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Abstract

We consider a voting scenario in which the resource to be
voted upon may consist of both indivisible and divisible
goods. This setting generalizes both the well-studied model
of multiwinner voting and the recently introduced model of
cake sharing. Under approval votes, we propose two vari-
ants of the extended justified representation (EJR) notion
from multiwinner voting, a stronger one called EJR for mixed
goods (EJR-M) and a weaker one called EJR up to 1 (EJR-1).
We extend three multiwinner voting rules to our setting—
GreedyEJR, the method of equal shares (MES), and pro-
portional approval voting (PAV)—and show that while all
three generalizations satisfy EJR-1, only the first one provides
EJR-M. In addition, we derive tight bounds on the proportion-
ality degree implied by EJR-M and EJR-1, and investigate the
proportionality degree of our proposed rules.

1 Introduction
In multiwinner voting—a “new challenge for social choice
theory”, as Faliszewski et al. (2017) put it—the goal is to
select a subset of candidates of fixed size from a given set
based on the voters’ preferences. The candidates could be
politicians vying for seats in the parliament, products to be
shown on a company website, or places to visit on a school
trip. A common way to elicit preferences from the voters is
via the approval model, wherein each voter simply speci-
fies the subset of candidates that he or she approves (Kil-
gour 2010; Lackner and Skowron 2023). While (approval-
based) multiwinner voting has received substantial attention
from computational social choice researchers in the past few
years, a divisible analog called cake sharing was recently in-
troduced by Bei, Lu, and Suksompong (2022). In cake shar-
ing, the candidates correspond to a divisible resource such as
time periods for using a facility or files to be stored in cache
memory. Following the famous resource allocation problem
of cake cutting (Robertson and Webb 1998; Procaccia 2016),
this divisible resource is referred to as a “cake”.

In this paper, we study a setting that simultaneously gen-
eralizes both multiwinner voting and cake sharing, which
we call (approval-based) voting with mixed goods. Specifi-
cally, in our setting, the resource may consist of both indivis-
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ible and divisible goods.1 This generality allows our model
to capture more features of the resource than either of the
previous models. For example, when reserving time slots,
it is possible that some hourly slots must be reserved as a
whole, while other slots can be booked fractionally. Like-
wise, in cache memory storage, certain files may need to be
stored in their entirety, whereas other files can be broken
into smaller portions. Combinations of divisible and indivis-
ible goods have been examined in the context of fair divi-
sion, where the resource is to be divided among interested
agents and the entire resource can be allocated (Bei et al.
2021a,b; Bhaskar, Sricharan, and Vaish 2021). By contrast,
we investigate mixed goods in a collective choice context,
where only a subset of the resource can be allocated but the
allocated resource is collectively shared by all agents.2

There are multiple criteria that one can use to select a
collective subset of resource based on the approval votes.
For example, one could try to optimize the social welfare—
the sum of the agents’ utilities—or the coverage—the num-
ber of agents who receive nonzero utility. A representation
criterion that has attracted growing interest is justified rep-
resentation (JR) (Aziz et al. 2017). In multiwinner voting,
if there are n agents and k (indivisible) goods can be cho-
sen, then JR requires that whenever a group of at least n/k
agents approve a common good, some agent in that group
must have an approved good in the selected set. A well-
studied strengthening of JR is extended justified represen-
tation (EJR), which says that for each positive integer t, if
a group of at least t · n/k agents approve no fewer than
t common goods (such a group is said to be t-cohesive),
some agent in that group must have no fewer than t approved
goods in the selected set. Aziz et al. (2017) showed that the
proportional approval voting (PAV) rule always outputs a set
of goods that satisfies EJR. In cake sharing, Bei et al. (2022)
adapted EJR by imposing the condition for every positive
real number t, and proved that the resulting notion is sat-
isfied by the maximum Nash welfare (MNW) rule.3 Can we
unify the two versions of EJR for our generalized setting in

1Since a “candidate” usually refers to an indivisible entity, we
use the term “good” instead from here on.

2We henceforth use the term “agent” instead of “voter”.
3See Appendix A in the extended version of their work. They

also noted that JR does not admit a natural analog for cake sharing,
since there is no discrete unit of cake.
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such a way that the guaranteed existence is maintained?4

1.1 Our Contributions
In Section 3, we introduce two variants of EJR suitable for
the mixed-goods setting. The stronger variant, EJR for mixed
goods (EJR-M), imposes the EJR condition for any positive
real number t whenever a t-cohesive group commonly ap-
proves a resource of size exactly t. The weaker variant, EJR
up to 1 (EJR-1), again considers the condition for every pos-
itive real number t but only requires that some member of
a t-cohesive group receives utility greater than t− 1. While
EJR-M reduces to the corresponding notion of EJR in both
multiwinner voting and cake sharing, and therefore offers a
unification of both versions, EJR-1 does so only for mul-
tiwinner voting. We then extend three multiwinner voting
rules to our setting: GreedyEJR, the method of equal shares
(MES), and proportional approval voting (PAV). We show
that GreedyEJR-M, our generalization of GreedyEJR, satis-
fies EJR-M (and therefore EJR-1), which also means that an
EJR-M allocation always exists. On the other hand, we prove
that our generalizations of the other two methods provide
EJR-1 but not EJR-M. Furthermore, while GreedyEJR-M
and Generalized MES guarantee the cake version of EJR in
cake sharing, Generalized PAV does not.

In Section 4, we turn our attention to the concept of pro-
portionality degree, which measures the average utility of
the agents in a cohesive group (Skowron 2021). We derive
tight bounds on the proportionality degree implied by both
EJR-M and EJR-1, with the EJR-M bound being slightly
higher. We also investigate the proportionality degree of the
three rules from Section 3; in particular, we find that Gener-
alized PAV has a significantly higher proportionality degree
than both GreedyEJR-M and Generalized MES.

An overview of our results can be found in Table 1.

2 Preliminaries
Let N = {1, 2, . . . , n} be the set of agents. In the mixed-
goods setting, the resource R consists of a cake C = [0, c]
for some real number c ≥ 0 and a set of indivisible goods
G = {g1, . . . , gm} for some integer m ≥ 0. Assume with-
out loss of generality that max(c,m) > 0. A piece of cake
is a union of finitely many disjoint (closed) subintervals
of C. Denote by ℓ(I) the length of an interval I , that is,
ℓ([x, y]) := y − x. For a piece of cake C ′ consisting of a
set of disjoint intervals IC′ , we let ℓ(C ′) :=

∑
I∈IC′ ℓ(I).

A bundle R′ consists of a (possibly empty) piece of cake
C ′ ⊆ C and a (possibly empty) set of indivisible goods G′ ⊆
G; the size of such a bundle R′ is s(R′) := ℓ(C ′)+ |G′|. We
sometimes write R′ = (C ′, G′) instead of R′ = C ′ ∪G′.

We assume that the agents have approval preferences
(also known as dichotomous or binary), i.e., each agent
i ∈ N approves a bundle Ri = (Ci, Gi) of the resource.5

4As further evidence for the generality of our setting, we re-
mark that, as Bei et al. (2022, Sec. 1.2) pointed out, cake sharing
itself generalizes another collective choice setting called fair mix-
ing (Aziz, Bogomolnaia, and Moulin 2020).

5Approval preferences can be given explicitly as part of the in-
put for algorithms, so we do not need the cake-cutting query model
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Figure 1: A mixed-goods instance with two agents N =
{1, 2}, two indivisible goods G = {g1, g2}, a cake C of
length 0.9, and α = 2. Agent 1 approves R1 = {g1} ∪ C,
while agent 2 approves R2 = {g2} ∪ C. If the allocation
A = {g1, g2} is chosen, both agents receive a utility of 1.

The utility of agent i for a bundle R′ is given by ui(R
′) :=

s(Ri∩R′) = ℓ(Ci∩C ′)+ |Gi∩G′|. Let α ∈ (0, c+m] be a
given parameter, and assume that a bundle A with s(A) ≤ α
can be chosen and collectively allocated to the agents;6 we
also refer to an allocated bundle as an allocation. An in-
stance consists of the resource R, the agents N and their ap-
proved bundles (Ri)i∈N , and the parameter α. We say that
an instance is a cake instance if it does not contain indivisi-
ble goods (i.e., m = 0), and an indivisible-goods instance if
it does not contain cake (i.e., c = 0). An example instance is
shown in Figure 1.

A mechanism or rule M maps any instance to an alloca-
tion of the resource. For any property P of allocations, we
say that a rule M satisfies property P if for every instance,
the allocation output by M satisfies P . An example of a rule
is the maximum Nash welfare (MNW) rule, which returns an
allocation A that maximizes the product

∏
i∈N ui(A) of the

agents’ utilities.7

3 EJR Notions and Rules
In order to reason about extended justified representation
(EJR), an important concept is that of a cohesive group. For
any positive real number t, a set of agents N∗ ⊆ N is said
to be t-cohesive if |N∗| ≥ t · n/α and s(

⋂
i∈N∗ Ri) ≥ t.

For an indivisible-goods instance, Aziz et al. (2017) defined
EJR as follows: an allocation A satisfies EJR if for every
positive integer t and every t-cohesive group of agents N∗,
at least one agent in N∗ receives utility at least t. Bei et
al. (2022) adapted this axiom to cake sharing by considering
every positive real number t instead of only positive inte-
gers.8 To distinguish between these two versions of EJR, as

of Robertson and Webb (1998).
6Instead of the variable k as in multiwinner voting, we use α, as

this variable may not be an integer in our setting. This is consistent
with the notation used by Bei et al. (2022) for cake sharing.

7Ties can be broken arbitrarily except when the highest possible
product is 0. In this exceptional case, the MNW rule first gives pos-
itive utility to a set of agents of maximal size and then maximizes
the product of utilities for the agents in this set.

8Note that the indivisible-goods version with positive integers t
may be meaningless in the cake setting, e.g., if the entire cake has
length less than 1. More generally, the restriction to positive inte-
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GreedyEJR-M Generalized MES Generalized PAV
EJR-M ✓ ✗ ✗
EJR-1 ✓ ✓ ✓

Proportionality degree ⌊t⌋ ·
(
1− ⌊t⌋+1

2t

) [
t−2+1/t

2 , ⌈t⌉+1
2

]
> t− 1

Indivisible-goods EJR ✓∗ ✓∗ ✓∗

Cake EJR ✓ ✓ ✗

Polynomial-time computation ? ✓ ✗∗

Table 1: Overview of our results. Entries marked by an asterisk follow from known results in multiwinner voting. We also show
that the proportionality degree implied by EJR-M and EJR-1 is ⌊t⌋ ·

(
1− ⌊t⌋+1

2t

)
and t−2+1/t

2 , respectively.

well as from versions for mixed goods that we will define
next, we refer to the two versions as indivisible-goods EJR
and cake EJR, respectively.

A first attempt to define EJR for mixed goods is to simply
use the cake version. However, as we will see shortly, the
resulting notion is too strong. Hence, we relax it by lowering
the utility threshold.

Definition 3.1 (EJR-β). Let β ≥ 0. Given an instance, an
allocation A with s(A) ≤ α is said to satisfy extended justi-
fied representation up to β (EJR-β) if for every positive real
number t and every t-cohesive group of agents N∗, it holds
that uj(A) > t− β for some j ∈ N∗.9

Proposition 3.2. For each constant β ∈ [0, 1), there exists
an indivisible-goods instance in which no allocation satis-
fies EJR-β. This remains true even if we relax the inequality
uj(A) > t− β in Definition 3.1 to uj(A) ≥ t− β.

Proof. We work with the weaker condition uj(A) ≥ t− β.
Fix β ∈ [0, 1), and choose a rational constant β′ ∈ (β, 1).
Consider an indivisible-goods instance with integers n and α
such that α = β′ ·n, and assume that all agents approve dis-
joint nonempty subsets Gi of goods. Each individual agent
forms a β′-cohesive group, so in an EJR-β allocation, every
agent must receive utility at least β′ − β > 0. Hence, any
EJR-β allocation necessarily includes at least one good from
each approval set Gi, and must therefore contain at least n
goods in total. However, since α = β′ ·n < n, no allocation
can satisfy EJR-β.

Proposition 3.2 raises the question of whether EJR-1 can
always be satisfied. We will answer this question in the af-
firmative in Section 3.1. Before that, we introduce EJR-M,
another variant of EJR tailored to mixed goods. The intuition
behind EJR-M is that a t-cohesive group of agents should be
able to claim a utility of t for some member only when there
exists a commonly approved resource of size exactly t. This
rules out such cases as in the proof of Proposition 3.2, where
a group can effectively claim a utility higher than t due to the
indivisibility of the goods.

gers t is unnatural for cake, as there is no discrete unit of cake.
9For β = 1, Peters, Pierczyński, and Skowron (2021) consid-

ered a somewhat similar notion called “EJR up to one project” in
the setting of participatory budgeting with indivisible projects.

Definition 3.3 (EJR-M). Given an instance, an allocation A
with s(A) ≤ α is said to satisfy extended justified represen-
tation for mixed goods (EJR-M) if the following holds:

For every positive real number t and every t-cohesive
group of agents N∗ for which there exists R∗ ⊆ R such
that s(R∗) = t and R∗ ⊆ Ri for all i ∈ N∗, it holds that
uj(A) ≥ t for some j ∈ N∗.

Note that for indivisible-goods instances, the condition
s(R∗) = t can only hold for integers t, so EJR-M reduces
to indivisible-goods EJR. Likewise, for cake instances, if a
group is t-cohesive then a commonly approved subset of
size exactly t always exists, so EJR-M reduces to cake EJR.
Hence, EJR-M unifies EJR from both settings.
Proposition 3.4. Let t be a positive real number. For an
EJR-M allocation A and a t-cohesive group of agents N∗, it
holds that uj(A) ≥ ⌊t⌋ for some j ∈ N∗.

The proof of Proposition 3.4, along with all other omitted
proofs, can be found in the full version of our paper (Lu et al.
2022). Since ⌊t⌋ > t − 1 for every real number t, we have
the following corollary.
Corollary 3.5. EJR-M implies EJR-1.

For indivisible-goods instances, EJR-1 reduces to
indivisible-goods EJR, since for every positive integer t, the
smallest integer greater than t − 1 is t. On the other hand,
for cake instances, EJR-1 is weaker than cake EJR.

In the cake setting, Bei et al. (2022) proved that the MNW
rule satisfies cake EJR. However, in the indivisible-goods
setting, the fact that MNW tries to avoid giving utility 0
to any agent at all costs means that it sometimes attempts
to help individual agents at the expense of large deserving
groups. This is formalized in the following proposition.
Proposition 3.6. For any constant β ≥ 0, there exists an
indivisible-goods instance in which no MNW allocation sat-
isfies EJR-β.

3.1 GreedyEJR-M
Proposition 3.6 implies that the MNW rule cannot guarantee
EJR-M or EJR-1 in the indivisible-goods setting, let alone
in the mixed-goods setting. We show next that a greedy ap-
proach can be used to achieve these guarantees. The rule
that we use is an adaptation of the GreedyEJR rule from
the indivisible-goods setting (Bredereck et al. 2019; Peters,
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Pierczyński, and Skowron 2021; Elkind et al. 2022); we
therefore call it GreedyEJR-M and describe it below.

GreedyEJR-M

Step 1: Initialize N ′ = N and R′ = ∅.

Step 2: Let t∗ be the largest nonnegative real number
for which there exist ∅ ̸= N∗ ⊆ N ′ and R∗ ⊆ R
such that N∗ is a t∗-cohesive group, R∗ ⊆ Ri for
all i ∈ N∗, and s(R∗) = t∗. Consider any such pair
(N∗, R∗). Remove N∗ from N ′ and add the part of R∗

that is not already in R′ to R′.

Step 3: If N ′ = ∅, return R′. Else, go back to Step 2.

Example 3.7. Consider the instance in Figure 1. We have
n/α = 1, and Step 2 of GreedyEJR-M chooses t∗ = 1,
along with (as one possibility) N∗ = {1} and R∗ = {g1}.
We are left with N ′ = {2}, and the next iteration of Step 2
chooses t∗ = 1, N∗ = {2}, and R∗ = {g2}. Finally, the
rule returns R′ = {g1, g2}.
Theorem 3.8. The GreedyEJR-M rule satisfies EJR-M (and
therefore EJR-1).

Proof. By Corollary 3.5, it suffices to prove the claim for
EJR-M. We break the proof into the following four parts.

• The procedure is well-defined. To this end, we must show
that the largest nonnegative real number t∗ in Step 2
always exists. Observe that for each group of agents
X ⊆ N ′, the set

TX :=

{
t ≥ 0

∣∣∣∣ |X| ≥ t · n
α

and there exists

Y ⊆
⋂
i∈X

Ri with s(Y ) = t

}
is a union of a finite number of (possibly degenerate)
closed intervals, and is nonempty because 0 ∈ TX .
Therefore, TX has a maximum. The value t∗ chosen in
Step 2 is then the largest among the maxima of TX across
all X ⊆ N ′.

• The procedure always terminates. This is because each
iteration of Step 2 removes at least one agent from N ′.

• The procedure returns an allocation R′ with s(R′) ≤ α.
Indeed, if an iteration of Step 2 uses value t∗, it removes
at least t∗ · n/α agents from N ′ and adds a resource of
size at most t∗ to R′. Since only n agents can be removed
in total, the added resource has size at most α.

• The returned allocation R′ satisfies EJR-M. Assume for
contradiction that for some group X , Definition 3.3 fails
for X and parameter t. Consider the moment after the
procedure removed the last group with parameter t∗ ≥ t.
If no agent in X has been removed, the procedure should
have removed X with parameter t, a contradiction. Else,
some agent j ∈ X has been removed. In this case, the
procedure guarantees that uj(R

′) ≥ t, which means that
X satisfies Definition 3.3 with parameter t, again a con-
tradiction.

3.2 Generalized Method of Equal Shares
Despite the strong representation guarantee provided by
GreedyEJR-M, the rule does not admit an obvious
polynomial-time implementation. In the indivisible-goods
setting, Peters and Skowron (2020) introduced the Method
of Equal Shares (MES), originally known as Rule X, and
showed that it satisfies indivisible-goods EJR and runs in
polynomial time. We now extend their rule to our mixed-
goods setting. At a high level, in Generalized MES, each
agent is given a budget of α/n, which can be spent on buy-
ing the resource—each piece of cake has cost equal to its
length whereas each indivisible good costs 1. In each step, a
piece of cake or an indivisible good that incurs the smallest
cost per utility for agents who approve it is chosen, and these
agents pay as equally as possible to cover the cost of the cho-
sen resource. The rule stops once no more cake or indivisible
good is affordable. Note that when the resource consists only
of indivisible goods, Generalized MES is equivalent to the
original MES of Peters and Skowron (2020).

Generalized MES

Step 1: Initialize R′ = (C ′, G′) = (∅, ∅) and bi = α/n
for each i ∈ N .

Step 2: Divide the remaining cake C into intervals
I1, . . . , Ik so that each agent approves each interval
either entirely or not at all. For each interval Ij =
[x0, x1], x ∈ (x0, x1], and ρ ≥ 0, we say that Ij is
(x, ρ)-affordable if∑

i∈NIj

min(bi, (x− x0) · ρ) = x− x0,

where NIj ⊆ N denotes the set of remaining agents
who approve Ij . Similarly, for each remaining good g ∈
G and ρ ≥ 0, we say that g is ρ-affordable if∑

i∈Ng

min(bi, ρ) = 1,

where Ng ⊆ N denotes the set of remaining agents
who approve g.

Step 3: If for every ρ, no ρ-affordable good or (x, ρ)-
affordable piece of cake exists, return R′.

Else, take either an interval Ij with the smallest ρ
along with the largest x such that Ij is (x, ρ)-affordable,
or a good g with the smallest ρ such that g is ρ-
affordable, depending on which ρ is smaller. In the for-
mer case, deduct min(bi, (x− x0) · ρ) from bi for each
i ∈ NIj , and set C = C \ [x0, x] and C ′ = C ′∪ [x0, x].
In the latter case, deduct min(bi, ρ) from bi for each
i ∈ Ng , and set G = G \ {g} and G′ = G′ ∪ {g}.
Remove all agents who have run out of budget from N ,
and go back to Step 2.

Example 3.9. For the instance in Figure 1, each agent starts
with a budget of α/n = 1. The first iteration of Step 2 selects
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the entire cake (with ρ = 1/2), and each agent pays 0.9/2 =
0.45 for this cake. Since neither agent has enough budget left
to buy the indivisible good that she approves (which costs 1),
the procedure terminates with only the cake.

In the instance above, each agent on her own is 1-cohesive
and approves a subset of the resource of size exactly 1, so the
only EJR-M allocation is {g1, g2}. In particular, the alloca-
tion chosen by Generalized MES is not EJR-M.
Proposition 3.10. Generalized MES doesn’t satisfy EJR-M.

Nevertheless, we prove that Generalized MES satisfies
EJR-1 and, moreover, can be implemented efficiently.
Theorem 3.11. Generalized MES satisfies EJR-1 and can
be implemented in polynomial time.

For indivisible-goods instances, Generalized MES re-
duces to the original MES of Peters and Skowron (2020),
which satisfies indivisible-goods EJR. We prove that the
analog holds for cake instances.
Proposition 3.12. For cake instances, Generalized MES
satisfies cake EJR.

3.3 Generalized PAV
In the indivisible-goods setting, a well-studied rule is pro-
portional approval voting (PAV), which chooses an alloca-
tion R′ that maximizes

∑
i∈N Hui(R′), where Hx := 1 +

1
2 + · · ·+ 1

x is the x-th harmonic number. We now show how
to generalize PAV to the mixed-goods setting. To this end,
we will use a continuous extension of harmonic numbers
due to Hintze (2019), defined as

Hx :=
∞∑
k=1

x

k(x+ k)
=

∞∑
k=1

(
1

k
− 1

k + x

)
for each real number x ≥ 0; in particular, these infinite
sums converge. It is clear from the definition that the gen-
eralized harmonic numbers indeed extend the original har-
monic numbers, and that Hx > Hy for all x > y ≥ 0.
Moreover, Hx+1 −Hx = 1

x+1 for all x ≥ 0.

Definition 3.13 (Generalized PAV). The Generalized PAV
rule selects an allocation R′ with s(R′) ≤ α that maximizes∑

i∈N Hui(R′).

For ease of notation, we let H(R′) :=
∑

i∈N Hui(R′) for
any allocation R′, and call H(R′) the GPAV-score of R′.
Given the instance in Figure 1, since H1.9 +H0.9 > 1.45 +
0.93 > 1+1 = H1+H1, Generalized PAV selects the entire
cake together with one of the indivisible goods. As the only
EJR-M allocation in this instance is {g1, g2}, the allocation
selected by Generalized PAV is not EJR-M.
Proposition 3.14. Generalized PAV does not satisfy EJR-M.

To show that Generalized PAV satisfies EJR-1, we estab-
lish a useful lemma on the growth rate of the generalized
harmonic numbers.
Lemma 3.15. For any x ∈ (0,∞) and y ∈ [0, 1], it holds
that Hx+y −Hx ≤ y

x+y .

Theorem 3.16. Generalized PAV satisfies EJR-1.

Proof. Let R′ = (C ′, G′) be a Generalized PAV alloca-
tion. By adding a piece of cake approved by no agent to
the resource R as well as R′ if necessary, we may as-
sume without loss of generality that s(R′) = α. Assume
also that the cake C ′ is represented by the interval [0, c′].
Whenever x + y > c′, the interval [x, x + y] refers to
[x, c′] ∪ [0, x + y − c′], i.e., we cyclically wrap around the
cake C ′.

Suppose for contradiction that for some t > 0, there exists
a t-cohesive group N ′ with ui(R

′) ≤ t − 1 for all i ∈ N ′.
Hence, there exists either a piece of cake of size 1 that is
approved by all agents in N ′ but not contained in R′, or
an indivisible good with the same property. We assume the
latter case; the proof proceeds similarly in the former case.
Denote this good by g∗, and let G′′ := G′ ∪{g∗} and R′′ :=
(C ′, G′′). We have

H(R′′)−H(R′) ≥
∑
i∈N ′

(
Hui(R′)+1 −Hui(R′)

)
=

∑
i∈N ′

1

ui(R′) + 1

≥ |N ′|2∑
i∈N ′(ui(R′) + 1)

≥ |N ′|2

|N ′| · (t− 1) + |N ′|
=

|N ′|
t

≥ n

α
,

where the second inequality follows from the inequality
of arithmetic and harmonic means and the last inequality
from the definition of a t-cohesive group. In other words,
adding g∗ increases the GPAV-score of R′ by at least n/α.

For each good g ∈ G, denote by Ng ⊆ N the set of agents
who approve it. For each g ∈ G′′, we have

H(R′′)−H(R′′ \ {g}) =
∑
i∈Ng

(
Hui(R′′) −Hui(R′′)−1

)
=

∑
i∈Ng

1

ui(R′′)
.

Letting N+ consist of the agents i with ui(R
′′) > 0, we get∑

g∈G′′

(H(R′′)−H(R′′ \ {g})) =
∑
g∈G′′

∑
i∈Ng

1

ui(R′′)

=
∑
i∈N+

∑
g∈G′′∩Gi

1

ui(R′′)

=
∑
i∈N+

ui(G
′′)

ui(R′′)
(1)

≤
∑
i∈N+

1 ≤ n.

If there is a good g ∈ G′′ such that H(R′′)−H(R′′\{g}) <
n/α (clearly, g ̸= g∗), we can replace g with g∗ in R′

and obtain a higher GPAV-score, contradicting the definition
of R′. Hence, we may assume that H(R′′)−H(R′′\{g}) ≥
n/α for every good g ∈ G′′. It follows that

n ≥
∑
g∈G′′

(H(R′′)−H(R′′ \ {g})) ≥ |G′′| · n
α
.

5785



Therefore, we have that |G′′| ≤ α, and so c′ ≥ 1.
Now, for any x ∈ C ′, it holds that

H(R′′)−H(R′′ \ [x, x+ 1])

=
∑
i∈N

(
Hui(R′′) −Hui(R′′)−ui([x,x+1])

)
≤

∑
i∈N+

ui([x, x+ 1])

ui(R′′)
, (2)

where the inequality follows from Lemma 3.15. Using (1)
and (2), we get∑

g∈G′′

(H(R′′)−H(R′′ \ {g}))

+

∫
C′
(H(R′′)−H(R′′ \ [x, x+ 1])) dx

≤
∑
i∈N+

ui(G
′′)

ui(R′′)
+

∫
C′

 ∑
i∈N+

ui([x, x+ 1])

ui(R′′)

 dx

=
∑
i∈N+

ui(G
′′)

ui(R′′)
+

∑
i∈N+

(∫
C′

ui([x, x+ 1])

ui(R′′)
dx

)

=
∑
i∈N+

[
1

ui(R′′)

(
ui(G

′′) +

∫
C′

ui([x, x+ 1]) dx

)]

=
∑
i∈N+

[
1

ui(R′′)
(ui(G

′′) + ui(C
′))

]
≤

∑
i∈N

1 = n. (3)

Here, we have
∫
C′ ui([x, x+ 1]) dx = ui(C

′) because∫
C′

ui([x, x+ 1]) dx =

∫
C′

ℓ(Ci ∩ [x, x+ 1]) dx

=

∫
Ci∩C′

ℓ([y − 1, y]) dy

=

∫
Ci∩C′

1 dy

= ℓ(Ci ∩ C ′) = ui(C
′),

where the second equality holds because a point y ∈ Ci

belongs to the interval [x, x+1] if and only if x ∈ [y−1, y].
If it were the case that H(R′′)−H(R′′\[x, x+1]) ≥ n/α

for every x ∈ C ′, we would have∑
g∈G′′

(H(R′′)−H(R′′ \ {g}))

+

∫
C′
(H(R′′)−H(R′′ \ [x, x+ 1])) dx

≥ |G′′| · n
α
+ c′ · n

α
= (α+ 1) · n

α
> n,

a contradiction with (3). Thus, it must be that H(R′′) −
H(R′′ \ [x, x + 1]) < n/α for some x ∈ C ′. By replac-
ing the cake [x, x + 1] in R′ with the good g∗, we therefore
obtain a higher GPAV-score than that of R′. This yields the
final contradiction and completes the proof.

In contrast to Generalized MES, Generalized PAV does
not satisfy EJR in cake sharing.

Proposition 3.17. For cake instances, Generalized PAV
does not satisfy cake EJR.

4 Proportionality Degree
In addition to the axiomatic study of representation in terms
of criteria like EJR-M and EJR-1, another relevant con-
cept for cohesive groups is the proportionality degree, which
measures the average utility of the agents in each such group
(Skowron 2021). In this section, we first derive tight bounds
on the proportionality degree implied by EJR-M and EJR-1,
and then investigate the proportionality degree of the rules
we studied in Section 3.

Definition 4.1 (Average satisfaction). Given an instance
and an allocation A, the average satisfaction of a group of
agents N ′ ⊆ N with respect to A is 1

|N ′| ·
∑

i∈N ′ ui(A).

Definition 4.2 (Proportionality degree). Fix a function
f : R>0 → R≥0. A rule M has a proportionality degree of f
if for each instance I , each allocation A that M outputs on
I , and each t-cohesive group of agents N∗, the average sat-
isfaction of N∗ with respect to A is at least f(t), i.e.,

1

|N∗|
·
∑
i∈N∗

ui(A) ≥ f(t).

For indivisible goods, Sánchez-Fernández et al. (2017)
showed that EJR implies a proportionality degree of t−1

2 .

4.1 Proportionality Degree Implied by EJR-M/1
Our focus in this subsection is to establish tight bounds on
the proportionality degree implied by EJR-M and EJR-1.
Observe that for t < 1, a t-cohesive group may have an
average satisfaction of 0 in an EJR-M or EJR-1 allocation.
Indeed, if α = t and the resource consists only of a sin-
gle indivisible good, which is approved by all n agents, then
the set of all agents is t-cohesive, but the empty allocation
is EJR-M and EJR-1. We therefore assume t ≥ 1 for our
results from here on.

We first show that the proportionality degree implied by
EJR-M is ⌊t⌋·

(
1− ⌊t⌋+1

2t

)
, beginning with the lower bound.

Note that this quantity is roughly t/2.

Theorem 4.3. Given any instance and any real number
t ≥ 1, let N∗ ⊆ N be a t-cohesive group and A be an
EJR-M allocation. The average satisfaction of N∗ with re-
spect to A is at least ⌊t⌋ ·

(
1− ⌊t⌋+1

2t

)
.

The high-level idea behind the proof of Theorem 4.3 is
that, given a t-cohesive group N∗ and an EJR-M allocation,
a t−⌊t⌋

t fraction of the agents in N∗ are guaranteed a utility
of at least ⌊t⌋. The remaining agents can then be partitioned
into ⌊t⌋ disjoint subsets so that each subset consists of a 1/t
fraction of the agents in N∗ and the guaranteed utilities for
these subsets drop arithmetically from ⌊t⌋ − 1 to 0.

We next give a matching upper bound.
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Theorem 4.4. For any real numbers t ≥ 1 and ε > 0, there
exists an instance, a t-cohesive group N∗, and an EJR-M
allocation A such that the average satisfaction of N∗ with
respect to A is at most ⌊t⌋ ·

(
1− ⌊t⌋+1

2t

)
+ ε.

We do not prove Theorem 4.4 directly, as we will establish
a stronger statement later in Theorem 4.7.

Next, we show that the proportionality degree implied by
EJR-1 is t−2+1/t

2 = (t−1)2

2t , which is slightly lower than that
implied by EJR-M for every t. For the lower bound, we use a
similar idea as in Theorem 4.3, but we need to be more care-
ful about agents with low utility guarantees. In particular,
even when the guarantee provided by the EJR-1 condition is
negative, the actual utility is always nonnegative, so we need
to “round up” the EJR-1 guarantee appropriately.

Theorem 4.5. Given any instance and any real number
t ≥ 1, let N∗ ⊆ N be a t-cohesive group and A be an EJR-1
allocation. The average satisfaction of N∗ with respect to A

is greater than t−2+1/t
2 .

We now derive a matching upper bound.

Theorem 4.6. For any real numbers t ≥ 1 and ε > 0, there
exists an instance, a t-cohesive group N∗, and an EJR-1
allocation A such that the average satisfaction of N∗ with
respect to A is at most t−2+1/t

2 + ε.

Proof. Consider a cake instance with a sufficiently large
number of agents n (to be specified later). Let α = t. Thus,
we have |N | = t · n/t ≥ t · n/α. The cake is given by the
interval [0, 2t], and the agents’ preferences are as follows.

• Each agent i ∈ {1, 2, . . . , ⌈n/α⌉ − 1} approves the in-
terval [0, t].

• Each agent i ∈ {⌈n/α⌉, ⌈n/α⌉+ 1, . . . , n} approves the
interval

[
0, t+ i−n/α

n/α + δ
]
, where δ ∈ (0, 1) is suffi-

ciently small (to be specified later).

Since all n agents approve the interval [0, t], they form a t-
cohesive group N .

We claim that allocation A = [t, 2t], which has size t =
α, satisfies EJR-1, and that the average satisfaction of the N
with respect to A is at most t−2+1/t

2 + ε when n and δ are
suitably chosen. Details can be found in the full version of
our paper (Lu et al. 2022).

4.2 Proportionality Degree of Specific Rules
In this subsection, we investigate the proportionality degree
of the rules that we studied in Section 3.

We begin with GreedyEJR-M. Since GreedyEJR-M satis-
fies EJR-M, Theorem 4.3 immediately yields a lower bound.
We derive a matching upper bound, which implies that the
proportionality degree of GreedyEJR-M is ⌊t⌋·

(
1− ⌊t⌋+1

2t

)
.

Theorem 4.7. For any real numbers t ≥ 1 and ε > 0, there
exists an instance, a t-cohesive group N∗, and an allocation
A output by GreedyEJR-M such that the average satisfaction
of N∗ with respect to A is at most ⌊t⌋ ·

(
1− ⌊t⌋+1

2t

)
+ ε.

We provide here an intuition behind the proof of Theo-
rem 4.7. We construct an indivisible-goods instance, make
α an integer, and choose n to be a multiple of α. Our goal is
to construct a target t-cohesive group of agents N∗ with as
small utilities as possible. Since GreedyEJR-M outputs an
EJR-M allocation, the largest number of agents in N∗ that
receive utility 0—denote the set of these agents by N0—is
n/α − 1; otherwise, these agents would form a 1-cohesive
group and cannot all receive utility 0. Similarly, among the
agents in N∗ \ N0, the largest number of agents that re-
ceive utility 1—denote the set of these agents by N1—is
n/α, as we do not want N0 ∪ N1 to form a 2-cohesive
group. Continuing inductively, we want to partition N∗ into
N0 ∪N1 ∪ · · · ∪N⌊t⌋, with the agents in Nk receiving util-
ity exactly k for each k. We add dummy agents and goods
in order to make sure that, instead of all agents in N∗ being
satisfied at once by the GreedyEJR-M execution, the agents
in N⌊t⌋ are first satisfied along with some dummy agents via
some dummy goods, then those in N⌊t⌋−1 are satisfied along
with other dummy agents via other dummy goods, and so
on. The dummy agents and goods need to be carefully con-
structed to make this argument work.

In the indivisible-goods setting, Lackner and Skowron
(2023, Prop. A.10) showed that for integers t, the propor-
tionality degree of MES is between t−1

2 and t+1
2 . Since

Generalized MES satisfies EJR-1, Theorem 4.5 implies a
lower bound of t−2+1/t

2 on its proportionality degree. On
the other hand, since any t′-cohesive group is also t-cohesive
for t ≤ t′, Lackner and Skowron’s result implies an upper
bound of ⌈t⌉+1

2 for Generalized MES.
Finally, we prove that Generalized PAV has a significantly

higher proportionality degree than the other two rules that
we study. In doing so, we extend a result of Aziz et al. (2018)
from the indivisible-goods setting.
Theorem 4.8. For any real number t ≥ 1, the average sat-
isfaction of a t-cohesive group with respect to a Generalized
PAV allocation is greater than t− 1.

We also demonstrate in the full version of our paper (Lu
et al. 2022) that the bound t− 1 is almost tight.

5 Conclusion and Future Work
In this work, we have initiated the study of approval-based
voting with mixed divisible and indivisible goods, which
allows us to unify both the well-studied setting of multi-
winner voting and the recently introduced setting of cake
sharing. We generalized three important rules from mul-
tiwinner voting to our setting, determined their relations
to our proposed extensions of the EJR axiom, and inves-
tigated their proportionality degree. While the Generalized
MES and Generalized PAV rules only satisfy the weaker
axiom of EJR-1, GreedyEJR-M satisfies the stronger ax-
iom of EJR-M, thereby showing that an allocation fulfill-
ing both axioms can be found in every instance. Neverthe-
less, an interesting open question is whether there exists a
polynomial-time algorithm for computing such an alloca-
tion. Further directions for future work include exploring
other axioms such as proportional justified representation
(PJR) (Sánchez-Fernández et al. 2017) and the core.
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