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Abstract
This paper explores reward mechanisms for a query incentive
network in which agents seek information from social net-
works. In a query tree issued by the task owner, each agent
is rewarded by the owner for contributing to the solution,
for instance, solving the task or inviting others to solve it.
The reward mechanism determines the reward for each agent
and motivates all agents to propagate and report their in-
formation truthfully. In particular, the reward cannot exceed
the budget set by the task owner. However, our impossibil-
ity results demonstrate that a reward mechanism cannot si-
multaneously achieve Sybil-proof (agents benefit from ma-
nipulating multiple fake identities), collusion-proof (multiple
agents pretend as a single agent to improve the reward), and
other essential properties. In order to address these issues,
we propose two novel reward mechanisms. The first mecha-
nism achieves Sybil-proof and collusion-proof, respectively;
the second mechanism sacrifices Sybil-proof to achieve the
approximate versions of Sybil-proof and collusion-proof. Ad-
ditionally, we show experimentally that our second reward
mechanism outperforms the existing ones.

Introduction
There is an old proverb that states, ”Many hands make light
work.” In other words, the more people involved in a task,
the quicker and easier it will be completed. With the grow-
ing popularity of social media, many online platforms (e.g.,
Quora and Stack Overflow) provide the opportunity for peo-
ple to ask a question online. As opposed to traditional search
engines (e.g., Google and Bing), Q&A platforms allow users
to post questions and have them answered by other users
rather than a central system that provides several related so-
lutions. A major advantage of online Q&A platforms is that
the task is handled by humans, who are capable of solving
more rare questions. Additionally, it is unnecessary for the
questioner to simplify the question in order to make it un-
derstandable by a machine.

An important open question in such query models is de-
veloping a reward mechanism that ensures the query is prop-
agated successfully and the solution is provided if one ex-
ists. Many researchers have discussed and applied such a re-
ward mechanism in various fields, such as peer-to-peer file-
sharing systems (Golle et al. 2001), blockchains (Brünjes
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et al. 2020), and marketing (Drucker and Fleischer 2012)
and task collaboration (Shapley 1952).

In this paper, we mainly focus on reward mechanisms for
the answer querying system, in which only one agent is cho-
sen to solve the problem. When implementing such reward
mechanisms, it is critical to understand how to motivate
agents to spread the information successfully and answer
the question honestly. In addition, the total reward should
not exceed the budget of the task owner (questioner). Apart
from these basic requirements, there are two other signifi-
cant challenges to be overcome.

The first challenge is Sybil-proof, avoiding agents manip-
ulating multiple false identities to improve the overall re-
ward. For example, an agent who knows the solution can
create multiple accounts, and his other accounts can invite
him to do so. As the task owner does not know the infor-
mation of each participant, all these accounts are rewarded.
Moreover, Sybil attacks not only increase the monetary costs
of the questioner but also delay the time it takes to get a so-
lution. This issue has been discussed in various literature,
including (Babaioff et al. 2012; Drucker and Fleischer 2012;
Chen et al. 2013; Lv and Moscibroda 2016; Zhang, Zhang,
and Zhao 2021).

The second challenge is collusion-proof, preventing
agents from colluding with each other to gain more rewards.
For instance, an agent who knows the solution could report
it to his parents rather than solve it directly, as such action
may increase the overall reward. Additionally, his parents
can also take the same action. In consequence, the ques-
tioner spends more time solving the problem. A question
of this nature is not well studied in the query incentive net-
work (Nath et al. 2012; Zhang, Zhang, and Zhao 2021), but
has been extensively discussed in other fields, for example,
auction design (Laffont and Martimort 1997; Che and Kim
2006; Marshall and Marx 2007).

However, it is impossible for a reward mechanism to si-
multaneously achieve both Sybil-proof (SP) and collusion-
proof (CP) along with a set of other desirable properties (as
illustrated in Section ). Hence, we not only formally de-
fine these properties but also provide approximate versions
of SP and CP. In this paper, we propose two novel fami-
lies of reward mechanisms that are implementable in domi-
nant strategies. The first mechanism is inspired by a geomet-
ric mechanism (Emek et al. 2011). In addition to the basic
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properties, it also achieves Sybil-proof and collusion-proof,
respectively. The second mechanism sacrifices Sybil-proof
in order to achieve approximate versions of Sybil-proof and
collusion-proof simultaneously. Furthermore, both mecha-
nisms provide a fair allocation/outcome, which is not well-
defined in the query incentive network (Rahwan et al. 2014).
Finally, our numerical experiments indicate that our second
reward mechanism performs better than the existing ones.

Literature Review
Our research contributes to three streams of literature: query
incentive networks, Sybil-proof, and collusion-proof. Below
is a brief overview of the research areas closest to our own.

The seminal paper (Kleinberg and Raghavan 2005) was
the first to introduce the query incentive model, which
treated the query network as a simple branching process.
They found that the reward function exhibited threshold
behavior based on the branching parameter b. Apart from
the fixed-payment contracts, (Cebrian et al. 2012) studied
the winning team of the Red Balloon Challenge (Pickard
et al. 2011) and proposed a split contract-based mechanism,
which is robust to agents’ selfishness.

It should be noted that the aforementioned works have
not been examined in the context of Sybil attacks. The idea
of Sybil attacks was first introduced by (Douceur 2002).
(Douceur and Moscibroda 2007) formalized a set of desir-
able properties and proposed the Lottery Tree mechanism,
which is Sybil-proof and motivates agents to join in a P2P
system. (Emek et al. 2011; Drucker and Fleischer 2012)
studied Sybil-proof mechanisms for multi-level marketing
in which agents buy a product and are rewarded for success-
ful referrals. (Babaioff et al. 2012) studied a similar prob-
lem and proposed a reward scheme for the Bitcoin system.
(Lv and Moscibroda 2015, 2016) introduced a reward mech-
anism in crowdsourcing or human tasking systems. (Chen
et al. 2013) proposed a Sybil-proof Mechanism for query
incentive networks with the Nash equilibrium implementa-
tion, while (Zhang, Zhang, and Zhao 2021) considered the
dominant strategy.

As we mentioned before, collusion-proof is not well-
studied in query incentive networks. (Chen et al. 2013) left
it as future work, and (Nath et al. 2012; Zhang, Zhang, and
Zhao 2021) discussed the impossibility of a reward mecha-
nism to achieve Sybil-proof and collusion-proof simultane-
ously. Specifically, (Nath et al. 2012) proposed a collusion-
proof reward mechanism. Many other works such as (Laf-
font and Martimort 1997; Che and Kim 2006; Marshall and
Marx 2007) belong to this category. According to related
studies on auction design, this research area is promising
and deserves further investigation.

Preliminaries and Model
Consider the problem for a task owner (she) r employing
a set of agents to solve the task (e.g., Red-balloon type of
challenges and InnoCentive). Each agent (he) can solve the
job by himself or ask his friends for assistance. Intuitively,
the query process works as follows:

1. The task owner r announces the task and the reward
scheme and propagates the information to her friends.

2. Upon receiving the query, her friends decide whether to
do the task if they can and whether to continue propagat-
ing the query to their friends for assistance.

3. Once the task is solved, the agents are rewarded accord-
ing to the rules specified in Step (1).

Following the query process, a query tree rooted at r is
built; we denote such a tree as Tr = (V,E), where V is
the set of all agents, including the task owner r, and edge
e(i, j) ∈ E means that agent i informs the task to agent j.
We also use the standard tree notions of parent and child in
their natural sense; the parents and children of agent i are
denoted as pi and ci, respectively. Note that an agent i is
reachable from the root r if all his ancestors are in the query
tree Tr and decide to propagate the query. Furthermore, we
assume that both owner and agents have zero cost to inform
others in our main model for analytical brevity.

In such a process, agents are asked to report two pieces of
information, the response to the task respi ∈ {0, 1} (1 for
answering, otherwise, 0) and the set of children ci ⊆ V \ r.
Accordingly, an agent i’s action in the mechanism is defined
as θ′i = (resp′i, c

′
i). Notice that agents cannot propagate the

task to the non-existing child; therefore, c′i ⊆ ci.
Definition 1. Given a report file θ′ of all agents, let the tree
generated from θ′ be Tr(θ

′) = (V ′, E′) ⊆ Tr, where V ′ ∈
V and E′ ⊆ E.

Given the above setting, the task owner aims to design a
reward mechanism that determines how the task is solved
and how the rewards are distributed among the rooted tree
Tr(θ

′). (Note that agents cannot invite those who are al-
ready in the query. Hence, it is a rooted tree rather than
a graph.) Furthermore, the mechanism only rewards agents
who have made a positive contribution. Mathematically, the
formal definition of such a mechanism is defined as follows.
Definition 2. The Reward Mechanism M on the social net-
work is defined by a task allocation path f : Tr → Tr (Tr is
the structure of the tree rooted at r), and a reward function
x = (xi)i∈f(Tr(θ′)), where xi : Θ → R+ and θi ∈ Θ is the
type profile.

In this paper, we assume the task owner r chooses only
one agent to do the task. Such an assumption has no signif-
icant bearing on our results but simplifies analysis and ex-
position. In addition, when there exist multiple agents who
can solve the task, the agent is selected via the shortest path
to the root r. Since creating fake accounts increases the dis-
tance from the root to the solution, to some extent, such a
task allocation rule can limit Sybil attacks (Chen et al. 2013).
Definition 3. Given the agents profile type θ, for each
resp(i) = 1, we define the shortest path from the root r to
agent i as Pi = {r, a1, a2, ..., i}. The task is allocated to the
agent with P = mini Pi, for all resp(i) = 1. If there exist
multiple agents with P , then they are selected randomly.

Properties
In this section, we define a set of important properties that
a reward mechanism M on the social network should sat-
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isfy. All these properties are similar and inspired by the Lot-
tery Tree (Douceur and Moscibroda 2007), the multi-level
marketing (Emek et al. 2011), and query networks (Zhang,
Zhang, and Zhao 2021); some of them are generalized to our
query model.

Formally, we provide the definitions for a mechanism
to be incentive compatible and individually rational. Since
agents are rewarded based on their contributions, agents out
of the path P = f(Tr(θ

′)) are not rewarded. We mainly fo-
cus our study on the agents in the path P and introduce more
strict definitions of IR and IC.
Definition 4. The Reward Mechanism M is
• Profitable Opportunity (PO), if x(θi) > 0,
• Incentive Compatible (IC), if x(θi) ≥ x(θ′i),

for all agents i ∈ P \ r and θi, θ
′
i ∈ Θ.

PO (a.k.a. strongly IR) ensures all agents in the path P are
rewarded by the owner r for participating in the mechanism.
IC promises all these agents to do the task truthfully and
propagate it to all children.

As mentioned before, agents receive rewards for their
contributions to completing a task, which may lead to Sybil
attacks. For example, an agent who knows the answer to
a task could create a fake account and use it to complete
the task, receiving a greater reward than if they had reported
truthfully.
Definition 5. The Reward Mechanism M is λ-Sybil-proof
(λ-SP) (λ ∈ N) if for all agents in the winning path Γw and
λ ≥ 1, it holds that

R(i, n) ≥
λ∑

k=0

R(i+ k, n+ λ). (1)

If λ-Sybil proof holds for all positive integers λ, such a
mechanism is Sybil-proof (SP).

A Sybil-proof (SP) mechanism ensures that any agent in
the path P cannot benefit from pretending to be multiple
agents. Moreover, a mechanism is λ-SP if it can prevent
agents from improving rewards by creating λ Sybil attacks.

On the other hand, since agents are connected to each
other, it may be easier for them to collude together to pre-
tend as a single agent in order to get more rewards from the
owner r. (Nath et al. 2012; Zhang, Zhang, and Zhao 2021)
discuss such an observation in detail. The formal definition
of collusion proof is given as follows.
Definition 6. The Reward Mechanism M is γ-collusion-
proof (γ-CP) (γ ∈ N) if for all agents in the winning path
Γw and γ ≥ 1, it holds that

R(i, n) ≤
γ−1∑
k=0

R(i+ k, n+ γ − 1). (2)

If γ-collusion proof holds for all positive integers γ, such
a mechanism is collusion-proof (CP).

A collusion-proof (CP) mechanism promises that all
agents are worse off from forming a coalition group of any
size. Similarly, a mechanism is γ-CP if agents cannot get
more reward from creating a group with a size γ.

Definition 7. The Reward Mechanism M is budget bal-
anced (BB) if there exists a constant Rmax such that∑

i∈P\r

x(θi) ≤ Rmax,

and strongly BB if
∑

i∈P x(θi) = Rmax.

Budget balance ensures the total reward offered to partic-
ipants never exceeds a budget set by the task owner. This is
important to ensure the feasibility of the reward mechanism
and to promote fairness and sustainability in crowdsourcing
systems.

As discussed in the relevant literature (Cebrian et al.
2012), the reward of an agent i should depend on his child ci
and the corresponding depth i in the path P to credit the in-
direct referrals. For the direct referral, agent i should receive
at least a certain fraction of his child’s reward x(i + 1, n).
Violation of these properties leads to a failure in propagating
the query under certain conditions. Formally, these proper-
ties are defined as follows.
Definition 8. The Reward Mechanism M is ρ−split, if
x(i, n) ≥ ρx(i+ 1, n), for any i ∈ P \ r and 0 < ρ < 1.

Impossibility Theorem
So far, we have defined the set of desirable properties that a
reward mechanism should satisfy. Our new mechanisms are
developed in response to the following impossibility results.

One of the impossibility results suggests that a mecha-
nism cannot satisfy profitable opportunity (PO), Sybil-proof
(SP), and collusion-proof (CP) simultaneously. For exam-
ple, (Nath et al. 2012) sacrificed Sybil-proofness to en-
sure collusion-proofness, whereas (Zhang, Zhang, and Zhao
2021) proposed a Sybil-proof mechanism, which is not
collusion-proof.
Theorem 1. For n ≥ 3, there is no Reward Mechanism that
can achieve PO, SP, and CP simultaneously.

Proof. The proof is similar to those of (Nath et al. 2012;
Zhang, Zhang, and Zhao 2021). Assume there exists a mech-
anism that satisfies all three properties.

If the mechanism is Sybil-proof (Definition 5), consider-
ing for m = 1, we have

x(i, n) ≥ x(i, n+ 1) + x(i+ 1, n+ 1)

≥ x(i, n+ 2) + 2x(i+ 1, n+ 2) + x(i+ 2, n+ 2)
(3)

Meanwhile, if the mechanism is collusion-proof (Definition
6), we derive that

x(i, n) ≤
m=2∑
k=0

x(i+ k, n+m)

= x(i, n+ 2) + x(i+ 1, n+ 2) + x(i+ 2, n+ 2)
(4)

For both Eqs. 3 & 4 to hold, we need x(i+1, n+2) ≤ 0,
which violates violates to the condition of PO (Definition
4).

The following theorem explains how n affects the reward
of the agent who solves the task for an SP (CP) mechanism.
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Theorem 2. If the Reward Mechanism is PO and SP (CP),
then x(n, n) is non-increasing (non-decreasing) in n.

Proof. (PO, SP and x(n, n) is non-increasing) We prove
this by contradiction. Assume the mechanism is PO, SP, and
x(n, n) is increasing in n. Since the mechanism is SP (Def-
inition 5), for any integer λ, we have

x(n, n) ≥
λ∑

k=0

x(n+ k, n+ λ).

Since the mechanism is PO (Definition 4), x(i + k, n +
λ) > 0, for any k ∈ [0, λ]. Therefore, we have x(n, n) >
x(n + λ, n + λ), which contradicts to x(n, n) is increasing
in n.

(PO, CP and x(n, n) is non-decreasing) This can be
proven in a similar way, and details are provided in the full
version.

Tree Dependent Geometric Mechanism
Inspired by the work (Emek et al. 2011) in multi-level mar-
keting, in this section, we generalize a geometric reward
mechanism into our model. Our proposed mechanism, Tree
(Topology) Dependent Geometric Mechanism (TDGM),
achieves Sybil-proof and collusion-proof, respectively.

Mechanism 1 (Tree Dependent Geometric Mechanism).
Given the agents’ report file θ and the corresponding task
allocation path P , the reward policy of the TDGM is defined
as

x(i, n) = αn−iβ, (5)

for all i ∈ P \ r, 0 < α < 1, and 0 < β ≤ 1−α
1−αnRmax.

The understanding of TDGM is intuitive. Each agent is
rewarded according to their contribution to the task. Contri-
butions can be divided into two categories: inviting others
or solving the issue. For agent n who solves the task is re-
warded β (we will characterize β later). For ancestors of
agent n, they receive a certain fraction α of the rewards of
their children.

Theorem 3. TDGM satisfies IC, PO, BB, and α−split.

Proof. (IC) We start our proof from IC. Considering the
agent n who solves the task, if he does not provide the solu-
tion, he would be either in the solution path P or not. If he
is still in the path P , his reward is αn′−iβ, where n′ > n.
Since α < 1 and n′ > n, αn′−iβ < β (β is the reward if
he solves the task). Moreover, if he is not in the path P ,
he receives nothing from the owner. As a result, agent n
is worse off from misreporting. Similarly, for other agents
i ∈ P \ {r, n}. If these agents do not spread the information
successfully, they may not be in the path P , which leads to
no reward for them.

(PO & α−split) Since 0 < α < 1 and 0 ≤ n − i ≤
n, αn−i > 0. Moreover, 0 < β ≤ 1−α

1−αnRmax, we have
x(i, n) > 0.

(BB) Summarizing all the rewards, we derive that
n∑

i=1

x(i, n) =
n∑

i=1

αn−iβ

= αnβ ·
n∑

i=1

α−i

= αnβ · α
−1(1− α−n)

1− α−1

=
1− αn

1− α
β

Since β ≤ 1−α
1−αnRmax, we have

∑n
i=1 x(i, n) ≤ Rmax.

Theorem 3 reveals that TDGM satisfies most basic prop-
erties discussed in Section .

As our next step, we aim to characterize β and analyze the
mechanism for Sybil-proof and collusion-proof properties.
Referring to Theorem 2, we note that the reward function
of an agent who completes the task should be dependent on
the length of the winning path, denoted by n. Therefore, we
define β as a function of n and the budget, Rmax, such that
β = β(n,Rmax).

Lemma 1. TDGM is SP if β(n,Rmax) follows

β(n,Rmax)− β(n+m,Rmax)
1− αm+1

1− α
≥ 0, (6)

and it is CP if β(n,Rmax) follows

β(n,Rmax)− β(n+m,Rmax)
1− αm+1

1− α
≤ 0, (7)

for any m ∈ N+. Furthermore, 0 < β(n,Rmax) ≤
1−α
1−αnRmax in order to satisfy the Budget Balanced condi-
tion.

Proof. To check the SP and CP of TDGM, we expand∑m
k=0 x(i+ k, n+m) and compare it with x(i, n),

m∑
k=0

x(i+ k, n+m) =
m∑

k=0

αn+m−i−kβ(n+m,Rmax)

= αn+m−iβ(n+m,Rmax)
m∑

k=0

α−k

= αn−i 1− αm+1

1− α
β(n+m,Rmax).

If TDGM is SP (Definition 5), we need x(i, n) ≥∑m
k=0 x(i+ k, n+m). Hence,

αn−iβ(n,Rmax)− αn−i 1− αm+1

1− α
β(n+m,Rmax) ≥ 0

β(n,Rmax)−
1− αm+1

1− α
β(n+m,Rmax) ≥ 0

The condition of CP can be derived in a similar way.
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Lemma 1 characterizes the reward function of the agent
who solves the task in order to satisfy SP and CP, respec-
tively. Furthermore, it supplements the result of Theorem 2
such that no reward mechanism can achieve Sybil-proof and
collusion-proof simultaneously.

Interestingly, the Double Geometric Mechanism (DGM)
(Zhang, Zhang, and Zhao 2021) which is Sybil-proof, is a
sub-class of TDGM, and the δ-Geometric Mechanism (δ-
GEOM) (Nath et al. 2012) which is collusion-proof also be-
longs to a TDGM with a certain condition. The proof can be
found in the full version.

Corollary 1. DGM (Zhang, Zhang, and Zhao 2021) and δ-
GEOM (Nath et al. 2012) belong to a family of TDGM.

Proposition 1. Sybil-proof-TDGM is not collusion-proof,
and collusion-proof-TDGM is not Sybil-proof.

Proof. Assume the task solver creates m Sybil attacks, if the
mechanism is SP and CP simultaneously, then

x(i, n) =
m∑

k=0

x(i+ k, n+m)

αn−iβ(n,Rmax) =

m∑
k=0

αn+m−i−kβ(n+m,Rmax)

β(n,Rmax) = β(n+m,Rmax)
1− αm+1

1− α

β(n,Rmax)

β(n+m,Rmax)
=

1− αm+1

1− α

(SP-TDGM is non-CP) Since TDGM is SP (Lemma 1),
we have

β(n,Rmax)

β(n+m,Rmax)
≥ 1− αm+1

1− α
.

Note that 1−αm+1

1−α > 1 for m > 0, and it is increasing in
m. Hence, x(i, n) >

∑m
k=0 x(i+ k, n+m) for any m > 0.

As a result, SP-TDGM is not CP.
(CP-TDGM is non-SP) Since TDGM is CP, by Theorem

2, we have β(n,Rmax) ≤ β(n+m,Rmax). Hence,

β(n,Rmax)

β(n+m,Rmax)
≤ 1 <

1− αm+1

1− α
,

for any integer m > 1 and 0 < α < 1.
Therefore, x(i, n) <

∑m
k=0 x(i+ k, n+m) for any m >

0.
As a result, CP-TDGM is not SP.

Proposition 1 demonstrates that agents benefit from form-
ing a coalition group under SP-TDGM, while all agents gain
more rewards from applying Sybil attacks under CP-TDGM.

Generalized Contribution Reward Mechanism
Given the impossibility results in Section , a reward mecha-
nism cannot achieve PO, BB, SP, and CP simultaneously.
In Section , we introduce a family of geometric mecha-
nisms which satisfy SP and CP, respectively. In particular,
SP-TDGM is not CP, and CP-TDGM is not SP.

However, the ability to form a collusion group with a size
larger than three is limited since an agent not only needs to
make a deal with their parents and children but also with
their ancestors and descendants. Therefore, we propose a
more practical mechanism that can simultaneously achieve
Sybil-proof and collusion-proof to some extent.
Mechanism 2 (Generalized Contribution Reward Mecha-
nism). Given the agents’ report file θ and the correspond-
ing task allocation path P , the reward policy of GCRM is
defined as

x(i, n) =
αn−i

(1 + α)i
β, (8)

for all i ∈ P \ r, 0 < α < 1 and β = Rmax.
In GCRM, each agent is rewarded according to his con-

tribution to the solution, ( 1
α(1+α) )

i. If 0 < α ≤
√
5−1
2 , the

task solver is considered to contribute the most and also re-
warded the most, while if

√
5−1
2 ≤ α < 1, the agent who is

closest to the task owner is considered to contribute the most
and receives the highest reward.

In this sense, α may be considered as a parameter to con-
trol the contribution between information propagation and
task solution. Moreover, the reward of each agent is normal-
ized by a factor αn, which depends on the length of the path
P .

The following theorem shows that GCRM satisfies the ba-
sic properties IC, PO, and BB without any restrictions. The
proof is similar to that of Theorem 3 and is provided in the
full version.
Theorem 4. GCRM satisfies IC, PO, and BB.

We then analyze the condition of α for GCRM to satisfy
the property of ρ-split.

Lemma 2. GCRM is ρ-split with α ∈ (0,
√
5−1
2 ), where

ρ = α(1 + α) ∈ (0, 1].

Proof. According to the reward function of GCRM (Eq. 8),
we have

x(i, n)

x(i+ 1, n)
=

αn−1

(1+α)i

αn−i−1

(1+α)i+1

= (1 + α)α = ρ

Since 0 < α <
√
5−1
2 , by simple calculation, we derive that

0 < ρ ≤ 1, which follows the definition.

So far, we have shown that GCRM is IC, PO, BB, and
ρ-split under a certain condition. Following then, we study
the performance of GCRM with regards to Sybil-proof and
collusion-proof.
Lemma 3. GCRM is λ∗-Sybil proof, where integer λ∗ > 1.
Furthermore,
• λ∗ increases with α,
• agents maximize their reward by ⌈λ′⌋ Sybil attacks,

where λ′ =
log(

− log(1+α)
α(1+α)(log(α))

)

log(α) log(1+α) , (⌈·⌋ denotes for the near-
est integer function.)

• the reward more than ⌈λ′⌋ Sybil attacks is at most twice
as the original one.
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Proof. We start by proving the mechanism is λ∗-SP, where
λ∗ > 1. According to the reward function of GCRM (Eq.8),
we have

λ∑
k=0

x(i+ k, n+ λ) =
λ∑

k=0

αn+λ−i−k

(1 + α)i+k

=
αn+λ−i

(1 + α)i

λ∑
k=0

1

(α(1 + α))k

= x(i, n)αλ
λ∑

k=0

1

(α(1 + α))k

= x(i, n)
1− αλ+1(1 + α)λ+1

(1 + α)λ − α(1 + α)λ+1

For convenience, hereafter, we denote f(α, λ) =
1−αλ+1(1+α)λ+1

(1+α)λ−α(1+α)λ+1 .
By substituting λ = 1 into f(α, λ), we derive that

f(α, 1) =
1− α2(1 + α)2

(1 + α)1 − α(1 + α)2

=
(1− α(1 + α))(1 + α(1 + α))

(1 + α)(1− α(1 + α))

=
1

1 + α
+ α

Since α ∈ (0, 1), 1
1+α + α ∈ (1, 3

2 ). As a result, x(i, n) <
x(i, n+1)+x(i+1, n+1) is always true for GCRM, which
is never a 1-SP mechanism.

Due to space limitations, the rest of the proof is provided
in full version.

Lemma 4. GCRM is (λ∗ +1)-Sybil-proof and λ∗-collusion
proof.

Proof. As a part of proof of Lemma 3, f(α, λ) decreases
with λ if λ > λ′. In addition, λ∗ is the maximum number
of profitable Sybil attacks, hence, (λ∗ + 1) is the smallest
integer that f(α, λ∗ + 1) ≤ 1.

Then, we derive that
λ∗−1∑
k=0

x(i+ k, n+ λ∗ − 1) = f(α, λ∗)x(i, n)

≥ x(i, n).

By Definition 6, the mechanism is λ∗-CP.

Intuitively, under GCRM, agents always benefit from at
least 1 Sybil attack. Moreover, as α increases, the maximum
number of profitable Sybil attacks and the minimum size of
the profitable group collusion increase. In contrast to CP-
TDGM, under GCRM, there exists an optimal number (λ′)
of Sybil attacks to maximize the reward of each agent, and
the new reward is at most twice the reward without Sybil
attacks.

Despite GCRM can neither prevent Sybil attacks nor col-
lusion, the total reward is upper bounded and decreases with

a sufficiently large number of agents. Hence, the total reward
never exceeds the budget of the questioner.

Lemma 5. The total reward of GCRM maximized with ⌈n′⌋

agents, where n′ =
log(

− log(1+α)
log(α)

)

log(α)+log(1+α) .

As a result, agents have to trade off between manipulat-
ing multiple identities and cooperating with other agents.
For example, creating too many Sybil attacks reduces the
reward. In the meanwhile, forming a large coalition group is
also impractical.

Empirical Evaluations
In this section, we begin by empirically evaluating
the performance of GCRM in terms of Sybil-proofness
and collusion-proofness. Next, we compare GCRM with
TDGM.

Figure 1: The ratio of new reward to original one after sev-
eral Sybil attacks. The line end at λ∗. Note that it is unprof-
itable for (λ∗ + 1) Sybil attacks.

Figure 1 empirically evaluates how λ∗ behaves and how
reward improves after Sybil attacks with different α values
under GCRM. It also complements the result of Lemma 3 by
demonstrating that there exists a λ′ value such that agents
maximize their reward by creating ⌈λ′⌋ Sybil attacks, and
both λ∗ and ⌈λ′⌋ increase as α increases.

Figure 2: The ratio of new reward to the original one
with different collusion size. Black dashed line represents
rewardnew = rewardoriginal.

Similarly, Figure 2 presents an empirical evaluation of
how the individual reward of an agent varies with different
collusion sizes and α under GCRM. The results demonstrate
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that, as α increases, the minimum profitable collusion size
also increases.

We use DGM (Zhang, Zhang, and Zhao 2021) and δ-
GEOM (Nath et al. 2012) to represent SP-TDGM and CP-
TDGM, respectively. However, α has a different meaning
for DGM, δ-GEOM, and GCRM. To keep consistency, we
restrict the parameter ρ to ensure that all three mecha-
nisms are ρ-split (αDGM = ρ

1+ρ , δ = ρ, and αGCRM =
√
1+4ρ−1

2 ).
We begin with analyzing the performance of δ-GEOM

and GCRM on Sybil-proof, which is graphically shown in
Figure 3.

Figure 3: The ratio of new reward to original one after sev-
eral Sybil attacks. Dashed lines represent δ-GEOM. Solid
lines represent GCRM.

As we can see in Figure 3, agents always benefit from
manipulating multiple identities under δ-GEOM. In addi-
tion, the more Sybil attacks they create, the more reward
they gain. However, under GCRM, there exists a λ′ such
that agents maximize their reward by ⌈λ′⌋ Sybil attacks,
and the number of profitable Sybil attacks is upper bounded.
Furthermore, agents under GCRM receive less reward from
Sybil attacks than under δ-GEOM.

Next, we evaluate the performance of DGM and GCRM
on collusion-proof in Figure 4. As shown in Figure 4,
GCRM performs better than DGM on collusion-proof. Re-
gardless of the value of ρ, agents under GCRM receive
less reward for forming a coalition group than agents un-
der DGM. Furthermore, both Figures 3 & 4 supplement the
results of Lemma 3, α (α is proportional to ρ) increases the
minimum collusion size requirement to improve the reward.

As we proved in Theorems 3 & 4, all three mechanisms
are budget balanced. These patterns are depicted in Figure
5. .

Conclusion
This paper studies a reward mechanism for a single solution
task in a social network. We propose two classes of reward
mechanisms to achieve desirable properties, such as PO, IC,
BB, SP, and CP. Nevertheless, our impossibility results sug-
gest that a reward mechanism cannot achieve all properties
simultaneously. In particular, different questioners may con-
sider different properties to be necessary.

Tree Dependent Geometric Mechanism (TDGM) is a
classic geometric mechanism that can achieve Sybil-proof

Figure 4: The ratio of new reward to the original one
with different collusion size. Dashed lines represent DGM.
Solid lines represent GCRM. Black dashed line represents
rewardnew = rewardoriginal.

Figure 5: The ratio of total reward to budget with different
size n and ρ = 0.6.

and collusion-proof, respectively. The second mechanism,
the Generalized Contribution Reward Mechanism (GCRM),
is a more flexible mechanism that sacrifices SP to achieve
the approximate versions of SP and CP simultaneously.
Specifically, GCRM is λ-SP and λ-CP. In other words, the
optimal number of profitable Sybil attacks is limited and
known to the questioner. The questioner adjusts the param-
eter α to trade-off between Sybil-proof and collusion-proof
in order to improve the efficiency and the cost of obtaining
the solution.

Despite the fact that our research provides some interest-
ing insights into reward mechanisms in a single task allo-
cation, numerous aspects remain to be explored. It is an in-
teresting problem to consider referral costs, such that dif-
ferent agents have different costs to invite others. However,
as mentioned in (Rochet and Choné 1998), mechanism de-
sign problems with multi-dimensional type distributions are
challenging.
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