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Abstract
One of the most popular methods for learning Nash equi-
librium (NE) in large-scale imperfect information extensive-
form games (IIEFGs) is the neural variants of counterfactual
regret minimization (CFR). CFR is a special case of Follow-
The-Regularized-Leader (FTRL). At each iteration, the neu-
ral variants of CFR update the agent’s strategy via the esti-
mated counterfactual regrets. Then, they use neural networks
to approximate the new strategy, which incurs an approxima-
tion error. These approximation errors will accumulate since
the counterfactual regrets at iteration t are estimated using
the agent’s past approximated strategies. Such accumulated
approximation error causes poor performance. To address
this accumulated approximation error, we propose a novel
FTRL algorithm called FTRL-ORW, which does not utilize
the agent’s past strategies to pick the next iteration strategy.
More importantly, FTRL-ORW can update its strategy via the
trajectories sampled from the game, which is suitable to solve
large-scale IIEFGs since sampling multiple actions for each
information set is too expensive in such games. However, it
remains unclear which algorithm to use to compute the next
iteration strategy for FTRL-ORW when only such sampled
trajectories are revealed at iteration t. To address this prob-
lem and scale FTRL-ORW to large-scale games, we provide
a model-free method called Deep FTRL-ORW, which com-
putes the next iteration strategy using model-free Maximum
Entropy Deep Reinforcement Learning. Experimental results
on two-player zero-sum IIEFGs show that Deep FTRL-ORW
significantly outperforms existing model-free neural methods
and OS-MCCFR.

Introduction
Imperfect information extensive-form games (IIEFGs) are a
standard class of games that can model multiple agents, im-
perfect information, and random events. IIEFGs have been
widely used for modeling real-world situations, such as
medical treatment (Sandholm 2015), security games (Lisỳ,
Davis, and Bowling 2016), cybersecurity games (Chen et al.
2017), and recreational games (Brown and Sandholm 2018,
2019). For these games, the common goal is to find Nash
equilibrium (NE) since it prescribes a notion of rational be-
havior in which no player can benefit from deviating unilat-
erally from the equilibrium.
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To learn NE in IIEFGs, one of the most powerful meth-
ods is the counterfactual regret minimization (CFR) (Zinke-
vich et al. 2007) algorithm. CFR is a special case of the
Follow-The-Regularized-Leader (FTRL) (Shalev-Shwartz
and Singer 2007) algorithm which utilizes the FD dilated
distance generating function (FD dilated DGF) (Liu et al.
2022). CFR learns NE by iteratively traversing the entire
game and minimizing the regret on each information set (in-
foset). Due to the large-scale state space in most real-world
scenarios, it is impossible to traverse the entire game tree
and use tables to represent strategies. To sidestep the issue,
many neural variants of CFR have been proposed (Brown
et al. 2019; Li et al. 2019; Gruslys et al. 2020; Hennes et al.
2020; Steinberger, Lerer, and Brown 2020; Fu et al. 2021;
McAleer et al. 2022). At each time, they estimate the coun-
terfactual regrets and update the strategy using the estimated
regrets. Then, they approximates the new strategy via neural
networks. However, each approximation incurs an approxi-
mation error. Since the counterfactual regrets at iteration t
are estimated with the agent’s previous approximated strate-
gies, these errors accumulate. Due to this accumulated ap-
proximation error, these methods have poor performance.
The counterfactual regrets are related to the FD dilated DGF.
Unfortunately, the FD dilated DGF at iteration t is dependent
on the agent’s past strategies, which is the essential reason
why the neural variants of CFR suffer from such accumu-
lated approximation error.

To address the accumulated approximation error, we pro-
pose to combine neural networks with FTRL cases whose
DGF at iteration t is independent of the agent’s previous
strategies. To achieve this goal, we provide our first key
contribution – a novel DGF called Opponent Related Di-
lated DGF (ORD-DGF), which is unrelated to the agent’s
past strategies. More importantly, the value of ORD-DGF
for a strategy can be estimated via the trajectories sam-
pled from the game. It allows the FTRL with ORD-DGF
(FTRL-ORW) algorithm to update its strategy via such sam-
pled trajectories. This property enables FTRL-ORW to be
suitable for solving large-scale games since sampling mul-
tiple actions for each information set is too expensive in
such games. However, it remains unclear how to compute
the next iteration strategy for FTRL-ORW if we only ob-
tain such sampled trajectories at iteration t. To address this
problem and scale FTRL-ORW to large-scale games, we
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make our second key contribution – the Deep FTRL-ORW
algorithm. Deep FTRL-ORW employs the model-free Max-
imum Entropy Deep Reinforcement Learning (MEDRL) al-
gorithms (Haarnoja et al. 2018) to compute the next iteration
strategy of FTRL-ORW. Deep FTRL-ORW is a model-free
method, which learns from the sampled trajectories. Third,
we prove that FTRL-ORW and Deep FTRL-ORW converge
to an O(

√
log T/T 2/3)-NE and O(

√
log T/T 2/3 + E)-NE

in two-player zero-sum IIEFGs with perfect recall respec-
tively, where T is the number of iterations and E is the solu-
tion error bound of MEDRL. Note that the solution error at
iteration t only has a one-time impact on convergence per-
formance to NE, not affecting the subsequent updates. In
contrast, the approximation error of the neural variants of
CFR at iteration t affects all subsequent updates. In other
words, it impacts the convergence performance multiple
times. Finally, experimental results on three standard IIEFG
benchmarks, i.e., Kuhn Poker, Leduc Poker, and Goofspiel,
demonstrate that FTRL-ORW achieves competitive perfor-
mance compared with CFR, and Deep FTRL-ORW has the
lowest exploitability compared with other model-free neural
methods and OS-MCCFR (Lanctot et al. 2009). In experi-
ments on larger games, such as phantom tic tac toe and dark
hex, Deep FTRL-ORW achieves higher utility than existing
model-free neural methods.

Related Work
In this paper, we focus on learning NE in two-player zero-
sum IIEFGs with perfect recall. Many methods have been
proposed to learn an approximate NE in such games. These
methods usually need to traverse the entire game tree. How-
ever, due to the large size in most real-world scenarios, it
is impossible to traverse the entire game. Therefore, many
stochastic methods have been proposed, which sample ac-
tions at each infoset to reduce the computation overhead.

Population Learning Methods These methods are the
variants of Policy-Space Response Oracles (PSRO) (Lanctot
et al. 2017). They store past policies and a meta-distribution
over them, incrementally adding new policy to the policy set
by computing the best response to a mixture of the past poli-
cies. Neural Fictitious Self-Play (NFSP) (Heinrich and Sil-
ver 2016) can be seen as a special case of PSRO where the
meta-distribution is the uniform distribution. These methods
can scale to large-scale games since they only require sim-
ulation of the policies and aggregating data (Vinyals et al.
2019). However, their rate of convergence is usually associ-
ated with the size of the strategy space of the game. Thus,
they may have poor performance in IIEFGs with a large
branch factor and long horizon since the strategy space of
such games is too large.

Tabular Regret Minimization Methods These meth-
ods (Lanctot et al. 2009; Farina, Kroer, and Sandholm 2020;
Farina, Schmucker, and Sandholm 2021; Farina and Sand-
holm 2021; Kozuno et al. 2021; Bai et al. 2022) estimate the
current loss gradient and feed the estimated loss gradient to
a full feedback regret minimizer, such as CFR (Zinkevich
et al. 2007) and OMD (Duchi, Hazan, and Singer 2011).
These methods converge to an O(

√
1/T )-NE with proba-

bility 1−p (p ∈ (0, 1)), where T is the number of iterations.
However, they are tabular methods, and the expensive mem-
ory overhead limits their application in large-scale games.

Neural Variants of CFR These methods are also regret
minimization methods. Although tabular regret minimiza-
tion methods reduce the computation overhead, they still
suffer from the large memory overhead. Therefore, many
neural variants of CFR have been proposed. They approx-
imate the behaviour of CFR via neural networks to scale to
large-scale games (Brown et al. 2019; Li et al. 2019; Stein-
berger 2019; Gruslys et al. 2020; Hennes et al. 2020; Fu et al.
2021; McAleer et al. 2022). At each iteration, these methods
estimate the counterfactual regrets and update the strategy
using the estimated counterfactual regrets. Then, they ap-
proximate the new strategy via neural networks. However,
such approximation incurs an approximation error at each it-
eration. Moreover, they estimate the counterfactual regrets at
iteration t according to the previous approximated strategies,
which accumulate these errors. To address this accumulated
error, we propose a new tabular regret minimization method
and approximate its behavior via neural networks.

Preliminaries
In this section, we describe the necessary terminology. First,
we introduce some concepts about extensive-forms games.
Then we illustrate the procedure of learning Nash equilib-
rium (NE) via regret minimization methods.

Extensive-Form Games
Imperfect Information Extensive-form Games (IIEFGs)
IIEFGs are a model of sequential interaction involving mul-
tiple agents and represented by a tree rooted at the root node
r. Each node h in the tree belongs to a player from the set
{0, 1, c}, where 0 is the min player, 1 is the max player, and c
is the chance player. We useHi to represent the set of nodes
belonging to player i. The notationA(h) denotes the actions
available at node h. Each node z such thatA(z) = ∅ is called
leaf node and represents a terminal state of the game. The set
of leaf nodes is denoted by Z . For each leaf node z, there is
a pair (v0(z), v1(z)) ∈ R2 which denotes the payoffs for
the min player (player 0) and the max player (player 1) re-
spectively. In our setting, v0(z) = −v1(z) for all z ∈ Z . To
represent the private information, the nodes for each player
i are partitioned into a collection Ii, called information sets
(infosets). Perfect recall means that no player will forget any
information that has been revealed.

Behavioral Strategy A behavioral strategy σi for player
i is defined on each infoset. For any infoset I ∈ Ii, the
probability for the action a ∈ A(I) is denoted by σi(I, a).
The strategy other than player i is denoted by σ−i. If every
player plays according to σ and reach infoset I , the reach-
ing probability is denoted by πσ(I). The contribution of i to
this probability is πσi (I) and πσ−i(I) for other than i. We use
σi(·|I) ∈ ∆A(I) to denote the probability distribution over
the actions at infoset I , where ∆A(I) is an n-dimensional
simplex (n = A(I)− 1).

Sequence-Form Strategy A sequence is an infoset-
action pair (I, a), where I is an infoset and a is an action
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belonging to A(I). Each sequence identifies a path from
the root node to the infoset I and selects the action a. The
set of sequences for player i is denoted Σi. The last se-
quence encountered on the path from r to I is denoted by
ρI . Sequence-form strategy for player i is a non-negative
vector x indexed over the set of sequences Σi. For each se-
quence q = (I, a) ∈ Σi, xq is the probability that player
i reaches the sequence q if she follows the strategy x. In
this paper, we formulate the sequence-form strategy space
as a treeplex (Hoda et al. 2010). Let X and Y denote the
set of sequence-form strategies for the min player and the
max player. They are nonempty convex compact sets in Eu-
clidean spaces Ex, Ey . We use xI to denote the slice of a
given strategy x corresponding to sequences belonging to
infoset I . It has been proved that a behavioral strategy is re-
alization–equivalent to a sequence-form strategy in IIEFGs
with perfect recall (Von Stengel 1996). More details are in
Appendix.

We use different strategy representations in different cases
since the two representations have their benefits and limi-
tations. For convenience, we provide a notation conversion
table between the two strategy representations in Appendix.

Regret Minimization Methods
Regret This concept is from the online convex optimiza-
tion framework (Zinkevich 2003) where a decision-maker
selects a point ut from the convex compact set U ∈ Rd and
faces a loss gradient ℓt ∈ Rd at each iteration t. The re-
gret RT (u) =

∑T
t=1⟨ℓt,ut − u⟩ denotes the difference be-

tween the accumulative loss gradient of the sequence output
u1, · · · ,uT and the loss gradient of a fixed point u.

In two-player zero-sum IIEFGs with perfect recall, Nash
equilibrium (NE) can be formulated as the solution to a
Bilinear Saddle Point Problem (BSPP) (also called the
sequence-form representation):

min
x∈X

max
y∈Y
⟨x,Ay⟩ = max

y∈Y
min
x∈X
⟨x,Ay⟩, (1)

where x and y are the sequence-form strategies w.r.t the min
player and the max player respectively, and A is the payoff
matrix. The accuracy of a solution [x;y] ∈ X × Y is quan-
tified by saddle-point gap

ε([x;y]) = max
ŷ∈Y
⟨x,Aŷ⟩ −min

x̂∈X
⟨x̂,Ay⟩. (2)

Learning NE via Regret Minimization To learn NE, we
wish to find a pair [x;y] whose saddle-point gap converges
to 0. Regret Minimization methods can be used to achieve
this goal. The first step is to instantiate two regret minimiz-
ers R0 and R1 for strategy sets X and Y . Then at each iter-
ation t, regret minimizers R0 and R1 face the loss gradients
ℓt0 and ℓt1, and output the strategies xt+1 and yt+1. Then
they are used to produce the loss gradients ℓt+1

0 = Ayt+1,
and ℓt+1

1 = −ATxt+1 at the next iteration t + 1. Let x̄, ȳ
denotes the average strategies output by R0 and R1. A folk
theorem shows

ε([x̄; ȳ]) ≤ (RT0 +RT1 )/T. (3)

FTRL-ORW
In this section, we first describe FTRL. Second, we illus-
trate why the neural variants of CFR suffer from the accu-
mulated approximation error. Then, to address this accumu-
lated error, we propose a novel DGF called Opponent Re-
lated Dilated Distance Generating Function (ORD-DGF).
ORD-DGF is unrelated to the agent’s previous strategies.
In addition, ORD-DGF can be estimated from sampled tra-
jectories. It allows the FTRL with ORD-DGF (FTRL-ORW)
algorithm to update its strategy from sampled trajectories,
which enables FTRL-ORW to scale to large-scale IIEFGs.
Finally, we prove the convergence of the FTRL-ORW algo-
rithm.

Follow-The-Regularized-Leader
Follow-The-Regularized-Leader (FTRL) is one of the most
prominent regret minimization methods. Assuming we are
the min player, at each iteration t, FTRL minimizes the sum
of the accumulative loss gradient with a regularization term
(also called mirror-mapping operator)

xt+1 ∈ argmin
x∈X

{⟨ℓ1:t,x⟩+ 1

η
dt(x)}, (4)

where ℓ1:t =
∑t
τ=1 ℓ

τ , ℓt = Ayt, η is the step-size param-
eter, and dt(x) is the distance-generating function (DGF)
which is 1-strongly convex w.r.t. a specific norm on the
sequence-form strategy polytope. In this paper, we consider
a particular type of DGF which has demonstrated SOTA re-
sults in solving IIEFGs: the dilated DGFs (Hoda et al. 2010;
Kroer et al. 2015, 2020; Farina, Kroer, and Sandholm 2019,
2021; Liu et al. 2022). A dilated DGF is constructed by tak-
ing a sum over suitable local DGFs for each infoset, where
each local DGF is dilated by the parent variable leading to
the infoset:

dt(x) =
∑
I∈I0

xρIβ
t
IdI

(
xI
xρI

)
, (5)

where dI(x) is the local DGF at infoset I and βtI is the
weight on the local DGF dI(x) at iteration t. From the
definition of the sequence-form strategy, we get xI/xρI ∈
∆A(I). For convenience, xI/xρI is denoted by x̃I in the fol-
lowing. Moreover, we have x̃I = σ0(·|I) and ỹI = σ1(·|I).

Why Do Neural Variants of CFR Suffer From
Accumulated Approximation Error
In this subsection, we show why the neural variants of CFR
suffer from the accumulated approximation error. We first
describe Counterfactual Regret Minimization (CFR). CFR
is a special case of FTR which utilizes the FD dilated
DGF (Liu et al. 2022). Formally, assuming we are the min
player, the FD dilated DGF sets the weight βtI as

βtI =
∑

a∈A(I)

[
t∑

τ=1

yτ [I]c[I]

( ∑
z∈CIa

xτρzy
τ [z]c[z]

xτIay
τ [I]c[I]

v0(z)−

∑
a∈A(I)

∑
z∈CIa

xτρzy
τ [z]c[z]

xτIay
τ [I]c[I]

v0(z)

+

,

(6)
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where yτ [I] (yτ [z]) is the probability that the max player
reaches the infoset I (the leaf node z) if she follows the strat-
egy yτ , c[I] (c[z]) is the probability that the chance player
reaches the infoset I (the leaf node z), [x]+ = max(x, 0),
andCIa is the set of leaf nodes that the player may encounter
if she selects action a at infoset I .

At each iteration t, to pick the next iteration strategy, CFR
computes the local DGF weight βtI at each infoset I via
the agent’s past strategies x1, · · · ,xt. The neural variants
of CFR approximate these strategies via neural networks,
which incurs approximation errors. These approximation er-
rors accumulate since the weight βtI is estimated via past
approximated strategies and the estimated weight is used to
update the agent’s strategy.

Opponent Related Dilated DGF
To address the accumulated approximation error, we pro-
pose a dilated DGF called Opponent Related Dilated DGF
(ORD-DGF), which is independent of the agent’s past strate-
gies xt, · · · ,xt. Moreover, the value of ORD-DGF d(x)
for a strategy x can be estimated from sampled trajectories.
The mirror-mapping operator is a single-agent optimization
problem. Since the first term accumulated loss gradients and
the second term the DGF value of the mirror-mapping op-
erator can be estimated from sampled trajectories, such a
single-agent optimization problem can also be addressed
from sampled trajectories. It is suitable to solve large-scale
games since sampling multiple actions for each infoset is too
expensive in such games.

In this subsection, we first describe ORD-DGF, then show
why the value of ORD-DGF for a given strategy can be esti-
mated from sampled trajectories while other existing DGFs
(except the FD dilated DGF) cannot. Assuming we are the
min player, ORD-DGF at iteration t is defined as

dt(x) =
∑
I∈I0

xρI ẏ
t[I]c[I]dI (x̃I) , (7)

and

ẏt[I] =
t∑

τ=1

[(1− λτ )yτ [I] + λτ ŷ[I]] /t, (8)

where λτ is the mutant weight at iteration t, ŷ is a fixed
strategy, and yt[I] (ŷ[I]) is the probability that the max
player reaches the infoset I if she follows the strategy yt

(ŷ). Note that c[I] is known and time-invariant. For the
min player, the notion ẏt[I] and I0 in Eq. (7) are replaced
by ẋt[I] and I1, respectively. In this paper, we set dI as
the negative entropy DGF d(u) =

∑n
i=1 ui logui since it

provides better convergence for FTRL-ORW compared to
other commonly used local DGFs, where n is the dimen-
sion of the vector u. From the realization equivalence be-
tween the behavioral strategy and the sequence-form strat-

egy, we have ẏt[I]c[I] =
∑
h∈I ẏ

t[h]c[h] = π
σ̇t
−0

−0 (I) and

ẋt[I]c[I] =
∑
h∈I ẋ

t[h]c[h] = π
σ̇t
−1

−1 (I). Since ORD-DGF
is only related to the observed opponent strategies, it does
not suffer from the accumulated approximation error.

Now, we illustrate why the value of ORD-DGF for a
strategy can be estimated from sampled trajectories while

other existing DGFs cannot. Assuming we follow the strat-
egy x and the opponent follows the strategy ẏt, we sam-
ple N trajectories from the game. For ORD-DGF, we have
dt(x) = EIn∼(x,ẏt,c)[

∑
I∈In dI(x̂)/N ], where In is the n-

th sampled trajectory. On the contrary, if we use any other
existing DGF except the FD dilated DGF, we have dt(x) =
EIn∼(x,ẏt,c)[

∑
I∈In jIdI(x̂)/(N ẏt[I]c[I])], where jI is a

constant related to the agent’s decision space. We cannot ob-
tain the value of ẏt[I]c[I] without traversing the entire game
tree or expensive domain knowledge.

Substituting ORD-DGF into Eq. (4), we obtain the FTRL
with ORD-DGF (FTRL-ORW) algorithm. Assuming we are
the min player, at each iteration t, FTRL-ORW picks the
next iteration strategy xt+1 according to

xt+1 ∈ argmin
x∈X

{⟨ℓ̇1:t,x⟩+ 1

η

∑
I∈Ii

xρI ẏ
t[I]c[I]dI (x̃I)},

(9)
where ℓ̇t = (1 − λt)Ayt + λtAŷ since ORD-DGF is built
with the observed opponent’s average strategy. In a two-
player zero-sum IIEFG with perfect recall, if each player
runs FTRL-ORW T iterations, their average strategy con-
verges to an O(

√
log T/T 2/3)-NE. Proof is in Appendix.

Proposition 1 From the analysis of Hoda et al. (2010),
d(x) =

∑
I∈I0

xρI ŷ[I]c[I]dI (x̃I) is Υ-strongly convex
w.r.t ∥ · ∥1. Thus, dt(x) =

∑
I∈I0

xρI ẏ[I]c[I]dI (x̃I) is
λtΥ-strongly convex w.r.t ∥ · ∥1. Let λt = t−1/3, B be a
positive constant such that −dI(x̂I) ≤ B for each infoset
I , C be the maximum number of nodes contained in any in-
formation set. If each player runs FTRL-ORW T iterations
(T ≥ 3), the saddle-point gap of the average strategy [x̄; ȳ]
is bounded by

ε([x̄; ȳ]) ≤3(∥A∥∞
√
|I0|

+ ∥AT ∥∞
√
|I1|)

√
BC log T

ΥT 2/3
+

4∆

T 1/3

(10)

Deep FTRL-ORW
The mirror-mapping operator of FTRL-ORW (Eq. (9)) is
a single-agent optimization problem that can be addressed
from sampled trajectories. In this section, we describe Deep
FTRL-ORW, which employs the off-policy model-free Max-
imum Entropy Deep Reinforcement Learning (MEDRL) al-
gorithms to address the optimization problem when only
sampled trajectories are revealed. We first explain the rea-
son for using MEDRL to compute Eq. (9). Then, we intro-
duce the overall architecture of Deep FTRL-ORW, whose
pseudocode is given in Algorithm 1. Finally, we provide the
convergence analysis of Deep FTRL-ORW.

Compute Eq. (9) via Maximum Entropy Deep
Reinforcement Learning
Assume we are the player i and player 1 − i follows strat-
egy σ̇t−i =

∑t
τ=1[(1 − λτ )στ−i + λτ σ̂−i]/t, where σt−i is

the strategy of player 1 − i at iteration t and σ̂ is a fixed
strategy. Computing Eq. (9) at iteration t is to find the op-
timal solution to a single-agent optimization problem: the
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Algorithm 1: Deep FTRL-ORW for an agent
Input: MRL, MSL, Qθ(I, a), Aϕ(a|I), Πψ(a|I), σ̂
Parameter: θ, ϕ, ψ, N , p, T , α, λQ, λA, λΠ
Output: Πψ(a|I)

1: MRL ← ∅, MSL ← ∅
2: for each iteration t = 1, · · · , T do
3: ω ← α

t , ϕt ← ϕ
4: for each episode e = 1, · · · , N do
5: Sample j ∼ UNIF(1, · · · , t)

6: σ =


Aϕ(a|I), with probability p

σ̂ , with probability λj(1− p)
Aϕj

(a|I), else
7: for each environment step h do
8: Observe information set Il and reward rl
9: Sample action al from σ

10: Execute action al
11: Observe next infoset Il+1 and reward rl+1

12: Store transition (Il, al, rl+1, Il+1) in MRL

13: if agent selects action by Aϕ(a|I) then
14: Store transition (Il, al) in MSL

15: end if
16: end for
17: θ ← θ − λQ∇̂JQ(θ)
18: ϕ← ϕ− λA∇̂JA(ϕ)
19: ψ ← ψ − λΠ∇̂JΠ(ψ)
20: end for
21: end for
22: return Πψ(a|I)

agent i selects an action al at an infoset Il, then transitions
to an infoset Il+1 or a leaf node z, and receives a reward
vi(z) − log σi(Il, al)/(tη) or − log σi(Il, al)/(tη), respec-
tively. If the agent transitions to a new infoset, it continues
to choose an action, otherwise terminates. The optimal so-
lution to this single-agent optimization problem is defined
as

σt+1
i ∈ argmax

σi

∑
l

E(z,Il,al)∼(σi,σ̇t
−i)

[

vi(z)−
1

tη
log σi(Il, al)],

(11)

Such a single-agent optimization problem is a Partially Ob-
servable Markov Decision Process (POMDP). The most
popular method for solving POMDPs is the Deep Reinforce-
ment Learning (DRL) algorithms. Since the rewards in such
a single-agent optimization problem are related to the term
log σi(Il, al), we employ the Maximum Entropy Deep Rein-
forcement Learning (MEDRL) algorithms to solve this op-
timization problem. The objective of MEDRL algorithms is
to learn a strategy σi that maximizes the expected sum of the
general entropy rewards:

σ∗
i ∈ argmin

σi

∑
l

E(z,hl,al)∼(σi,σ̇t
−i))

[

vi(z)− ω log σi(hl, al)].

(12)

where hl is the encountered node. Apparently, if we set
ω = 1

tη , the optimal solution to Eq. (12) is equal to the op-
timal solution to Eq. (11) in perfect information extensive-
form games (PIEFGs). In other words, the solution to FTRL-
ORW’s mirror-mapping operator is equal to the solution to
MEDRL algorithms in PIEFGs. Actually, it has been proven
that MEDRL converges in PIEFGs (Geist, Scherrer, and
Pietquin 2019). Although we consider IIEFGs rather than
PIEFGs, we directly utilize the MEDRL algorithms to com-
pute Eq. (11).

To compute the optimal solution to the mirror-mapping
operator of FTRL-ORW (Eq. (9)) using MEDRL, each Deep
FTRL-ORW agent employs two neural networks, a soft Q-
function Qθ(I, a), and a current MEDRL strategy Aϕ(a|I).
The parameters of these networks are θ and ϕ, respectively.
In addition, each agent uses a replay bufferMRL to mem-
orize its experience of game transitions. In training, each
agent alternates between optimizing both networks with
stochastic gradient descent. Precisely, Qθ(I, a) is trained to
minimize the soft Bellman residual

JQ(θ) = E(I,a,r,I′)∼MRL
[
1

2
(Qθ(I, a)− Q̂(I, a))]2, (13)

with

Q̂(I, a) = r +
∑
a′∈I′

(Qθ(I
′, a′)− ω logNa(I

′, a′)), (14)

and Aϕ(a|I) is trained to minimize the following objective

JA(ϕ) = E(I)∼MRL
[−
∑
a∈I

Aϕ(a|I)(Qθ(I, a)−ωAϕ(a|I))].

(15)
To reduce the sample complexity, we want all players to

learn simultaneously while playing against each other. In
this case, all agents follow their average strategies. How-
ever, the agent still needs to sample additional trajectories
to track the current MEDRL strategies for the training of
the average strategy network. To address this problem, Deep
FTRL-ORW employs anticipatory dynamics (Shamma and
Arslan 2005) to sample its current MEDRL strategy and
track changes in the opponent’s behavior simultaneously.
Precisely, at each iteration t, each agent i follows the mix-
ture strategy σi = (1 − δ)σ̇ti + δσti rather than the strategy
σ̇ti , where δ ∈ [0, 1] is the anticipatory parameter and σti is
the current MEDRL strategy. If we use anticipatory dynam-
ics, notice that only the off-policy MEDRL algorithms are
feasible since the agent samples the trajectories according to
the mixture strategy σi = (1 − p)σ̇ti + pσt,′i rather than the
current strategy σt,′i .

Outline of Deep FTRL-ORW
In Deep FTRL-ORW, a player is controlled by a sepa-
rate Deep FTRL-ORW agent. All Deep FTRL-ORW agents
learn from simultaneous play against each other. Each Deep
FTRL-ORW agent memorizes its experience of game transi-
tions and its current MEDRL strategy in two distinct replay
buffers MRL and MSL. Each Deep FTRL-ORW agent has
three networks, Qθ(I, a), Aϕ(a|I), and an average strategy
Πψ(a|I). The parameters of these networks are θ, ϕ, and ψ.
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The first two networks and the replay buffer MRL are used
for the MEDRL algorithm training to compute Eq. (9). The
network Πψ(a|I) represents the average strategy during the
evaluation. It is regularly trained to approximate the aver-
age strategy by optimizing the cross-entropy loss of the data
stored in MSL

JΠ(ψ) = E(I,a)∼MSL
[− logNg(I, a)]. (16)

To avoid windowing artifacts caused by sampling from a fi-
nite memory, MSL uses reservoir sampling.

As mentioned above, at each iteration t, each Deep FTRl-
ORW agent i follows the mixture strategy σi = (1− δ)σ̇ti +
δσti . Whatever the strategy used, the agent stores the transi-
tion tuple (Il, al, rl+1, Il+1) in MRL. Only when the agent
selects an action according to the MEDRL strategy does she
store transition tuple (Il, al) in MSL. Note that during train-
ing, the average strategy σ̄ti is implemented by uniformly
sampling a strategy from the stored past strategies to ad-
dress the approximation error caused by approximating the
average strategy. During the evaluation, the average strategy
is represented by the neural network Πψ(a|I) to reduce the
evaluation overhead.

Convergence of Deep FTRL-ORW
At each iteration t, MEDRL computes Eq. (9) and outputs
strategies xt and yt for the min player and the max player,
respectively. We assume that the optimal solutions of Eq. (9)
for the min player and the max player are xt,∗ and yt,∗, re-
spectively. Then the distance between xt and xt,∗ is denoted
as ϵt0. Similarly, the distance between yt and yt,∗ is denoted
as ϵt1. The solution accuracy of MEDRL can be measured by
the magnitude of ϵt0 and ϵt1 at each iteration t. Proposition
2 states that the convergence bound of Deep FTRL-ORW is
positively related to two terms: (i) the convergence rate of
FTRL-ORW (the first term in Eq. (17), and (ii) the solution
accuracy of MEDRL (the second term in Eq. (17)).
Proposition 2 In a two-player zero-sum IIEFG with per-
fect recall, assume that each player runs Deep FTRL-ORW.
Let T denote the number of Deep FTRL-ORW iterations,
[xt;yt] be the strategy profile output by Maximum Entropy
Deep Reinforcement Learning at iteration t, [xt,∗;yt,∗] be
the solution to Eq. (9) at iteration t, [xt;yt]− [xt,∗;yt,∗] =
[ϵt0; ϵ

t
1], E be a positive constant such that ∥ϵti∥1 ≤ E for

i ∈ 0, 1 and all t ∈ [T ]. After T iterations (T ≥ 3), the
saddle-point gap is bounded by

ε([x̄; ȳ]) ≤ 3(∥A∥∞
√
|I0|+ ∥AT ∥∞

√
|I1|)

√
BC log T

ΥT 2/3

+
4∆

T 1/3
+ (∥A∥∞ + ∥AT ∥∞)E,

(17)
where B,C,Υ are defined in Proposition 1, x̄, ȳ are the av-
erage strategies of the min player and the max player re-
spectively.

Experiments
In this section, we evaluate the performance of Deep FTRL-
ORW through extensive experiments. The experimental re-
sults of FTRL-ORW are provided in Appendix. In this

section, we first demonstrate the empirical convergence to
approximate NE for Deep FTRL-ORW on three standard
IIEFG benchmarks, i.e., Kuhn Poker, Leduc Poker, and
Goofspiel(5), where Goofspiel(5) represents the number of
cards is five. In this case, exploitability is employed as the
performance metric that measures the gap to NE. It is half of
the saddle-point gap. Then, we conduct experiments on large
games of phantom tic tac toe and dark hex. Due to the large
size of these games, we compare performance by playing
against the random agent. All tested games are provided by
OpenSpiel (Lanctot et al. 2019). All tested neural network
algorithms have similar network structures in experiments,
with 128 neurons in the hidden layer. All experiments run
on a computer with four 20-core 3.10GHz CPUs, 394 GB
memory, and two RTX3060 GPUs. Our code is available at
https://github.com/menglinjian/Deep-FTRL-ORW.

Convergence to Equilibrium
Configurations In this subsection, we investigate the em-
pirical convergence of Deep FTRL-ORW to NE on three
standard IIEFG benchmarks, i.e., Kuhn Poker, Leduc Poker,
and Goofspiel(5). We compare Deep FTRL-ORW with other
model-free methods, such as NFSP, QPG/ RPG (Srinivasan
et al. 2018), OS-Deep CFR, and OS-MCCFR (Lanctot et al.
2009). OS-Deep CFR is a special case of Deep CFR (Brown
et al. 2019) which uses outcome sampling. Actually, OS-
Deep CFR is the tabular version of OS-MCCFR. The im-
plementations of NFSP and two PG algorithms are provided
by OpenSpiel. In Kuhn Poker and Leduc Poker, the hyper-
parameters of NFSP are tuned from the recommendation of
the OpenSpiel, and the hyperparameters of the two PG al-
gorithms are provided by Farina and Sandholm (2021). In
Goofspiel(5), the hyperparameters of tested neural network
algorithms are fine-tuned from the hyperparameters used in
Leduc Poker. The hyperparameters are shown in Appendix.
The exploration term of OS-MCCFR is 0.1 which is pro-
vided by Farina and Sandholm (2021).

Results We run each algorithm four times with differ-
ent random seeds. The results are shown in Figure 1. Deep
FTRL-ORW provides the lowest exploitability in all tested
games. Two PG algorithms show poor performance, which
is consistent with the results in Farina and Sandholm (2021).
We guess this is because they are too sensitive to hyper-
parameters. Compared with NFSP, Deep FTRL-ORW usu-
ally requires around 40-50% of the episodes to achieve re-
sults similar to NFSP in all tested games. It is consistent
with the theory that the theoretical convergence of Deep
FTRL-ORW is much better than NFSP. Compared with OS-
MCCFR, Deep FTRL-ORW performs worse initially and
has lower exploitability at the end. Our intuition is that
the high estimation variance incurred by importance sam-
pling causes the poor performance in the end. OS-Deep CFR
shows much poorer performance than OS-MCCFR which
might be caused by the accumulated approximation error.

Performance Against Random Agent
In this subsection, we show the performance of Deep FTRL-
ORW in larger games, such as Phantom Tic Tac Toe (Phan-
tom TTT) and Dark Hex. These games are imperfect in-
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Figure 1: Convergence results of Deep FTRL-ORW, NFSP, QPG, RPG, OS-MCCFR, and OS-Deep CFR in Kuhn Poker, Leduc
Poker, and Goofspiel(5). In all plots, the x-axis is the number of episodes of each algorithm, and the y-axis is shown on a log
scale. The shaded area represents one standard deviation of the data over four random seeds.
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Figure 2: The results of Deep FTRL-ORW and NFSP against the random agent in Phantom Tic Tac Toe, Dark Hex(4) and Dark
Hex(5). Dark Hex(4) represents that the board size of Dark Hex is 4. In all plots, the x-axis is the number of episodes of each
algorithm, and the y-axis is the rewards. The shaded area represents one standard deviation of the data over four random seeds.

formation versions of perfect-information games played on
square boards. Due to the large size of these games, ex-
ploitability cannot be obtained. Therefore, we compare per-
formance by playing against the random agent. We run 1000
episodes to obtain the average reward as the metric. In our
experiments, we set the board size of Phantom TTT as 3 × 3,
and set the board size of dark hex as 4 x 4 (dark hex(4)) and 5
x 5 (dark hex(5)). We only compare Deep FTRL-ORW with
NFSP since OS-MCCFR cannot be scaled to these games
due to the large game size, and OS-Deep CFR/QPG/RPG
has poor performance even in small games. The hyperpa-
rameters of each algorithm are invariant across all tested
games. We run each algorithm four times with different ran-
dom seeds. The results are shown in Figure 2. In all tested
games, we see that our method has the best performance.
Moreover, the rewards curves of Deep FTRL-ORW are al-
ways higher than NFSP.

Conclusions
In this paper, we consider learning NE in two-player zero-
sum IIEFGs with perfect recall. We propose a new FTRL
algorithm called FTRL-ORW, which utilizes the Opponent
Related Dilated DGF (ORD-DGF) to address the accumu-
lated approximation error caused by the FD dilated DGF.

To scale the FTRL-ORW algorithm to large-scale games,
we introduce a new neural method called Deep FTRL-ORW.
At each iteration, it employs Maximum Entropy Deep Rein-
forcement Learning (MEDRL) to compute the next iteration
strategy of FTRL-ORW. Deep FTRL-ORW is a model-free
method, which learns entirely from the sampled trajecto-
ries. We prove that FTRL-ORW and Deep FTRL-ORW con-
verge to an O(

√
log T/T 2/3)-NE and O(

√
log T/T 2/3 +

E)-NE, respectively. The experimental results show that
FTRL-ORW achieves competitive performance compared
with CFR, and Deep FTRL-ORW significantly outperforms
existing model-free neural methods and OS-MCCFR.
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