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Abstract
Fairness and privacy are two important concerns in social
decision-making processes such as resource allocation. We
study privacy in the fair allocation of indivisible resources us-
ing the well-established framework of differential privacy. We
present algorithms for approximate envy-freeness and pro-
portionality when two instances are considered to be adjacent
if they differ only on the utility of a single agent for a single
item. On the other hand, we provide strong negative results
for both fairness criteria when the adjacency notion allows
the entire utility function of a single agent to change.

1 Introduction
Fairness is a principal concern in numerous social decision-
making processes, not least when it comes to allocating
scarce resources among interested parties. Whether we di-
vide equipment between healthcare personnel, assign facil-
ity time slots to potential users, or distribute office space
among working groups in an organization, it is desirable
that all parties involved feel fairly treated. While fair di-
vision has been studied in economics for several decades
(Brams and Taylor 1996; Moulin 2003, 2019), the subject
has received substantial interest from computer scientists in
recent years, much of which has concentrated on the fair al-
location of indivisible resources (Bouveret, Chevaleyre, and
Maudet 2016; Markakis 2017; Walsh 2020; Suksompong
2021; Amanatidis et al. 2022; Aziz et al. 2022).

The fair division literature typically focuses on satisfying
concrete fairness criteria. Two of the most prominent cri-
teria are envy-freeness and proportionality. In an envy-free
allocation, no agent prefers to have another agent’s bundle
instead of her own. In a proportional allocation, every agent
receives value at least 1/n of her value for the entire re-
source, where n denotes the number of agents. As neither
of these criteria is always satisfiable,1 researchers have pro-
posed the relaxations envy-freeness up to c items (EFc) and
proportionality up to c items (PROPc); here, c is a non-
negative integer parameter. Under additive utilities, EFc im-
plies PROPc for every c,2 and an EF1 allocation (which must

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1For example, imagine two siblings fighting for one toy.
2See the proof of Proposition 2.2(b) in our prior work (Manu-

rangsi and Suksompong 2022a).

also be PROP1) is guaranteed to exist (Lipton et al. 2004).
In addition to fairness, another consideration that has be-

come increasingly important nowadays—as large amounts
of data are constantly collected, processed, and analyzed—
is privacy. Indeed, an agent participating in a resource allo-
cation procedure may not want other participants to know
her preferences if she considers these as sensitive informa-
tion, for example, if these preferences correspond to the
times when she is available to use a facility, or if they rep-
resent her valuations for potential team members when dis-
tributing employees in an organization. Consequently, a de-
sirable procedure should ensure that an individual partici-
pant’s preferences cannot be inferred based on the output
of the procedure. Achieving privacy alone is trivial, as the
procedure can simply ignore the agents’ preferences and al-
ways output a fixed allocation that it announces publicly in
advance. However, it is clear that such a procedure can be
highly unfair for certain preferences of the agents. Despite
its significance, the issue of privacy has been largely unad-
dressed in the fair division literature as far as we are aware.3

In this paper, we investigate the fundamental question of
whether fairness and privacy can be attained simultaneously
in the allocation of indivisible resources. We use the well-
established framework of differential privacy (DP), which
has been widely adopted not only in academia but also in
industry (Erlingsson, Pihur, and Korolova 2014; Shankland
2014; Greenberg 2016; Apple Differential Privacy Team
2017; Ding, Kulkarni, and Yekhanin 2017) as well as gov-
ernment sectors (Abowd 2018). Intuitively, the output distri-
bution of a (randomized) DP4 algorithm should not change
by much when a single “entry” of the input is modified. DP
provides a privacy protection for individual entries by en-
suring that an adversary with access to the output can only
gain limited information about each individual entry. At the
same time, DP algorithms often still provide useful outputs
based on the aggregated information. We outline the tools
and concepts from DP used in this work in Section 2.2.5

3Sun and Yang (2009) studied a setting in which agents have
“reservation values” over items, and considered a mechanism to be
private if it does not require agents to reveal these values.

4We use the abbreviation DP for both “differential privacy” and
“differentially private”.

5For in-depth treatments of the subject, we refer to the surveys
by Dwork (2008) and Dwork and Roth (2014).
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Agent-Level DP (Agent × Item)-Level DP

EF
Upper O(m/n) (Trivial) O(n logm) (Theorem 4.1)

Lower Ω
(√

m
n log n

)
(Theorem 3.1) Ω(logm) (Theorem 4.8)

PROP
Upper O(m/n) (Trivial) O(logm) (Theorem 4.7)

Lower Ω
(√

m
n

)
(Theorem 3.2) Ω((logm)/n) (Theorem 4.10)

Table 1: Overview of our results. We display the smallest c such that there is an ε-DP algorithm that outputs an EFc or PROPc
allocation with probability at least 1− β. For simplicity of the bounds, we assume that m > n2, ε is a small constant, and β is
sufficiently small (depending only on ε, n and not on m). All upper bounds hold even for connected allocations. Lower bounds
for (agent× item)-level DP hold only for connected allocations, but those for agent-level DP hold for arbitrary allocations. The
bounds O(m/n) follow trivially from outputting a fixed allocation in which each agent receives O(m/n) items.

As alluded to above, DP is defined with respect to what
one considers to be an entry of the input, or equivalently, in
terms of adjacent inputs. We consider two notions of adja-
cency between fair division instances. For agent-level adja-
cency, two instances are considered to be adjacent if they
differ on the utility function of at most one agent. For (agent
× item)-level adjacency, two instances are adjacent if they
differ at most on the utility of a single agent for a single
item. We work with the standard definition of ε-differential
privacy (ε-DP): for a parameter ε ≥ 0, an algorithm is said
to satisfy ε-DP if the probability that it outputs a certain al-
location for an input and the corresponding probability for
an adjacent input differ by a factor of at most eε. Note that,
for the same ε, agent-level DP offers a stronger privacy pro-
tection for an entire utility function of an individual agent,
whereas (agent× item)-level DP only offers a protection for
a utility of a single agent for a single item. Our goal is to
devise ε-DP algorithms that output an EFc or PROPc alloca-
tion for a small value of c with sufficiently high probability,
or to prove that this task is impossible. Denote by n and m
the number of agents and items, respectively.

We begin in Section 3 by considering agent-level DP.
For this demanding benchmark, we establish strong lower
bounds with respect to both approximate envy-freeness and
proportionality (Theorems 3.1 and 3.2). In both cases, our
lower bounds imply that, for fixed n and ε, no ε-DP al-
gorithm can output an EFc or PROPc allocation for c =
o(
√
m) with some large constant probability. Our results

hold even when the agents have binary additive utilities, and
indicate that agent-level DP is too stringent to permit algo-
rithms with significant fairness guarantees.

In Section 4, we turn our attention to (agent × item)-
level DP, and deliver encouraging news for this more re-
laxed notion. In contrast to the previous lower bounds,
we present ε-DP algorithms for EFc and PROPc where c
only grows logarithmically in m for fixed n and ε (The-
orems 4.1 and 4.7). Our EFc algorithm works for arbi-
trary monotone utility functions, whereas our PROPc al-
gorithm allows (not necessarily binary) additive utilities.
Moreover, our algorithms always output allocations that are
connected.6 We complement these results by showing a tight

6See Section 2 for the definition. Connectivity can be desirable
when there is a spatial or temporal order of the items, for instance,

lower bound of Ω(logm) for connected allocations (Theo-
rems 4.8 and 4.10), even with binary additive utilities.

A summary of our results can be found in Table 1.

2 Preliminaries
2.1 Fair Division
In fair division of indivisible items, there is a set N = [n]
of agents and a set M = [m] of items, where [k] denotes
the set {1, 2, . . . , k} for each positive integer k. The utility
function of agent i is given by ui : 2

M → R≥0. Throughout
this work, we assume that utility functions are monotone,
that is, ui(S) ≤ ui(T ) for any S ⊆ T ⊆ M . For a single
item j ∈ M , we write ui(j) instead of ui({j}). We seek to
output an allocation A = (A1, . . . , An), which is an ordered
partition of M into n bundles.

We consider two important fairness notions. Let c be a
non-negative integer.

• An allocation A is said to be envy-free up to c items (EFc)
if, for any i, i′ ∈ N , there exists S ⊆ Ai′ with |S| ≤ c
such that ui(Ai) ≥ ui(Ai′ \ S).

• An allocation A is said to be proportional up to c items
(PROPc) if, for any i ∈ N , there exists S ⊆M \Ai with
|S| ≤ c such that ui(Ai) ≥ ui(M)/n− ui(S).

We say that an allocation A is connected if each Ai cor-
responds to an interval, i.e., Ai = {ℓ, ℓ+1, . . . , r} for some
ℓ, r ∈ M ; it is possible that Ai is a singleton or empty. Let
Pconn(m,n) denote the set of all connected allocations. We
will use the following result on the existence of connected
EF2 allocations.7

Theorem 2.1 ((Bilò et al. 2022)). For any m,n ∈ N and
any monotone utility functions, there exists a connected EF2
allocation.

A utility function ui is additive if ui(S) =
∑

j∈S ui(j)
for all S ⊆ M . Furthermore, an additive utility function is
said to be binary if ui(j) ∈ {0, 1} for all j ∈M .

when allocating time slots to facility users or offices along a cor-
ridor to research groups (Bouveret et al. 2017; Suksompong 2019;
Bei et al. 2022; Bilò et al. 2022).

7Recently, Igarashi (2023) improved this guarantee to EF1.

5815



2.2 Differential Privacy
Let us start by recalling the general definition of DP. Denote
by X the set of all possible inputs to the algorithm.
Definition 2.2 (Differential Privacy (Dwork et al. 2006b)).
Let ε ≥ 0 be a non-negative real number. A randomized
algorithmM is said to be ε-differentially private (ε-DP) if,
for every pair of adjacent inputs X,X ′, it holds that

Pr[M(X) = o] ≤ eε · Pr[M(X ′) = o]

for all o ∈ range(M).
An input in our fair division context consists of the agents’

utility functions. Different notions of adjacency lead to dif-
ferent levels of privacy protection. We consider two natural
notions: agent-level DP and (agent × item)-level DP.
Definition 2.3 (Agent-Level DP). Two inputs (ui)i∈N and
(u′

i)i∈N are said to be agent-level adjacent if they coincide
on all but a single agent, i.e., there exists i∗ ∈ N such that
ui = u′

i for all i ∈ N \ {i∗}.
An algorithm that is ε-DP against this adjacency notion is

said to be agent-level ε-DP.
Definition 2.4 ((Agent × Item)-Level DP). Two inputs
(ui)i∈N and (u′

i)i∈N are said to be (agent × item)-level ad-
jacent if they coincide on all but the utility of a single agent
for a single item, i.e., there exist i∗ ∈ N, j∗ ∈M such that
• ui = u′

i for all i ∈ N \ {i∗}, and
• ui∗(S) = u′

i∗(S) for all S ⊆M \ {j∗}.
An algorithm that is ε-DP against this adjacency notion is

said to be (agent × item)-level ε-DP.
It is clear that agent-level DP is a more demanding no-

tion than (agent × item)-level DP. Specifically, the former
provides a stronger privacy protection than the latter, and
designing an algorithm for the former is more difficult. In-
deed, we will prove strong lower bounds for agent-level DP
and present algorithms for (agent × item)-level DP.

Next, we outline several tools from the DP literature that
will be useful for our proofs.

Basic Composition. The first tool that we will use is the
composition of DP: the result of running multiple DP algo-
rithms remains DP, but with a worse privacy parameter.
Theorem 2.5 (Basic Composition of DP, e.g., (Dwork and
Roth 2014)). An algorithm that is a result of running two
algorithms (possibly in an adaptive manner) that are ε1-DP
and ε2-DP, respectively, is (ε1 + ε2)-DP.

Group Privacy. While differential privacy offers protec-
tion primarily against the adjacency notion for which it is
defined, it also offers protection against more general adja-
cency notions. Below we state one such protection, which is
often referred to as group differential privacy.

Let ∼ be any adjacency relation. For k ∈ N, let us
define ∼k as the adjacency relation where X ∼k X ′ if
and only if there exists a sequence X0, . . . , Xk such that
X0 = X,Xk = X ′, and Xi−1 ∼ Xi for all i ∈ [k].
Lemma 2.6 (Group Differential Privacy, e.g., (Vadhan
2017)). Let k ∈ N. If an algorithm is ε-DP with respect
to an adjacency notion ∼, it is also (kε)-DP with respect to
the adjacency notion ∼k.

As an immediate consequence of Lemma 2.6, any (agent
× item)-level ε-DP algorithm is also agent-level (mε)-DP.
However, the factor mε makes the latter guarantee rather
weak, especially as m grows.

Sensitivity. We next define the sensitivity of a function,
which will be used multiple times in this work. Note that the
definition depends on the adjacency notion, but we do not
explicitly include it in the notation for convenience.
Definition 2.7. The sensitivity of a function f : X → R
(with respect to adjacency notion ∼) is defined as ∆(f) :=
maxX∼X′ |f(X)− f(X ′)|.

Sensitivity is a key notion in DP. As shown by Dwork
et al. (2006b), the Laplace mechanism—which outputs
f(X) + Z where Z is drawn from the Laplace distribution8

with scale (∆(f)/ε)—satisfies ε-DP. This means that if a
function has low sensitivity, then we can estimate it to within
a small error (with high probability).

Sparse Vector Technique. We will use the so-called
sparse vector technique (SVT). The setting is that there are
low-sensitivity functions f1, . . . , fH : X → R. We want to
find the first function fi whose value is above a target thresh-
old. A straightforward approach would be to add Laplace
noise to each fi(X) and then select the function accordingly;
due to the basic composition theorem, this would require
us to add noise of scale O(H/ε) to each function. SVT al-
lows us to reduce the dependency on H to merely O(logH).
The technique was first introduced by Dwork et al. (2009),
and the convenient version below is due to Dwork and Roth
(2014, Theorem 3.24).
Theorem 2.8. There exists a constant υ > 0 such that the
following holds. Let f1, . . . , fH : X → R be functions
with ∆(f1), . . . ,∆(fH) ≤ 1. For any ε > 0, β ∈ (0, 1),
and τ ∈ R, there exists an ε-DP algorithm such that, if
maxh fh(X) ≥ τ , then, with probability at least 1 − β, the
algorithm outputs h∗ ∈ [H] with the following properties:
• fh∗(X) ≥ τ − υ · log(H/β)/ε;
• For all h′ < h∗, fh′(X) ≤ τ + υ · log(H/β)/ε.

Exponential Mechanism. We will also use the exponen-
tial mechanism (EM) of McSherry and Talwar (2007). In its
generic form, EM allows us to select a solution from a can-
didate set H. Specifically, we may define (low-sensitivity)
scoring functions scrh : X → R for each h ∈ H. Then, EM
outputs a solution that approximately maximizes the score.
The precise statement is given below.9

Theorem 2.9 ((McSherry and Talwar 2007)). For any ε > 0
and β ∈ (0, 1), a finite set H, and a set of scoring functions
{scrh}h∈H such that ∆(scrh) ≤ 1 for each h ∈ H, there is
an ε-DP algorithm that, on every input X , outputs h∗ such
that

scrh∗(X) ≥ max
h∈H

scrh(X)− 2 log(|H|/β)
ε

with probability at least 1− β.
8The Laplace distribution with scale b is the distribution whose

probability density function is proportional to exp(−|x|/b).
9The formulation here can be derived, e.g., by plugging t =

log(1/β) into Corollary 3.12 of Dwork and Roth (2014).
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2.3 Anti-Concentration Inequality
Denote by Ber(1/2) the distribution that is 0 with prob-
ability 1/2, and 1 otherwise. The following type of anti-
concentration inequalities is well-known; for completeness,
we provide a proof for this one in the full version of our
paper (Manurangsi and Suksompong 2022b).

Lemma 2.10. If k ≥ 100 and X1, . . . , Xk are independent
random variables drawn from Ber(1/2), then

Pr

[
k∑

i=1

Xi <
k

2
− 0.1

√
k

]
≥ 1

4
.

3 Agent-Level DP
We begin by considering the demanding notion of agent-
level DP, and provide strong negative results for this notion.

For EFc, we show a lower bound that,10 when m >
n log n, holds even against c = Θ

(√
m
n log n

)
.

Theorem 3.1. There exists a constant ζ > 0 such that, for
any ε > 0, there is no agent-level ε-DP algorithm that, for
any input binary additive utility functions, outputs an EFc
allocation with probability higher than 1 − e−ε

200 , where c =⌊
ζ
√

m
n ·min

{
log n, m

n

}⌋
.

For proportionality, we prove a slightly weaker bound
where c = Θ(

√
m/n) and the “failure probability” required

for the lower bound to apply is also smaller at Oε(1/n)
(compared to Oε(1) for envy-freeness).

Theorem 3.2. There exists a constant ζ > 0 such that, for
any ε > 0, there is no agent-level ε-DP algorithm that, for
any input binary additive utility functions, outputs a PROPc
allocation with probability higher than 1 − e−ε

8n , where c =

⌊ζ
√
m/n⌋.

Due to space constraints, we only present the proof
of Theorem 3.2 here. The proof of Theorem 3.1, which
uses similar arguments but requires a more delicate anti-
concentration inequality, can be found in the full version of
our paper (Manurangsi and Suksompong 2022b).

3.1 Proof of Theorem 3.2
We let ζ = 0.01. If m < 100n, then c = 0 and the the-
orem holds trivially even without the privacy requirement.
Hence, we may assume that m ≥ 100n. Throughout the
proof, we consider random utility functions u = (ui)i∈N

where each ui(j) is an independent Ber(1/2) random vari-
able. For brevity, we will not repeatedly state this in the cal-
culations below.

We start by proving the following auxiliary lemma that if
Ai is small, then, for a random utility u as above, the alloca-
tion fails to be PROPc for agent i with a constant probability.

Lemma 3.3. For ζ = 0.01, let c be as in Theorem 3.2 and
A be an allocation such that |Ai| ≤ m/n. Then, we have

Pr
u
[A is not PROPc for agent i] ≥ 1/8.

10Unless specified otherwise, log refers to the natural logarithm.

Proof. Let c′ = 2c. We have

Pr
u
[A is not PROPc for agent i]

≥ Pr
ui

[
ui(Ai) <

ui(M)

n
− c

]
= Pr

ui

[
ui(Ai) <

ui(M \Ai)

n− 1
− n

n− 1
· c
]

≥ Pr
ui

[
ui(Ai) <

m

2n
− c′ ∧ ui(M \Ai) ≥

m(n− 1)

2n

]
= Pr

ui

[
ui(Ai) <

m

2n
− c′

]
· Pr
ui

[
ui(M \Ai) ≥

m(n− 1)

2n

]
≥ 1

2
· Pr
ui

[
ui(Ai) <

m

2n
− c′

]
, (1)

where the last inequality follows from the fact that |M \
Ai| ≥ m(n− 1)/n and symmetry.

Since |Ai| is an integer, |Ai| ≤ ⌊m/n⌋. Moreover, since
⌊m/n⌋ ≥ 100 and the function f(k) = k/2 − 0.1

√
k is

increasing in [1,∞), applying Lemma 2.10 with k = ⌊m/n⌋
gives Prui

[
ui(Ai) <

m
2n − c′

]
≥ 1/4. Plugging this back

into (1) yields the desired bound.

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Let ζ = 0.01 and let M be any
agent-level ε-DP algorithm. Consider the input utility func-
tions u′ = (u′

i)i∈N where the utility functions are all-zero,
and consider the distributionM(u′). For any allocation A,
we have Pri∈N [|Ai| ≤ m/n] ≥ 1/n since at least one
bundle Ai must have size at most m/n. This implies that
Pri∈N,A∼M(u′)[|Ai| ≤ m/n] ≥ 1/n. Thus, there exists
i∗ ∈ N such that PrA∼M(u′)[|Ai∗ | ≤ m/n] ≥ 1/n.

Recalling the definition of u from earlier and applying
Lemma 3.3, we have11

Pr
u,A∼M(u′)

[A is not PROPc for agent i∗]

≥ Pr
A∼M(u′)

[|Ai∗ | ≤ m/n]

· Pr
u,A∼M(u′)

[A is not PROPc for agent i∗ | |Ai∗ | ≤ m/n]

≥ (1/n) · (1/8) = 1/(8n).

Hence, there exists u∗
i∗ such that12

Pr
A∼M(u′)

[A is not PROPc for agent i∗ w.r.t. u∗
i∗ ] ≥ 1/(8n).

Now, let u∗ be the input utility such that u∗
i is all-zero for

each i ̸= i∗ while u∗
i∗ is as above. Notice that u∗ is adjacent

to u′ under agent-level adjacency. Thus, applying the ε-DP
guarantee ofM, we get

Pr
A∼M(u∗)

[A is not PROPc for agent i∗ w.r.t. u∗
i∗ ]

11Here, PROPc is with respect to u.
12The abbreviation “w.r.t.” stands for “with respect to”.
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≥ e−ε · Pr
A∼M(u′)

[A is not PROPc for agent i∗ w.r.t. u∗
i∗ ]

≥ (e−ε)/(8n).

This completes the proof.

4 (Agent × Item)-Level DP
In this section, we turn our attention to (agent × item)-level
DP, which is a more relaxed notion than agent-level DP. We
explore both the possibilities (Section 4.1) and limits (Sec-
tion 4.2) of private algorithms with respect to this notion.

4.1 Algorithms
In contrast to agent-level DP, we will show that Oε,n(logm)
upper bounds can be attained in the (agent × item)-level DP
setting. Before we do so, let us first explain why straightfor-
ward approaches do not work. To this end, assume that utili-
ties are additive and ui(j) ∈ [0, 1] for all i ∈ N, j ∈M . One
may want to estimate ui(S) for each S using the Laplace
mechanism. While the Laplace mechanism guarantees that
the estimate has an expected additive error of O(1/ε), this
is not useful for obtaining approximate envy-freeness or
proportionality guarantees: it is possible that (almost) ev-
ery good yields utility much less than 1. In this case, addi-
tive errors do not translate to any non-trivial EFc or PROPc
guarantees. We will therefore develop different—and more
robust—comparison methods, which ultimately allow us to
overcome the aforementioned issue.

Approximate Envy-Freeness Our main algorithmic re-
sult for approximate envy-freeness is stated below. Note that
this result holds even for non-additive utility functions.
Theorem 4.1. For any ε > 0 and β ∈ (0, 1], there ex-
ists an (agent × item)-level ε-DP algorithm that, for any
input monotone utility functions, outputs a connected EFc
allocation with probability at least 1 − β, where c =

O
(
1 + n log(mn)+log(1/β)

ε

)
.

The high-level idea of our algorithm is to apply the ex-
ponential mechanism (Theorem 2.9) to select an allocation
among the≤ (mn)n connected allocations. This gives us an
“error” in the score of Oε(log((mn)n)) = Oε(n · log(mn)).
The question is how to set up the score so that (i) it has
low sensitivity and (ii) such an error translates to an approx-
imate envy-freeness guarantee. Our insight is to define the
score based on the following modified utility function that
“removes” a certain number of most valuable items.
Definition 4.2. For u = (u1, . . . , un) and k ∈ N ∪ {0}, we
define u−k = (u−k

1 , . . . , u−k
n ) by

u−k
i (S) := min

T⊆M,|T |≤k
ui(S \ T ) ∀i ∈ N,S ⊆M.

It is clear that u−k inherits the monotonicity of u. We
next list some simple but useful properties of such utility
functions. The first property, whose proof is trivial, relates
Definition 4.2 to approximate envy-freeness.
Observation 4.3. Let k, d ∈ N∪{0}. Any allocation that is
EFd with respect to u−k is EF(d+ k) with respect to u.

The second property is that the d, k values are robust with
respect to (agent × item)-level adjacency.

Lemma 4.4. Let k ∈ N, d ∈ N ∪ {0}, and u, ũ be any two
(agent × item)-level adjacent inputs. If an allocation A is
EFd with respect to u−k, then it is EF(d + 2) with respect
to ũ−(k−1).

Proof. By definition of (agent× item)-level adjacency, there
exist i∗ ∈ N, j∗ ∈M such that

• ui = ũi for all i ∈ N \ {i∗}, and
• ui(S) = ũi(S) for all S ⊆M \ {j∗}.

Consider any i, i′ ∈ N . Since A is EFd with respect to
u−k, we have

u−k
i (Ai) ≥ min

S⊆M,|S|≤d
u−k
i (Ai′ \ S)

= min
T⊆M,|T |≤d+k

ui(Ai′ \ T ). (2)

Furthermore, we have

u−k
i (Ai) = min

T⊆M,|T |≤k
ui(Ai \ T )

≤ min
T⊆M,|T |≤k−1

ui(Ai \ (T ∪ {j∗}))

= min
T⊆M,|T |≤k−1

ũi(Ai \ (T ∪ {j∗}))

≤ min
T⊆M,|T |≤k−1

ũi(Ai \ T ) = ũ
−(k−1)
i (Ai). (3)

Moreover,

min
T⊆M,|T |≤d+k

ui(Ai′ \ T )

≥ min
T⊆M,|T |≤d+k

ui(Ai′ \ (T ∪ {j∗}))

= min
T⊆M,|T |≤d+k

ũi(Ai′ \ (T ∪ {j∗}))

≥ min
T⊆M,|T |≤d+k+1

ũi(Ai′ \ T )

= min
S⊆M,|S|≤d+2

ũ
−(k−1)
i (Ai′ \ S). (4)

Thus, we can conclude that

ũ
−(k−1)
i (Ai)

(3)
≥ u−k

i (Ai)

(2)
≥ min

T⊆M,|T |≤d+k
ui(Ai′ \ T )

(4)
≥ min

S⊆M,|S|≤d+2
ũ
−(k−1)
i (Ai′ \ S).

It follows that A is EF(d+ 2) with respect to ũ−(k−1).

We can now define our scoring function.

Definition 4.5. For an allocation A, u = (u1, . . . , un), and
g ∈ N, define

scrgA(u) := −min{t ∈ [g] | A is EF(2t) w.r.t. u−(g−t)}.

We let scrgA(u) = −g if the set above is empty.
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Algorithm 1: (Agent×item)-level ε-DP algorithm for EFc
Parameter: ε > 0, β ∈ (0, 1]

1: g ← 4
⌈
1 + log((mn)n/β)

ε

⌉
2: return the allocation output by the ε-DP exponen-

tial mechanism using the scoring function scrgA (Def-
inition 4.5) with the candidate set Pconn(m,n) (Sec-
tion 2.1).

The following lemma shows that this scoring function has
low sensitivity.

Lemma 4.6. For any allocation A and g ∈ N, ∆(scrgA) ≤ 1.

Proof. Let u, ũ be any pair of (agent× item)-level adjacent
inputs. Assume without loss of generality that scrgA(u) ≥
scrgA(ũ). Let t∗ := − scrgA(u).

If t∗ = g, then scrgA(ũ) ≤ scrgA(u) = −g, so scrgA(ũ) =
−g. Otherwise, t∗ ≤ g − 1, and A is EF(2t∗) with respect
to u−(g−t∗). Lemma 4.4 ensures that A is EF(2(t∗ + 1))
with respect to ũ−(g−t∗−1). Thus, scrgA(ũ) ≥ −(t∗ + 1).
Since −t∗ = scrgA(u) ≥ scrgA(ũ), we have | scrgA(u) −
scrgA(ũ)| ≤ 1 in both cases, completing the proof.

With all the ingredients ready, we can prove Theorem 4.1
by applying the exponential mechanism with appropriate pa-
rameters (see Algorithm 1).

Proof of Theorem 4.1. Let g = 4
⌈
1 + log((mn)n/β)

ε

⌉
. We

run the exponential mechanism using the scoring function
scrgA with the candidate set Pconn(m,n). By Theorem 2.9,
this is an ε-DP algorithm that, for each u, with probability
at least 1− β, outputs an allocation A∗ such that

scrgA∗(u) ≥ max
A∈Pconn(m,n)

scrgA(u)−
2 log

(
|Pconn(m,n)|

β

)
ε

.

Fix any u, and define A∗ as above. By Theorem 2.1, there
exists a connected allocation AEF2 that is EF2 with respect
to u−(g−1). This means that scrg

AEF2 = −1. Furthermore,
we have13 |Pconn(m,n)| ≤ (mn)n. Plugging these into the
inequality above, we get

scrgA∗(u) ≥ −1−
2 log((mn)n/β)

ε
≥ −g

2
,

where the latter inequality follows from our choice of g.
Hence, A∗ is EF(2c) with respect to u−(g−c) for some
c ≤ g/2. Invoking Observation 4.3, we find that A∗ is
EF(g + c), and therefore EF(3g/2), with respect to u. This
concludes our proof.

13Indeed, from the set M = {1, 2, . . . ,m}, we can allocate one
“block” of items at a time starting from items with lower indices.
There are at most m possibilities for the size of the next block, this
block can be allocated to one of the (at most n) remaining agents,
and we allocate n blocks in total, hence the bound (mn)n.

Approximate Proportionality Next, we present an im-
proved result for approximate proportionality, where the de-
pendence on n is reduced to O(log n).
Theorem 4.7. For any ε > 0 and β ∈ (0, 1], there ex-
ists an (agent × item)-level ε-DP algorithm that, for any
input additive utility functions, outputs a connected PROPc
allocation with probability at least 1 − β, where c =

O
(
log n+ log(mn/β)

ε

)
.

Our algorithm is based on the well-known “moving-
knife” procedure from cake cutting (Dubins and Spanier
1961). A natural way to implement this idea in our set-
ting is to place the items on a line, put a knife at the left
end, and move it rightwards until some agent values the
subset of items to the left of the knife at least 1/n of her
value for the whole set of items. We give this subset to this
agent, and proceed similarly with the remaining agents and
items. To make this procedure DP, we can replace the check
of whether each agent receives sufficiently high value with
the SVT algorithm (Theorem 2.8), where the usual utility
is modified similarly to Definition 4.5 to achieve low sensi-
tivity. While this approach is feasible, it does not establish
the bound we want: since the last agent has to participate in
n “rounds” of this protocol, the basic composition theorem
(Theorem 2.5) implies that we can only allot a privacy bud-
get of ε/n in each round. This results in a guarantee of the
form c = O(logm/(ε/n)) = O((n logm)/ε), which does
not distinctly improve upon the guarantee in Theorem 4.1.

To overcome this issue, notice that instead of targeting a
single agent, we can continue moving our knife until at least
n/2 agents value the subset of items to the left of the knife
at least half of the entire set.14 This allows us to recurse on
both sides, thereby reducing the number of rounds to log n.
Hence, we may allot a privacy budget of ε/ log n in each
round. Unfortunately, this only results in a bound of the form
c = O(logm/(ε/ log n)) = O((log n logm)/ε), which is
still worse than what we claim in Theorem 4.7.

Our last observation is that we can afford to make more
mistakes in earlier rounds: for example, in the first round,
we would be fine with making an “error” of roughly O(n)
in the knife position because the subsets on both sides will
be subdivided to Ω(n) parts later. As a result, our strategy is
to allot less privacy budget in earlier rounds and more in later
rounds. By letting the privacy budgets form a geometric se-
quence, we can achieve our claimed O(log(mn)/ε) bound.
The detailed proof can be found in the full version of our
paper (Manurangsi and Suksompong 2022b).

4.2 Lower Bounds
Next, we prove lower bounds for (agent × item)-level DP
via the packing method (Hardt and Talwar 2010). This in-
volves constructing inputs that are close to one another (with
respect to the corresponding adjacency notion) such that the
acceptable solutions (i.e., EFc or PROPc allocations) are dif-
ferent for different inputs. The DP requirement can then be
used to rule out the existence of algorithms with strong util-
ity guarantees. We reiterate that our lower bounds hold only

14Even and Paz (1984) used a similar idea in cake cutting.
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against connected allocations. In our constructions, we de-
sign the utility functions so that each input forces us to pick
particular positions to cut in order to get an EFc or PROPc
allocation. We start with the proof for envy-freeness.

Theorem 4.8. There exists ζ > 0 such that, for any
ε ∈ (0, 1], there is no ε-DP algorithm that, for any in-
put binary additive utility functions, outputs a connected
EFc allocation with probability at least 0.5, where c =⌊
ζ ·min

{
logm

ε , m
n ,
√
m
}⌋

.

Proof. Let ζ = 0.01, c be as in the theorem statement, and
T = ⌊m/(4c + 4)⌋. We may assume that c ≥ 1, as oth-
erwise the theorem holds trivially even without the privacy
requirement. Consider the following utility functions.

• Let u′ = (u′
1, . . . , u

′
n) denote the binary additive utility

functions defined as follows:
– u′

1 and u′
2 are all-zero utility functions.

– For all i ∈ {3, . . . , n} and j ∈M , let

u′
i(j) =

{
1 if j ≥ m− (c+ 1)(n− 2);

0 otherwise.

• For every t ∈ [T ], let ut = (ut
1, . . . , u

t
n) denote the bi-

nary additive utility functions defined as follows:
– ut

1 and ut
2 are defined as follows:

ut
1(j) = ut

2(j) =

{
1 if

⌊
j−1
2c+1

⌋
= t− 1;

0 otherwise,

for all j ∈M .
– For all i ∈ {3, . . . , n}, ut

i is exactly the same as u′
i

defined earlier.

Suppose for contradiction that there is an ε-DP algorithm
M that, with probability at least 0.5, outputs a connected
allocation that is EFc for its input utility functions. For each
t ∈ [T ], let At denote the set of allocations that are EFc for
ut. The assumption onM can be written as

Pr[M(ut) ∈ At] ≥ 0.5. (5)

Let ∼ denote the (agent × item)-level adjacency relation.
One can check that u′ ∼4c+2 ut for all t ∈ [T ]. Using this
fact together with group DP (Lemma 2.6), we have

Pr[M(u′) ∈ At] ≥ e−ε(4c+2) · Pr[M(ut) ∈ At]

(5)
≥ 0.5 · e−ε(4c+2). (6)

Lemma 4.9. A1, . . . ,AT are disjoint.

Due to space constraints, we defer the proof of Lemma 4.9
to the full version of our paper (Manurangsi and Suksom-
pong 2022b). The idea behind the proof is that, if there
were an allocation A contained in bothAt andAt′ for some
t < t′, there would have to be at least n − 3 cuts between
item m − (c + 1)(n − 2) and item m, a cut between item
(2c + 1)(t − 1) + 1 and item (2c + 1)t, and a cut between
item (2c + 1)(t′ − 1) + 1 and item (2c + 1)t′. Since these

intervals of items are pairwise disjoint, the n − 1 cuts must
be all the cuts in A. Based on this, we can then show that no
matter which agent the leftmost interval of A is assigned to,
A cannot be EFc for both ut and ut′ simultaneously.

Lemma 4.9 implies that

1 ≥
∑
t∈[T ]

Pr[M(u′) ∈ At]

(6)
≥ 0.5 · e−ε(4c+2) · T

≥ 0.5 · e−6cε ·
⌊m
8c

⌋
≥ 0.5 · e−0.06 logm · ⌊10

√
m⌋

≥ (0.5/
√
m) · (5

√
m) > 1,

where the third and fourth inequalities follow from our
choice of parameters c, T and the assumption that c ≥ 1.
This is a contradiction which establishes Theorem 4.8. □

For proportionality, we obtain a slightly weaker bound
where the logm term is replaced by log(m/n)/n. The proof
is similar to that of Theorem 4.8 and can be found in the full
version of our paper (Manurangsi and Suksompong 2022b).
Theorem 4.10. There exists a constant ζ > 0 such that,
for any ε ∈ (0, 1], there is no ε-DP algorithm that, for any
input binary additive utility functions, outputs a connected
PROPc allocation with probability at least 0.5, where c =⌊
ζ ·min

{
log(m/n)

εn , m
n ,

√
m
n

}⌋
.

5 Conclusion and Future Work
In this paper, we have studied the fundamental task of fair
division under differential privacy constraints, and provided
algorithms and impossibility results for approximate envy-
freeness and proportionality. There are several open ques-
tions left by our work. First, it would be useful to close the
gaps in terms of n; for example, our envy-freeness upper
bound for (agent× item)-level DP grows linearly in n (The-
orem 4.1) but our lower bound (Theorem 4.8) does not ex-
hibit this behavior. Another perhaps more interesting tech-
nical direction is to extend our lower bounds for (agent ×
item)-level DP to arbitrary (i.e., not necessarily connected)
allocations. Specifically, we leave the following intriguing
open question: Is there an (agent × item)-level ε-DP algo-
rithm that, with probability at least 0.99, outputs an EFc al-
location for c = Oε(1) regardless of the values of n and m?

While we have considered the original notion of DP pro-
posed by Dwork et al. (2006b), there are a number of mod-
ifications that could be investigated in future work. A com-
monly studied notion is approximate DP (also called (ε, δ)-
DP), which has an additional parameter δ ≥ 0 that specifies
the probability with which the condition Pr[M(X) = o] ≤
eε · Pr[M(X ′) = o] is allowed to fail (Dwork et al. 2006a).
The notion of DP that we use in this paper corresponds to the
case δ = 0 and is often referred to as pure DP. Several prob-
lems in the literature are known to admit approximate-DP
algorithms with better guarantees compared to pure-DP al-
gorithms (see, e.g., the work of Steinke and Ullman (2016)).
In light of this, it would be interesting to explore whether a
similar phenomenon occurs in fair division as well.
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