we should maximize f by
improving the FS of the training example with the current
lowest fi. Our greedy method is outlined in Proposition 2
and formally proven in (Zhou et al. 2023).
Proposition 2 (Informal). Given the constraint of evaluating
a total of m marginal contributions for all j ∈ N to its prede-
cessor set when the permutations are sampled from a fixed
distribution q (e.g., the uniform distribution). Then, the mini-
mum FS f is maximised by (iteratively) greedily selecting
and evaluating a marginal contribution of i = argminj∈N fj ,
until m is exhausted.

One direct implication is that greedy selection outperforms
equally allocating the budget m among all N (i.e., mi =
m/n), which is used by existing methods (Sec. 2). Greedy
selection will use a lower budget mi on a training example
i with higher invariability ri (lower variance in marginal
contribution across permutations) to meet the same threshold
f . The budget will be mainly devoted to training examples
with lower invariability and higher variance instead.

Moreover, improving f across all i ∈ N is in line with
the Pigou-Dalton principle (PDP) (Dalton 1920): Suppose
we have two divisions of the budget that result in two sets
of FSs denoted by f ,f ′ ∈ Rn respectively. PDP prefers f
to f ′ if ∃i, j ∈ N s.t., (a) ∀k ∈ N \ {i, j}, fk = f ′

k and (b)
fi+ fj = f ′

i + f ′
j and (c) |fi− fj | < |f ′

i − f ′
j |. PDP favors a

division of the budget that leads to more equitable distribution
of FSs. For SV estimation, it means we are approximately
equally sure about all the estimates of the training examples,
which can improve the effectiveness of identifying valuable
training examples for active learning (Ghorbani, Zou, and
Esteva 2021) (Fig. 3) or the potentially noisy/adversarial
ones (Ghorbani and Zou 2019) (see results in (Zhou et al.
2023)). Theoretically, an inequitable distribution of FSs with
some training examples with significantly lower fi will have
a worse fairness guarantee (Proposition 1). We show that
greedy selection satisfies PDP in (Zhou et al. 2023).

Remark. Although greedy selection maximizes the min-
imums FS, f , it is not guaranteed to achieve approximate
Shapley fairness with the highest probability as the proba-
bility bound in Proposition 1 is not tight (e.g., due to the
application of union bound in derivation). Nevertheless, in
Sec. 5, we empirically demonstrate that greedy selection
indeed outperforms other existing methods in achieving prob-
ably approximate fairness. It is an appealing future direction
to further improve the analysis and provide a tight bound for
Proposition 1.

4.2 Active Permutation Selection Via Importance
Sampling

To improve the fidelity scores in Definition 2, our
GAE method uses importance sampling to reduce
V[φi] for every training example i by setting φi :=
1/mi

∑mi

t=1 σi(π
t)/(qi(π

t)n!), πt ∼ qi. Here, qi is our pro-
posal distribution over set of all permutations Π that as-
signs probability qi(π) to permutation π. Following exist-
ing works (Castro et al. 2017; Ghorbani, Kim, and Zou
2020), we encode the assumption that any permutation,
π, with the same cardinality for the predecessor set of i,
Pπ
i , should be assigned equal sampling probability. Hence

qi(π) ∝ q′i(|Pπ
i |) where the function q′i maps the predeces-

sor’s cardinality to the sampling probability. We derive the
optimal (but intractable) distribution q∗i (π) ∝ q′∗i (|Pπ

i |) ∝
(Eπ∼U(|Pπ

i |)[σ(π)
2])0.5 (proof in (Zhou et al. 2023)) and ap-

proximate it with a “learnable” q′i. Specifically, we use a cate-
gorical distribution over the support {0, . . . , n− 1} as q′i and
learn its parameters through maximum likelihood estimation
(MLE) on tuples of predecessor set size and marginal con-
tribution, with bootstrapping (i.e., sampling a small amount
of permutations using MC, detailed in (Zhou et al. 2023)).
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This active selection leads to both theoretical (Proposition 3)
and empirical improvements (see Sec. 5), whilst ensuring
E[φi] = ϕi (Zhou et al. 2023).
Proposition 3. For a fixed budget m, denote the minimum FS
achieved by greedy selection and active importance sampling,
greedy selection only (with uniform sampling), and uniform
MC sampling as f

GAE
, f

greedy
and f

MC
, respectively. Then,

GAE outperforms the other methods as

f
GAE

≥ f
greedy

≥ f
MC

.

Furthermore, the minimum FSs (f
GAE

, f
greedy

) are equal
iff (a) ∀i ∈ N,Vπ∼q∗i

[σi(π)/(q
∗
i (π)n!)] = V[σi(π)]

and the minimum FSs (f
greedy

, f
MC

) are equal iff (b)
every i ∈ N has the same invariability w.r.t. q∗i ,
ri,q∗i := (|ϕi|+ ξ)2/Vπ∼q∗i

[σi(π)/(q
∗
i (π)n!)].

6

The proof is in (Zhou et al. 2023). In practice, equality
conditions (a) and (b) are unlikely to hold. (a) only holds
when our cardinality assumption (i-th marginal contribution
to predecessor set of the same cardinality are similar) is
wrong and unhelpful. A necessary but unrealistic condition
for (b) is that for two data points i, j with the same SV, their
marginal contributions, i.e., the set {σi(π)|π ∈ Π}, must be
equal.

Regularising importance sampling with uniform prior.
Proposition 3 requires the cardinality assumption so that the
importance sampling approach (using q′i which corresponds
to a qi) is effective by ensuring the derived qi is close to
the theoretical optimal q∗i . However, in practice, there are
situations where using the uniform distribution U performs
better than qi obtained via learning q′i using the cardinality
assumption. First, if the marginal contributions on the same
cardinality vary significantly (i.e., the cardinality assumption
does not hold), then the approximation using qi is inaccurate.
Second, if the marginal contributions over different cardi-
nalities vary minimally, then importance sampling has little
benefit as the marginal contributions are approximately equal.
Interestingly, in both cases, using U (treating all cardinali-
ties uniformly) is the mitigation because it avoids using the
incorrect inductive bias (i.e., the cardinality assumption).

Therefore, to incorporate U , we regularise the learning
of q′i with a uniform Dirichlet prior. Specifically, from the
MLE parameters w ∈ △(n) of q′∗i , i ∈ N obtained via boot-
strapping,7 and a uniform/flat Dirichet prior parameterised
by (α + 1)1n, α ≥ 0, we can obtain the maximum a poste-
riori (MAP) estimate as nw + (α+ 1)1n (more details and
derivations in (Zhou et al. 2023)). With this, we unify the
frequentist approach of learning q′∗i ’s parameters via purely
MLE and the Bayesian approach of incorporating both like-
lihood and prior belief with α controlling how strong our
prior belief is. Specifically, when α = 0, q′i reduces to MLE
and as α → ∞, q′i tends to the uniform distribution over
cardinality (due to the uniform Dirichlet prior) and thus the

6As before, the invariability is the FS when using only one
sample, but the definition is updated to match the redefined φi.

7△(n) denotes the probability simplex of dimension n− 1 and
w is derived in (Zhou et al. 2023).

corresponding qi tends to U . In other words, if the cardinality
assumption is satisfied (not satisfied), we expect the learned
q′i with a small (large) α to perform better (Sec. 5).

5 Experiments
We empirically verify that our proposed method can ef-
fectively mitigate the adverse situation described in intro-
duction — the violation of the original symmetry axiom
and its negative consequences (e.g., identical data are val-
ued/priced very differently). We further compare GAE’s
performance w.r.t. other axioms and PDP, and in different
scenarios with real-world datasets against existing meth-
ods. We provide the complete details on setting, implemen-
tation and experimental results in (Zhou et al. 2023) and
the code is available at https://github.com/BobbyZhouZijian/
ProbablyApproximateShapleyFairness.

Specific problem scenarios and comparison baselines.
As mentioned in Sec. 2, our method is general, so we empir-
ically investigate several specific problem scenarios in ML:
P1. Data point valuation quantifies the relative effects of each
training example in improving the learning performance (to
remove noisy training examples or actively collect more valu-
able training examples) (Bian et al. 2022; Ghorbani, Kim,
and Zou 2020; Ghorbani and Zou 2019; Jia et al. 2019; Jia
et al. 2019; Kwon and Zou 2022). P2. Dataset valuation aims
to provide value of a dataset among several datasets (e.g., in a
data marketplace) (Agarwal, Dahleh, and Sarkar 2019; Ohri-
menko, Tople, and Tschiatschek 2019; Xu et al. 2021b). P3.
Agent valuation in the CML/FL setting determines the con-
tributions of the agents to design their compensations (Sim
et al. 2020; Song, Tong, and Wei 2019; Wang et al. 2020; Xu
et al. 2021a). P4. Feature attribution studies the relative im-
portance of features in a model’s predictions (Covert and Lee
2021; Lundberg and Lee 2017). We investigate P1. in detail
in Sec. 5.1 and P2. P3. and P4. together in Sec. 5.2. We com-
pare with the following estimation methods (as baselines):
MC (Castro, Gómez, and Tejada 2009), stratified sampling
(Castro et al. 2017; Maleki et al. 2013), multi-linear exten-
sion (Owen) (Okhrati and Lipani 2020; Owen 1972), Sobol
sequences (Mitchell et al. 2022) and improved KernelSHAP
(kernel) (Covert and Lee 2021).8

5.1 Investigating A1-A3 And PDP Within P1.
Settings. We fit classifiers (e.g., logistic regression) on dif-
ferent datasets, use test accuracy as v (Ghorbani and Zou
2019; Jia et al. 2019), and adopt Data Shapley (Ghorbani and
Zou 2019, Proposition 2.1) as the SV definition. We randomly
select 50 training examples from a dataset and duplicate each
once (i.e., a total of n = 100 training examples). Following
Sec. 3, we set ξ = 1e-3. For bootstrapping (included for all
baselines), we uniformly randomly select 20 permutations
and evaluate the marginal contributions for each i. We set
a budget m = 2000 for each baseline. As the true ϕ are

8We follow (Covert and Lee 2021) as it provides an unbiased
estimator where the original estimator (Lundberg and Lee 2017) is
only provably consistent and empirically shown to be less efficient
(Covert and Lee 2021).
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intractable for n = 100, ϕ is approximated via MC with sig-
nificantly larger budget (200 bootstrapping permutations and
m = 30000, averaged over 10 independent trials) as ground
truth (in order to evaluate estimation errors) (Jia et al. 2019).

Effect of f on symmetry A2. Proposition 1 implies a
higher f leads to a better fairness guarantee. We specifically
investigate the effect of f in mitigating mis-estimations of
identical training examples and directly verify A2. We con-
sider three evaluation metrics: lowest FS (i.e., f ); the propor-
tion of duplicate pairs i, i′ with estimates having a deviation
larger than a threshold t, i.e., |φi − φi′ | > t = ϵ1|ϕi|+ ξϵ1
(as in A2); and the (log of) sum of the deviation ratio
ρi,i′ := max(φi/φi′ , φi′/φi) over all i, i′ pairs. In Fig. 2a,c,
the f of our methods increases (improves) as the number of
samples, m, increases. However, the f of all baseline meth-
ods are stagnated close to 0. Thus, as expected, our method
significantly outperforms the baselines in obtaining a high f .
As predicted by Proposition 1, this results in a lower probabil-
ity and extent of fairness. As compared to baseline methods,
our methods consistently have a lower proportion of identical
examples that do not satisfy symmetry (A2) (Fig. 2b) and
smaller deviation ratio of the estimated SV (Fig. 2d).

(a) f vs. m (b) A2 violation (%) vs. ϵ1

(c) f vs. m (d) log
∑

(i,i′) ρi,i′

Figure 2: (a-b) and (c-d) plot results from using logistic
regression on the synthetic Gaussian (Kwon and Zou 2022)
and Covertype (Blackard 1998) datasets, respectively, using
various baseline methods and ours. In (a,c), higher f is better
while in (b,d), lower values are better. The intervals show the
standard error of 10 independent trials.

Verifying nullity A1 and Pigou Dalton Principle. In prac-
tice, A1 is rarely applicable (i.e., ∀π, σi(π) = 0), so we in-
stead investigate a more likely scenario: |ϕi| is very small for
some i, because the training example i has a minimal impact
during training (e.g., i is redundant). We randomly draw 20
training examples from the breast cancer dataset (Street 1995)
to fit a support vector machine classifier (SVC). To verify
A1, we standardize ϕ and φ (i.e., ϕ⊤1n = φ⊤1n = 1) and
calculate ϵabs :=

∑
i:|ϕi|≤0.01 |φi−ϕi|. As PDP is difficult to

Figure 3: Accuracy of logistic regression adding (removing)
training examples generated from Gaussian distribution with
highest (lowest) φi in left (right). Bootstrapping with 20
permutations and m = 2000, α = 5 for our method. Average
(standard errors in shaded color) over 10 independent trials.
KernelSHAP does not give clear trends in both plots because
its estimates are not very accurate. Therefore we omit it here.
A more detailed plot which involves KernelSHAP and other
variants of our methods is provided in (Zhou et al. 2023).

verify directly but it satisfies the Nash social welfare (NSW)
(de Clippel 2010; Kaneko and Nakamura 1979), we use the
(negative log of) NSW on standardized f (i.e., f⊤1n = n)
NL NSW := − log

∏
i∈N fi (lower indicates PDP is better

satisfied). Tab. 2 shows our method obtains lowest estimation
errors on (nearly) null training examples and satisfies PDP
the best.

baselines ϵabs NL NSW

MC 2.12e-02 (2.75e-03) 14.6 (5.12e-01)
Owen 6.33e-02 (4.04e-03) 18.2 (7.10e-01)
Sobol 6.28e-02 (5.64e-03) 11.6 (6.24e-01)
stratified 2.89e-02 (5.84e-03) 14.0 (7.46e-01)
kernel 6.44e-01 (1.15e-01) 21.4 (1.48)

Ours (α = 0) 1.72e-02 (3.50e-03) 2.24 (7.40e-01)
Ours (α = 2) 1.61e-02 (4.65e-03) 2.57 (5.28e-01)
Ours (α = 5) 1.42e-02 (4.00e-03) 2.55 (5.51e-01)
Ours (α = 100) 2.13e-02 (5.95e-03) 3.48 (5.61e-01)

Table 2: Average (standard errors) of error and NL NSW over
10 independent trials.

Verifying approximate desirability A3. For A3, we ver-
ify whether the valuable training examples have high φi by
adding (removing) training examples according to highest
(lowest) φi (Ghorbani and Zou 2019; Kwon and Zou 2022)
(Fig. 3) and via noisy label detections (Jia et al. 2019) (see
results in (Zhou et al. 2023)). Fig. 3 left (right) shows our
method is effective in identifying the most (least) valuable
training examples to add (remove).

5.2 Generalising To Other Scenarios
We examine the estimation accuracy, A3, and PDP within
P2., P3. and P4..9 For P2. we adopt robust volume SV (Xu

9We exclude P1. and P2. because they are less likely to be
applicable in these scenarios.
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baselines MAPE MSE Ninv ϵinv NL NSW

MC 3.87e-02 (7.9e-03) 2.70e-03 (7.9e-04) 3.60 (1.33) 4.58 (0.82) 1.72e-02 (4.6e-03)
Owen 3.06e-02 (6.7e-03) 1.60e-03 (5.2e-04) 4.00 (1.41) 3.50 (0.76) 1.31e-02 (3.6e-03)
Sobol 6.75e-02 (3.4e-03) 9.62e-03 (1.5e-03) 4.80 (1.20) 7.97 (0.56) 7.46e-02 (1.3e-02)
stratified 4.46e-02 (8.3e-03) 3.30e-03 (8.3e-04) 4.40 (1.17) 5.17 (0.87) 1.72e-02 (5.9e-03)
kernel 0.10 (2.0e-02) 1.37e-02 (3.7e-03) 8.80 (2.15) 1.09e+01 (2.02) 3.64 (0.46)

Ours (α = 0) 0.10 (1.6e-02) 2.15e-02 (8.0e-03) 1.08e+01 (2.24) 1.18e+01 (1.85) 2.60 (0.88)
Ours (α = 2) 2.30e-02 (2.5e-03) 7.60e-04 (1.7e-04) 2.80 (1.02) 2.50 (0.29) 3.40e-04 (9.0e-05)
Ours (α = 5) 2.14e-02 (3.1e-03) 6.80e-04 (1.7e-04) 1.20 (0.49) 2.34 (0.31) 9.90e-04 (9.0e-05)
Ours (α = 100) 2.40e-02 (2.9e-03) 9.90e-04 (2.8e-04) 2.40 (0.75) 2.77 (0.42) 6.91e-03 (2.4e-03)

Table 3: Evaluation of φi within P2. using credit card dataset with n = 10 data providers who each have a randomly sub-sampled
dataset containing 100 training examples (Xu et al. 2021b).

et al. 2021b, Definition 3) (RVSV) and several real-world
datasets for linear regression including used-car price pre-
diction (Aditya 2019) and credit card fraud detection (Dal
Pozzolo et al. 2014) where n data providers each owning a
dataset (to estimate its RVSV). For P3. we consider (Sim
et al. 2020, Equation 1) (CML) and hotel reviews sentiment
prediction (Alam, Ryu, and Lee 2016) and Uber-lyft rides
price prediction (BM 2018); in addition, we also consider
(Wang et al. 2020, Definition 1) (FL) using two image recog-
nition tasks (MNIST (LeCun et al. 1990) and CIFAR-10
(Krizhevsky, Sutskever, and Hinton 2012)) and two natural
language processing tasks (movie reviews (Pang and Lee
2005) and Stanford Sentiment Treebank-5 (Kim 2014)). We
partition the original dataset into n subsets, each owned by
an agent i in FL/CML and we estimate each agent’s contri-
bution via the respective SV definitions. For P4. we follow
(Lundberg and Lee 2017, Theorem 1) on several datasets in-
cluding adult income (Kohavi and Becker 1996), iris (Fisher
1988), wine (Forina et al. 1991), and covertype (Blackard
1998) classification with different ML algorithms including
kNN, logistic regression, SVM, and multi-layer perceptron
(MLP). To ensure the experiments complete within reason-
able time, we perform principal component analysis to obtain
7 principal components/features for computing ϕ.10 For hy-
perparameters, since the largest n among these scenarios is
7, we set the budget m = 1000 and the bootstrapping of 300
evaluations (a total of 1300 evaluations for each baseline).
We set ξ = 1e-3 and vary α ∈ {0, 2, 5, 100} where 100 simu-
lates α → ∞. Additional experimental details (datasets, ML
models etc) are in (Zhou et al. 2023).

Evaluation and results. We examine the mean squared
error (MSE) and mean absolute percentage error (MAPE)
between φ and ϕ for estimation accuracy, inversion counts
Ninv and errors ϵinv for A3 and NL NSW (defined previously)
for PDP. The inversion count Ninv :=

∑
i̸=j∈N 1(ϕi > ϕj ∩

φi < φj)+ 1(ϕi < ϕj ∩φi > φj) is the number of inverted
pairings in φ while ϵinv :=

∑
i̸=j∈N |ϕi−ϕj − (φi−φj)| is

10We find if n ≥ 8 features, the experiments take exceedingly
long to complete due to the exponential complexity compounded
further with the costly utility computation (Lundberg and Lee 2017,
Equation 10).

the sum of absolute errors (w.r.t. the true difference ϕi − ϕj).
We present one set of average (and standard errors) over 5
repeated trials for P2. in Tab. 3 (the results for P3. and P4.
and additional results are in (Zhou et al. 2023)). Overall, our
method performs the best. While most methods perform com-
petitively to ours w.r.t. MAPE, they are often worse (than
ours) by an order of magnitude w.r.t. MSE. This is because
our method explicitly addresses both the multiplicative and
absolute errors (via ξ = ϵ2/ϵ1 in FS). Specifically, reducing
absolute errors when |ϕi| is large (e.g., RVSV for P2. or
(Sim et al. 2020, Equation 1) for P3. as both use the determi-
nant of a large data matrix) is effective in reducing MSE. In
our experiments, we find kernelSHAP underperforms others,
which may be attributed to it having a larger (co-)variance,11

empirically verified in (Covert and Lee 2021).

6 Discussion And Conclusion
We propose probably approximate Shapley fairness via a
re-axiomatisation of Shapley fairness and subsequently ex-
ploit an error-aware fidelity score (FS) to provide a fairness
guarantee with a polynomial (in n) budget complexity. We
identify that jointly considering multiplicative and absolute
errors (via their ratio ξ) is crucial in the quality of the fair-
ness guarantee (which existing works did not do). Through
analysing the effect of ξ on FS (used in our algorithm), we
empirically find a suitable value for ξ. To achieve the fair-
ness guarantee, we propose a novel greedy active estimation
that integrates a greedy selection (which achieves a budget
optimality) and active (permutation) selection via importance
sampling. We identify that importance sampling can lead to
poorer performance in practice as the necessary cardinality
assumption may not be satisfied. To mitigate this, we describe
a simple (via a single coefficient α) regularisation using a
uniform Dirichlet prior, that interestingly unifies the frequen-
tist and Bayesian approaches (its effectiveness is empirically
verified). For future work, it is appealing to explore whether
there exists a biased estimator with much lower variance to
provide a similar/better fairness guarantee with a competitive
budget complexity.

11It is a co-variance matrix because kernelSHAP estimates the
vector φ by solving a penalised regression.
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