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Abstract
Digital advertising constitutes one of the main revenue
sources for online platforms. In recent years, some adver-
tisers tend to adopt auto-bidding tools to facilitate adver-
tising performance optimization, making the classical util-
ity maximizer model in auction theory not fit well. Some re-
cent studies proposed a new model, called value maximizer,
for auto-bidding advertisers with return-on-investment (ROI)
constraints. However, the model of either utility maximizer
or value maximizer could only characterize partial advertis-
ers in real-world advertising platforms. In a mixed environ-
ment where utility maximizers and value maximizers coexist,
the truthful ad auction design would be challenging since bid-
ders could manipulate both their values and affiliated classes,
leading to a multi-parameter mechanism design problem. In
this work, we address this issue by proposing a payment rule
which combines the corresponding ones in classical VCG and
GSP mechanisms in a novel way. Based on this payment rule,
we propose a truthful auction mechanism with an approxima-
tion ratio of 2 on social welfare, which is close to the lower
bound of at least 5

4
that we also prove. The designed auction

mechanism is a generalization of VCG for utility maximizers
and GSP for value maximizers.

Introduction
Digital advertising is one of the most successful applica-
tions of auction theory, and it serves as a primary source
of revenue for online platforms, such as Google, Face-
book, Alibaba, and Baidu. In a typical scenario of sell-
ing advertising slots, the online platforms conduct ad al-
location and compute corresponding payments for adver-
tisers by Vickrey-Clarke-Grove (VCG) mechanism (Vick-
rey 1961; Clarke 1971; Groves 1973) or generalized second
price (GSP) auction (Varian 2007; Edelman, Ostrovsky, and
Schwarz 2007). It is widely known that VCG is a truthful
mechanism, while GSP, as a more pervasive alternative in
industry, is not truthful but has envy-free Nash equilibria,
and all such equilibria yield no lower revenue than VCG.

The existing analysis on VCG and GSP mainly builds
upon the quasi-linear utility model, also called as utility
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maximizer (UM), i.e., an advertiser aims to optimize the dif-
ference between the value of the allocation and her payment.
However, in modern online advertising systems, many ad-
vertisers have started to use auto-bidding tools, where they
only set high-level constraints specifying a targeted return
on investment (ROI) constraint (i.e., a targeted minimum ra-
tio between the obtained value and the payment) under a
certain budget (Aggarwal, Badanidiyuru, and Mehta 2019;
He et al. 2021; Yang et al. 2019; Zhang, Yuan, and Wang
2014). When the ROI constraint is close to one, it could be
captured by the individual rationality property (Nisan et al.
2008) in the UM model. Nevertheless, when the targeted
ROI becomes large, the classical UM model could not cap-
ture the behaviors of advertisers in auto-bidding (Szyman-
ski and Lee 2006; Cavallo et al. 2017). As a consequence,
Wilkens, Cavallo, and Niazadeh (2016; 2017) proposed an-
other model for advertisers, called value maximizer (VM),
which specifies the value of allocation as her objective and
the payment as the second-order objective. It is empirically
shown in their work that, as long as the ROI requirement of
an advertiser is moderately high (above 2 or 3), her behav-
ior pattern would be close to that in the VM model. This
new model brings about an important theoretical result, i.e.,
GSP auction becomes a truthful mechanism for VMs, which
offers a new perspective on the prevalence of GSP. This re-
sult renders the VM model attractive for both the academics
(Niazadeh et al. 2022; Cavallo et al. 2017) and the industry
(Wang et al. 2021) in recent years.

However, either the model of UM or VM characterizes
only a part of advertisers, i.e., UMs represent the adver-
tisers with relatively low ROI constraints while VMs are
those bidders with relatively high ROI constraints. As the
ROI constraints of advertisers would be various in real-
world advertising platforms, a natural problem arises: how
to design a truthful mechanism when both classes of UMs
and VMs coexist in an advertising system? This problem in-
volves two aspects: 1) when the class information is pub-
lic, i.e., an advertiser could only misreport her value, and
2) when the class information is private, i.e., an advertiser
could misreport both her affiliated class and her value. Even
in the simpler former case, it is a nontrivial mechanism de-
sign problem as the strategic behaviors of advertisers are
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unclear in this setting, and apparently, the VCG or GSP
mechanism would not be truthful. The latter case is more
practical since advertisers can easily manipulate their ROI
constraints to change the corresponding class if they could
benefit. This private class information introduces substan-
tial challenges as the problem falls within the field of multi-
parameter mechanism design (Nisan et al. 2008), which is
hard to resolve in general.

In this work, we address the above problems by designing
truthful mechanisms for both cases with public classes and
private classes. We show that the following Mechanism for
mixed bidders with PUblic classes (MPU) is truthful with
respect to their values and guarantees optimal social wel-
fare: ranking advertisers by their bids for ad allocations, and
then charging UMs following the VCG payment rule and
charging VMs following the GSP payment rule. MPU is in-
tuitive but “unfair” for VMs to some extent since VMs may
suffer a higher payment with the same allocation compared
with UMs. This implies that MPU would be untruthful in the
case of private classes. Therefore, we further propose a new
Mechanism for mixed bidders with PRivate classes (MPR).
The key idea of MPR is to specify a payment for each slot
instead of each advertiser, which takes the maximum of the
VCG-style payment induced from the closest lower UM and
the GSP-style payment induced from the closest lower VM.
With this payment rule, MPR conducts the ad allocation by
filling the slots with all VMs in a bottom-up manner, and
then iteratively assigning a slot with the best utility for a
UM. We prove that this mechanism is truthful with respect
to both the value and class information, and at the same time,
it guarantees an approximation ratio of at most 2 on social
welfare. We also prove that no mechanisms could achieve a
better approximation ratio than 5

4 .
The main contribution of our work lies in the following

two aspects. On the one hand, we are the first to study truth-
ful mechanism design for the hybrid setting with the coex-
istence of both UMs and VMs, which offers interesting in-
sights into the combination of VCG and GSP mechanisms.
Both MPU and MPR reduce to VCG when all bidders are
UMs, and become GSP when all bidders are VMs. On the
other hand, our work takes a substantial step towards the un-
derstanding of mechanism design for bidders with ROI con-
straints, which has been an emerging topic in recent years
(Balseiro et al. 2021; Golrezaei, Lobel, and Paes Leme 2021;
Li et al. 2020). MPR implies that a truthful mechanism may
allocate higher slots to bidders with high ROI constraints
(i.e., VMs in our setting), although their bids are lower than
those with low ROI constraints.

The Model
We study the standard model of an advertising auction.
There are K ad slots, indexed by k ∈ {1, 2, ...,K} in a
bottom-up manner. The slot k has click-through-rate (CTR)
xk, and we assume that xK ≥ xK−1 ≥ ... ≥ x1 > 0. We
also use k = 0 with x0 = 0 to denote a dummy slot below
the lowest one. There is a set of bidders N = {1, 2, ..., n},
indexed by i, each of which has a private value vi for a
click. Without loss of generality, we assume n > K and

vi ̸= vj for each pair of bidders i and j for ease of presenta-
tion. An auction mechanism M picks an allocation outcome
Π = {π1, π2, ..., πK} and charges the price pi of a click for
each bidder i, where πk denotes the bidder whose ad is as-
signed the slot k. We also use ai to denote the index of the
slot allocated to bidder i, i.e., ai = k if πk = i.

We consider the setting where each bidder could be either
a utility maximizer (UM) or a value maximizer (VM). Their
definitions are described as follows:
Definition 1 (Utility Maximizer, UM). A utility maximizer
i strategizes to maximize her utility ui = vixai − pixai .

Definition 2 (Value Maximizer, VM (Wilkens, Cavallo, and
Niazadeh 2017)). A value maximizer i strategizes to max-
imize her objective ui = vixai

while keeping the payment
pi ≤ vi; among outcomes with equal objective, a lower
price is preferred.

Intuitively, a UM follows the standard model of bidders
in online advertising, while a VM prioritizes her obtained
allocation over her payment. For ease of presentation, we
also call the objective ui of a VM as her “utility”. We
use τi ∈ {UM,VM} to denote the class of bidder i, and
θi = (vi, τi) as her type1. We assume a bidder could misre-
port both her value and her class, i.e., a bidder may report her
type as θ̂i = {v̂i, τ̂i} with v̂i ̸= vi and/or τ̂i ̸= τi. Further-
more, we use θ to denote the type profile of all bidders, and
θ−i as that of all bidders except i. With these notations, we
define pi(θ̂i|θi, θ−i) as the payment of bidder i by reporting
her type as θ̂i under her true type θi and the type profile of
others θ−i, and ui(θ̂i|θi, θ−i) as the corresponding utility.

Two fundamental desiderata in mechanism design are in-
centive compatibility (IC) and individual rationality (IR).
Definition 3 (Incentive Compatibility, IC). A mechanism is
incentive compatible if and only if

ui(θi|θi, θ−i) ≥ ui(θ̂i|θi, θ−i), ∀θ̂i ̸= θi, θ−i, i ∈ N .

Definition 4 (Individual Rationality, IR). A mechanism is
individually rational if and only if

pi(θi|θi, θ−i) ≤ vi, ∀θ−i, i ∈ N .

In other words, IC guarantees that all bidders in the mecha-
nism do not have incentives to misreport their types, IR guar-
antees that the bidders would never suffer a negative utility
when truthfully bidding. We note that we will loosely use
the term “truthful” to describe a mechanism that is both IC
and IR. It is well-known that VCG is truthful for UMs. In
recent years, it is also proved that GSP is truthful for VMs
(Wilkens, Cavallo, and Niazadeh 2017). In this work, our
goal is to design a truthful mechanism for mixed bidders
while maximizing the overall welfare. Here, the mixed bid-
ders could be either UMs or VMs.

It is worth noting that the classical concept of social wel-
fare, i.e., the sum of the utilities of all bidders and the rev-
enue of the seller, is not well-defined for VMs, because
the transaction amount between bidders and the seller could

1We distinguish the terms “class” and “type” in this work to
facilitate exposition.
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not be canceled in the social welfare calculation, different
from that of UMs. Therefore, we borrow a concept of liq-
uid social welfare (LSW) from previous literature on mech-
anism design for budget-constrained bidders (Dobzinski and
Paes Leme 2014; Deng et al. 2021).

Definition 5 (Liquid Social Welfare, LSW). The liquid so-
cial welfare of an allocation outcome Π in a mechanism is
the sum of the maximum willingness-to-pay of all bidders for
the allocation, i.e.,

Wel(Π) =
K∑

k=1

vπk
xk.

With the definition of LSW, we can easily obtain that VCG
is LSW-optimal for UMs and GSP is LSW-optimal for VMs.
Therefore, when we strive to design an LSW-optimal mecha-
nism for mixed bidders, a natural requirement is Robustness:

Definition 6 (Robustness). A mechanism is robust if the out-
come is the same as VCG when all bidders are UMs, and it
is the same as GSP when all bidders are VMs.

Robustness guarantees that the mechanism is a natural gen-
eralization from existing mechanisms.

In summary, a desired auction mechanism should be IC,
IR, robust, and LSW-optimal. Moreover, since we focus on
truthful mechanisms, we do not distinguish θi and θ̂i when
clear from the context.

Warming Up: Public Classes
To begin with, we study a basic setting where the classes
of bidders are public. In such case, the problem falls within
the field of single-parameter mechanism design (Nisan et al.
2008), which would be simpler but useful for theoretical un-
derstanding. We propose the following Mechanism for bid-
ders with PUblic classes (MPU):

Mechanism 1 (MPU).

• Allocation: Ranking the bidders by their values, and al-
locating slots accordingly from top to bottom.

• Payment: For each bidder i with 1 ≤ ai ≤ K, let j be
the bidder in the next lower slot, i.e., aj = ai − 1.

– If i is a UM, then pi =
1

xai

∑aj

k=0 vπk
(xk+1 − xk);

– If i is a VM, then pi = vj .

Intuitively, MPU directly allocates the slots to bidders by
their values, regardless of their classes. Furthermore, the
payment of UMs follows VCG, and that of VMs follows
GSP (recall that we use bottom-up indexes for slots). We
next show that this mechanism is IC, IR, and robust, which
also guarantees the optimal LSW.

Theorem 1. When the classes of bidders are public infor-
mation, MPU is IC, IR, robust, and LSW-optimal.

Following the previous works on UM (Nisan et al. 2008)
and VM (Wilkens, Cavallo, and Niazadeh 2017), the proof
of Theorem 1 is straightforward, so we omit it here.

Private Classes
In the preceding section, we have developed the optimal
mechanism for mixed bidders with public classes. However,
when the class information is private, the problem turns out
to be a multi-parameter mechanism design problem, which
is hard to resolve in general. We can first examine whether
MPU is IC for the setting of private classes. It could be
easily observed that, if a VM misreports her class as UM
while truthfully reporting her value, she may enjoy a lower
payment without changing her allocation. In other words,
MPU is “unfair” to VMs in some sense, and this unfairness
may bring the probability of strategic manipulation when the
class information is private.

Mechanism for Mixed Bidders with Private Classes
The above analysis implies that, in a truthful mechanism
for the setting of private classes, the payment of a bidder
should rely only on her allocated slot, rather than her class.
In other words, suppose a bidder is allocated an identical
slot in two cases while the allocation outcomes for others
are also the same, then no matter she is a UM or VM, the
payment should be the same. This requirement leads us to
devise a payment rule for slots instead of for bidders, and
this rule should combine VCG and GSP based on the types
of bidders below the slot. Therefore, we propose the price
of a slot as the maximum of the following two terms: 1)
the VCG-style payment derived from the closest lower UM,
and 2) the GSP-style payment derived from the closest lower
VM. Specifically, for a slot k ≥ 1, let the closest VM below
k be iV , located at kV , and the closest lower UM be iU ,
located at kU , then the price of slot k is given as

p(k) = max{p̂(k)U , viV }, (1)

where

p̂
(k)
U =

1

xk
(p(kU )xkU

+ viU (xk − xkU
)). (2)

When there is no VM or UM below slot k, we assign the
corresponding payment term as 0. Given this payment rule,
we propose a Mechanism for mixed bidders with PRivate
Classes (MPR) which is IC, IR, and robust, while achieving
a desired approximation ratio in terms of LSW.

The complete pseudo-code of MPR is presented in Algo-
rithm 1. The key idea behind MPR is to fill the slots with
all VMs, and then iteratively assign a slot with the best util-
ity for a UM. In Algorithm 1, MPR first sorts the bidders
by their values and obtains the set of the top K bidders as
N (Lines 2-3). The bidder with the (K + 1)th highest value
would be allocated the dummy slot indexed by 0 as a basis
for pricing (Line 4). We denote S as all the UMs in N , and T
as all the VMs correspondingly (Lines 5-6). Next, MPR fills
the lowest slots with all the VMs in T according to their
values (Lines 7-9). Then we compute the prices for slots
1 ≤ k ≤ |T | + 1 following (1) based on the allocated VMs
(Line 10). Indeed, since no UMs in S are allocated slots at
this step, the term of p̂(k)U is set to 0, hence the price com-
putation could be simplified as the GSP payment rule. After
calculating the prices for each slot, we determine the alloca-
tion for UMs. The UM not yet assigned with the lowest value
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Algorithm 1: MPR
Input: The type profile θ of all bidders, the CTR xk

of all slots.
Output: The allocation and payment outcome for

each bidder i.
1 pi ← 0, ∀i ∈ {1, ..., n};
2 Sort all bidders by their values;
3 Let N be the set of top K bidders by their values, and

i be the (K + 1)th highest one;
4 π0 ← i;
5 S ← the set of all UMs in N ;
6 T ← the set of all VMs in N ;
// Allocate slots to all VMs in T.

7 if |T | > 0 then
8 for k from 1 to |T | do
9 πk ← the VM with the kth lowest value in T ;

10 Update the payment p(k) for slots 1 ≤ k ≤ |T |+ 1
by equation (1);
// Allocate slots to UMs iteratively.

11 while |S| > 0 do
12 i← argminj∈S{vj};
13 k̄ ← K − |S|+ 1;
14 ki ← argmax1≤k≤k̄{xk(vi − p(k))};
15 if ki ̸= k̄ then
16 // Move existing bidders up one slot.

for k from k̄ down to ki + 1 do
17 πk ← πk−1;

18 πki ← i;
19 Update the payment p(k) for slots

ki + 1 ≤ k ≤ k̄ + 1 by equation (1);
20 S ← S\{i};
21 pπk

← p(k), ∀k ∈ {1, ...,K};
22 Return πk and pi for each slot k and each bidder i.

is picked as i, and we choose the optimal slot ki for her, i.e.,
the slot with the highest utility (if there is a tie, choose the
lowest one) (Lines 12-14). It is noteworthy that there are two
kinds of choices of slots: 1) ki = k̄ = K − |S|+ 1, i.e., the
slot above all assigned bidders (note that K = |T | + |S| in
the first round and S will be updated as the set of all unas-
signed UMs during the process); and 2) ki < k̄, i.e., a slot
which an existing bidder occupies. In the former choice, we
only need to allocate the slot ki to i. In the latter choice, we
first move all bidders at and above slot ki up one slot and
then allocate the slot ki to i (Lines 15-18). Next, the prices
of slots above ki are updated based on the value of the newly
inserted UM (Line 19). Then the UM i is removed from S,
and the process is repeated until all UMs in S are assigned a
slot (Line 20). Finally, if a bidder is assigned the slot k, her
payment for a click would be the price of the slot; otherwise,
her payment would be 0 (Line 21).

Next, we provide an example to illustrate the running pro-
cess of MPR. One can observe from the example that, inter-
estingly, VMs with lower values may obtain a higher slot

0

3

2

1

4

slot CTR

0.4

0.3

0.2

0.1

0

bidder class value

A VM 6

B VM 7

C VM 8

D UM 9

E UM 10

Figure 1: The illustration of four slots with their CTRs, and
five bidders with their classes and values in Example 1.

than UMs with higher values.
Example 1. Assume there are four slots and five bidders,
and their CTRs or types are presented in Fig. 1. In MPR, we
first place the bidder with the fifth highest value, i.e., bidder
A, at the dummy slot 0. Then the remaining VMs B and C are
placed at slots 1 and 2, respectively. We can hence calculate
the prices for slots 1, 2 and 3, i.e., p(1) = 6, p(2) = 7, p(3) =
8. With these prices, we get the utilities of bidder D at each
slot: 0.3, 0.4, and 0.3 for slots 1, 2, and 3, respectively. Then
the optimal one, i.e., slot 2 is allocated to her, and bidder
C is moved to slot 3. Next, the prices of slots 3 and 4 are
updated as p(3) = 23

3 , p(4) = 8 by (1). Finally, we get the
utilities of bidder E at each slot: 0.4, 0.6, 0.7, and 0.8 for
slots 1, 2, 3, and 4, respectively, and thus, slot 4 is allocated
to bidder E. The payments of bidders for a click are given by
the corresponding prices of their obtained slots.

Game Theoretical Properties
Before proving game theoretical properties of MPR, we first
define a concept of marginal payment increase (Bachrach
et al. 2016), to measure the cost performance for a bidder
to obtain a higher slot. Based on this concept, we provide
several lemmas to help understand the ideas behind MPR,
which are helpful to the proof of IC and IR.
Definition 7. For two slots k′ > k, the marginal increase of
payment is defined as

∆(k, k′) ≜
pπk′xk′ − pπk

xk

xk′ − xk
. (3)

Lemma 1. If a UM i is allocated a slot ai = k, we have
∆(k, k + 1) = vi.

Proof. For slot k+1, UM i is the closest lower UM, and we
denote î as the closest lower VM at slot k̂ (if there does not
exist such VM, we can directly observe that ∆(k, k + 1) =
vi). As i is a UM, her utility would always be non-negative,
i.e., p(k) ≤ vi, otherwise, she would be assigned at least
the slot k = 1, yielding a non-negative utility. Since î is
also the closest lower VM for i, we can further derive that
vî ≤ p(k) ≤ vi. Therefore, in the maximum function of
computing p(k+1) by (1), we have that the first term (the
VCG-style payment from i) is always no less than the sec-
ond term (the GSP-style payment from î). This implies that
∆(k, k + 1) = vi.
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Lemma 2. For two bidders i and j, if vi > vj and τi = τj ,
i.e., they are both UMs or both VMs, then we have ai > aj .

Proof. For VMs, it is straightforward that bidder i is always
allocated a higher slot than j during the algorithm process.
For UMs, without loss of generality, we first assume that i
is the UM with the lowest slot such that ai < aj for a UM
j with vi > vj . Then we have that the allocation below ai
would be the same in the rounds of assigning i and assigning
j. Therefore, if ai < aj − 1, we know that the bidder j has
faced the same choice of slot ai with the same price, but she
chose aj . As vi > vj and xaj > xai , by the utility function
of UMs, we have bidder i too prefers slot aj to ai, leading
to a contradiction. If ai = aj − 1, by lemma 1, we obtain
that bidder i prefers slot aj + 1 to aj as the marginal price
∆(aj , aj + 1) = vj < vi, which is a contradiction.

Lemma 3. For two bidders i and j, if bidder i is a VM and
j is a UM, and ai < aj , then we have vi < vj .

Proof. Armed with Lemma 2, it suffices to prove the state-
ment for neighboring slots, i.e., let ai = k, then aj = k+ 1.
Assume vi > vj for contradiction, then the price for bidder
j is at least vi, i.e., j suffers a negative utility. However, she
can at least choose the lowest slot with non-negative utility,
as discussed earlier, which is a contradiction.

Lemma 4. If a UM i is allocated a slot ai = k, then we
have ∆(k, k′) ≥ vi, ∀k′ > k.

Proof. For k′ = k + 1, we have proved the statement in
Lemma 1. Next, for k′ > k + 1, we consider two cases: 1)
there does not exist a UM between slot k and k′; 2) there
exists at least one UM between slot k and k′. In the former
case, let j = πk′−1, then we know that j is a VM, and the
closest lower UM is i, so we get that

pπk′ = max{p̂(k
′)

U , vj} ≥ p̂
(k′)
U , (4)

where
p̂
(k′)
U =

1

xk′
(pπk

xk + vi(xk′ − xk)). (5)

Combining (4) and (5), we can derive that ∆(k, k′) ≥ vi.
In the latter case, i.e., there exists a set of UMs U between k
and k′. By Lemma 2, we have the value of any UM in the set
is higher than vi. Then, for any pair of slots of neighboring
UMs k+, k−, such that πk+ , πk− ∈ U ∪ {i} with k+ > k−,
we can obtain ∆(k−, k+) ≥ vk− ≥ vi, given the above
analysis of the the former case. Also, let k′′ be the highest
slot of UMs in U , we have ∆(k′′, k′) ≥ vk′′ > vi. Finally,
the marginal increase of payment between k and k′ would be
a linear combination of the ones for each neighboring pair of
bidders, that is, ∆(k, k′) ≥ vi.

Corollary 1. MPR is a robust mechanism.
This corollary could be derived directly from the algo-

rithm process of MPR. It implies that MPR is a good gener-
alization and combination of VCG and GSP, which matches
our intuition well. Building upon the above results, we next
prove that MPR is IR and IC.
Theorem 2. MPR is individually rational.

Proof. For UMs, the proof is straightforward since a UM
could at least choose the lowest slot, achieving a non-
negative utility. For VMs, by Lemma 2, we first have that the
value of all other VMs below a VM i should always be lower
than her, hence the price induced from the closest lower VM
is lower than vi, and it suffices to analyze the price induced
from the closest lower UM. We denote this UM as j (if such
UM does not exist, then the theorem trivially holds). Since j
chooses the slot aj instead of the slot ai when allocating the
slot to her (note that i is located at slot ai − 1 in this round),
we can derive that

xaj
(vj − p(aj)) ≥ xai

(vj − p(ai)), (6)

where p(aj) and p(ai) are the prices of slot aj and ai at the
round of allocating bidder j, respectively. Furthermore, by
the payment rule (1), we know that there are two possibili-
ties: 1) p(ai) = vi; 2) p(ai) = 1

xai
(p(aĵ)xaĵ

+vĵ(xai−xaĵ
))

where ĵ is the UM immediately below j. Since vĵ < vj , we
can derive that bidder j would prefer slot ai than aj if the
latter probability occurs. Therefore, we obtain

p(ai) = vi. (7)

Combining (6) and (7), we have that

vi ≥
1

xai

(p(aj)xaj
+ vj(xai

− xaj
)). (8)

Since p(aj) remains the same in the final outcome as in the
round of allocating j, (8) indicates that i would enjoy a price
no more than her value, which concludes the proof.

Theorem 3. MPR is incentive compatible.

Proof. We discuss the proof for UMs and VMs separately.
First, let bidder i be a UM. We denote j and ĵ as the clos-

est UMs below and above bidder i in the truthful case, re-
spectively (if such UMs do not exist, we can assume virtual
ones at slot 0 and K + 1). Accordingly, we use aj and aĵ
to denote their slots in the truthful setting, and a′j and a′

ĵ
the

slots in the setting where i misreports her type. Next, no mat-
ter what class the bidder i reports, we consider the following
three cases: 1) a′i, i.e., the slot of bidder i when misreporting,
is between a′j and a′

ĵ
; 2) a′i is higher than a′

ĵ
; 3) a′i is lower

than a′j . In the first case, we have that the outcome until the
round of allocating bidder j remains the same as the truthful
setting. So, bidder i faces both the choices of ai and a′i with
the same price in the truthful setting, and she prefers ai, im-
plying that she would not get better off when misreporting.
In the second case, by Lemma 4, we have that the utility of
bidder i at a′i is always no better than that at slot a′

ĵ
by re-

porting her type as (vĵ − ϵ, UM), where ϵ is a sufficiently
small positive number. Furthermore, by the analysis of the
above case, we have that bidder i prefers ai to the outcome
of misreporting (vĵ − ϵ, UM). In the third case, let j̃ be the
closest UM above a′i. We can observe that the allocation of
all the slots below a′i should be the same as the truthful set-
ting. Therefore, if aj̃ ̸= a′i, j̃ have faced the same choices
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of a′i and aj̃ and she prefers aj̃ in the round of allocating j̃
in the truthful setting. Since vi > vj̃ , we have bidder i too
prefers aj̃ and could obtain it by misreporting (vj̃ − ϵ, UM)
with sufficiently small ϵ. Then by Lemma 1, we have bidder
i prefers the slot immediately above j̃, i.e., aj̃+1, to aj̃ . One
can run this process iteratively if j > j̃, until aj̃ + 1 > a′j .
Finally, we get that bidder i prefers ai again by the analysis
of the first case.

Second, let bidder i be a VM. If she misreports her type
and obtains a lower slot, obviously, her utility would de-
crease by the definition of VMs. If she misreports her type
and obtains a slot higher than a VM with a higher value, we
can easily observe that the payment would be higher than i’s
value, i.e., the utility of bidder i would also decrease. There-
fore, we only need to consider the case where bidder i is allo-
cated the same or a higher slot by misreporting her type, but
not exceeding any VMs with higher values. By Lemma 2,
the order of UMs, as well as the order of other VMs, will not
change, so we have that all the UMs below bidder i should
not exceed i in such case; otherwise, she could not obtain a
higher or the same slot. Let j be the highest UM below bid-
der i in the truthful case, and accordingly, let ĵ be the lowest
UM above bidder i. Then we can derive that the allocation
until the round of allocating bidder j would be identical to
the truthful case when i misreports her type. Under these re-
strictions, we obtain that bidder i must be above bidder ĵ
when she is untruthful; otherwise, she would be allocated
at most the same slot ai and pay the same price. Therefore,
we discuss the following two cases in the truthful setting: 1)
aĵ = ai + 1, and 2) aĵ > ai + 1.

If aĵ = ai + 1, since UM ĵ prefers the slot aĵ in the
truthful setting, we have that

xk(vĵ − p(k)) < xaĵ
(vĵ − p(aĵ)) ≤ xaĵ

(vĵ − vi), (9)

where k is any slot below aĵ . Note that we do not need to
consider the equality in the first inequality, as UMs would
break ties by choosing the lower slots. In the untruthful case,
we get that bidder i is allocated at least slot aĵ and bidder ĵ
is allocated a lower slot k. Then by (1) and (9) we get

p(aĵ)xaĵ
≥ xkp

(k) + vĵ(xaĵ
− xk) > vixaĵ

, (10)

that is, bidder i would suffer a negative utility at slot aĵ . Fur-
thermore, one can easily observe that the prices of slots are
non-decreasing during the algorithm process, i.e., the utility
of bidder i is still negative at higher slots.

If aĵ > ai+1, we have that there exist other VMs between
i and ĵ. We consider the following two cases: 1) i reports her
class as VM, and 2) i reports her class as UM. In the former
case, as i could only increase her value to obtain a higher slot
(without exceeding higher VMs), the price of slot aĵ is not
determined by the price of VM i, nor do the prices of slots
k ≤ ai. Then we know that ĵ would not choose a slot at or
below ai when i misreports her value. In the latter case, let
i′ be the highest VM between i and ĵ in the truthful setting.
Since ĵ chooses the slot above i′ in the truthful setting but

chooses a slot at or below ai in the untruthful setting, we
can get that the price of the slot immediately above i′ in
the round of allocating i is derived from UM ĵ, making it
preferred by i, compared with lower slots. This implies that i
would finally be allocated a slot above i′, yielding a negative
utility. Therefore, we can conclude that a VM could never
enjoy a higher utility by misreporting her type.

Approximation Ratio on LSW
Theorem 4. MPR achieves an approximation ratio of at
most 2 on LSW, i.e., WelMPR ≥ 1

2WelOPT , where
WelOPT = maxΠWel(Π).

Proof. By Lemma 2 and 3, we have that the only probabil-
ity for the event of WelMPR < WelOPT is that, some VMs
with lower values are allocated higher slots than UMs with
higher values. We now consider each such VM i in MPR in
a bottom-up sequence and prove that changing the slot of i
with lower UMs to fit the optimal outcome leads to a differ-
ence in LSW no more than that of the welfare achieved by
i in MPR. Then the overall difference in LSW of MPR and
the optimal outcome would be no more than that of MPR,
resulting in an approximation ratio of 2.

First, let i be the lowest VM in MPR who locates at a
higher slot than some UMs with higher values than her. We
denote Si as the set of UMs below i with higher values and
index them by jc with 1 ≤ c ≤ |Si| in a bottom-up manner.
We also use kc to denote the slot of jc in MPR. By Lemma
2, we know that there are no VMs between i and UMs in Si,
otherwise, i would not be the lowest one of interest. Thus
we have kc+1 = kc + 1 for any 1 ≤ c ≤ |Si| − 1, and
ai = k|Si| + 1. Next, we denote p̂Si as the payment purely
induced from the UMs in Si, that is

p̂Si =
1

xai

vk|Si|
(xi − xk|Si|

) +

|Si|−1∑
c=1

vjc(xkc+1
− xkc

)

 .

(11)
Note that p̂Si would be no more than pi by equation (1), then
by the IR property of MPR, we have

vixai
≥ pixai

≥ p̂Sixai
. (12)

Next, we change the allocation of i and UMs in Si towards
the optimal outcome and denote Di as the difference in LSW
after and before the change. Then we have that

Di = vj|Si|
(xi − xk|Si|

) +

|Si|−1∑
c=1

vjc(xkc+1
− xkc

)


− vi(xai

− xk1
)

≤ vixai
,

(13)
where the equality holds because after the change, all UMs
in Si are moved up one slot, and i is moved down from ai
to k1. The inequality comes from equations (11) and (12).

This way, we have moved i and corresponding UMs to-
wards the optimal outcome and have proved that Di ≤ vixai

for the lowest VM. In the next step, we set i as the new low-
est VM with non-empty Si, and again, we denote kc as the
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Figure 2: A counter-example for Theorem 5.

assigned slots of UMs in the corresponding set of Si in the
current allocation. Then one can observe that the newly in-
duced p̂Si is no more than that induced by the allocation in
MPR, and hence, all of the above analyses still hold. So we
can repeat this process for all such VMs.

Next, the difference in LSW between MPR and the opti-
mal outcome is given by

WelOPT −WelMPR =
∑

Si ̸=∅
Di ≤

∑
Si ̸=∅

vixai
≤WelMPR.

(14)
The first equation comes from that we consider VMs in
a bottom-up order, so that the difference induced by each
VM could be computed separately. Finally, we obtain that
WelMPR ≥ 1

2WelOPT .

Theorem 5. No mechanisms that are IC, IR, and robust
could guarantee an approximation ratio lower than 5

4 in
terms of LSW.

Proof. We use a counter-example to prove this theorem. As-
sume an IC, IR and robust mechanism M̃ achieves an ap-
proximation ratio R, which is lower than 5

4 on LSW. As il-
lustrated in Fig. 2, let there be two slots with CTRs of 0.1
and 0.2 (and a dummy slot with CTR of 0). There are three
bidders A, B, and C. The types of A and B are (ϵ, V M) and
(2+ϵ, V M), respectively, where ϵ is a sufficiently small pos-
itive number. We consider four cases for the type of bidder
C: Case 1) (4, UM); Case 2) (4, V M); Case 3) (1, UM);
Case 4) (1, V M). Since the approximation ratio R on LSW
is lower than 5

4 in M̃ , the allocation outcomes are certain:
in the first two cases, bidders A, B, and C get slot 0, 1, 2,
respectively; in the last two cases, bidders A, B, and C get
slot 0, 2, 1, respectively. Otherwise, one can check that any
allocation outcome would result in an approximation ratio
higher than R. Then, as discussed in previous sections, the
payments of bidder C in Case 1 and Case 2 should be the
same, denoted as ph; otherwise, C may misreport her class.
This claim also holds for Case 3 and Case 4, where the pay-
ment is denoted as pl. Next, in Case 1, if C misreports her
value as 1, the outcome would be the same as in Case 3, and
her utility should be no more than truthfully reporting 4 by
the requirement of IC. Hence we have

0.2(4− ph) ≥ 0.1(4− pl), (15)

which further implies that

2ph − pl ≤ 4. (16)

It is noteworthy that, in Case 2 and Case 4, all bidders are
VMs, thus by the requirement of robustness, we can use GSP

to compute the payments, i.e., ph = 2+ ϵ and pl = ϵ; hence
we have 2ph − pl = 4 + ϵ > 4, which contradicts with
equation (16). This concludes our proof.

Related Work
The study on VMs stems from the prosperity of auto-bidding
techniques in recent years, where bidders only specify their
targeted ROI and budget constraints (Zhang, Yuan, and
Wang 2014; Aggarwal, Badanidiyuru, and Mehta 2019; He
et al. 2021). This new pattern leads researchers to devise
more practical models and mechanisms for auto-bidding ad-
vertisers. Golrezaei, Lobel, and Paes Leme (2021) and Bal-
seiro et al. (2021) considered ex-ante ROI constraints while
(Cavallo et al. 2017) considered ex-post ROI constraints.
They developed fruitful understandings of the characteri-
zations of IC and revenue-maximizing mechanism design.
However, when the allocation value and the target ROI are
both private, it is hard to design optimal mechanisms due
to the fundamental difficulty of multi-parameter mechanism
design. Therefore, two independent models of VMs were
proposed in (Wilkens, Cavallo, and Niazadeh 2017) and
(Fadaei and Bichler 2017), to characterize bidders with rel-
atively high ROI constraints in a light way. Both of these
two works considered that bidders aim to maximize their al-
location value, while the former one further assumed that a
bidder set payment minimization as her second-order objec-
tive, making GSP a truthful mechanism. Our work inherits
the model in the former work and extends it to a more prac-
tical environment where VMs and UMs coexist.

Another stream of research related to ours is the mixture
of VCG and GSP mechanisms, where the main goal is to
transition the existing GSP mechanism into VCG mecha-
nism to adapt to modern complex advertising environments.
The work in (Bachrach et al. 2016) proposed a transitional
mechanism, which is similar to ours. However, they consid-
ered all bidders as traditional utility maximizers, while some
are adaptive to VCG and some are non-adaptive and still
use the GSP bids. Moreover, they took the classes of “adap-
tive” or “non-adaptive” bidders as public information, while
we consider the private class information. Hummel (2018)
further took the externality into account, and they aimed to
guarantee that VCG bidders would bid truthfully, and GSP
bidders could not obtain the same allocation at a lower price
by misreporting their bids. This model for GSP bidders is
different from our concept of VMs, and they also took the
classes of bidders as public information.

Conclusion
In this work, we have investigated mechanism design for
mixed environments with both UMs and VMs. This work
sheds light on future studies on private ROI constraints and
also leaves several open problems. The foremost one is to
close the gap between the approximation ratio’s lower and
upper bound. We conjecture that MPR is in some way the
right mechanism for this problem, and it would be interest-
ing to make this more formal. Moreover, we will generalize
our proposed mechanism for bidders with various types of
ROI constraints.
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