
Optimal Pricing Schemes for Identical Items with Time-Sensitive Buyers

Zhengyang Liu1, Liang Shan2, Zihe Wang2*

1 Beijing Institute of Technology
2 Renmin University of China

zhengyang@bit.edu.cn, shanliang@ruc.edu.cn, wang.zihe@ruc.edu.cn

Abstract

Time or money? That is a question! In this paper, we consider
this dilemma in the pricing regime, in which we try to find the
optimal pricing scheme for identical items with heterogenous
time-sensitive buyers. We characterize the revenue-optimal
solution and propose an efficient algorithm to find it in a
Bayesian setting. Our results also demonstrate the tight ratio
between the value of wasted time and the seller’s revenue, as
well as that of two common-used pricing schemes, the k-step
function and the fixed pricing. To explore the nature of the
optimal scheme in the general setting, we present the closed
forms over the product distribution and show by examples
that positive correlation between the valuation of the item and
the cost per unit time could help increase revenue. To the best
of our knowledge, it is the first step towards understanding
the impact of the time factor as a part of the buyer cost in
pricing problems, in the computational view.

Introduction
The Time vs. Money dilemma exists for everyone in our life.
When buying durable, more or less expensive, one may wait
for the discount activities or choose the lowest price by visit-
ing various stores. However, the valuation of time differs, the
higher buyer’s valuation of time is, the less time she wants
to waste on the deal. Another scenario in the real world is
the online in-app purchase. In the App Store or Google Play,
many applications charge in their apps to promote the ef-
ficiency of the service or the user experience. They often
prepare other ways for users to implement similar function-
alities or finish the same jobs by putting more effort. For
example, a platform could set different limits on the speed
of data transmission. Once we can distinguish the CPUTs
(Cost Per Unit Time) of various agents, one can design more
reasonable pricing schemes, that is “lose the money, or lose
the time”.

From the sellers’ perspective, they can leverage the buy-
ers’ sensitiveness for time or money to gain more revenue.
We illustrate the “Double 11”, the biggest online shopping
festival in the world, as an example. The shopping festi-
val has already become the world’s largest shopping festival
since 2015 (Chen 2016). During the shopping period, the
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online shopping platform tends to keep customers spending
as long time as possible by designing complicated schemes
requiring customers to spend a lot of effort to get the dis-
count vouchers (Chen and Li 2021). The case makes the cus-
tomer trapped by the time vs. money dilemma. They either
devote time effort following the rules of the platform to get
the discount voucher or take the item directly, without any
discount.

In this paper, we try to understand the customers’ trade-
off between time and money in the view of sellers. We con-
sider the optimal dynamic pricing scheme for heterogeneous
unit-demand customers. In our setting, a single seller tries
to sell identical items with unlimited supply to unit-demand
buyers. To attract more potential customers and attain more
revenue, the seller designs many complicated promotions.
The rules of these promotions are not easy to understand or
you need wait for the starting time of the promotions, so one
needs spending time on the vouchers. For convenience, we
assume that if a buyer spends time t on her purchase, the
price should be deterministic, say p(t), where p : R → R
is the pricing function set by the seller. The objective of the
seller is to come up with a pricing scheme seeking to maxi-
mize the revenue. Each buyer has her own CPUT (Cost Per
Unit Time), denoted by θ, and the valuation to the item, de-
noted by v. A buyer tends to buy the item if the condition
mint{θt + p(t)} ≤ v is satisfied. The seller’s revenue is
p(t), where t is the time spent by the buyer.

In this paper, we introduce the pricing scheme problem
with time-sensitive buyers and make a few contributions:
• We formulate the pricing scheme problem in our set-

ting as an optimization problem in a Bayesian way. We
then propose a polynomial algorithm to find the optimal
scheme in the discrete distribution setting. To handle the
continuous distribution setting, we can discretize the dis-
tributions and reduce to the problem with the discrete
distribution. We give an upper bound of the revenue loss
caused by this discretization. We also show that the cal-
culus method is not applicable if the continuous distribu-
tion is not good enough.

• We consider the revenue change and measure the value of
wasted time in our pricing scheme. We show a tight ratio
between the performance of the optimal k-step pricing
scheme and the fixed pricing scheme in terms of the rev-
enue. We show the value of wasted time could far out-
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weigh the seller’s revenue and provide a tight ratio be-
tween the time loss and the optimal revenue.

• We investigate a special case to gain more intuitions. Op-
timal dynamic pricing schemes is more likely to show
advantages when the valuation and CPUT are positive
correlated.

Related Works
Coase (1972) initiates the dynamic pricing with intertem-
poral demand and strategic buyers. (Coase 1972) conjec-
tures that the price converges to the cost when selling the
durable goods to the strategic buyers if not committing to
a posted-price. Later, many works (Su 2007; Araman and
Caldentey 2009; Cachon and Swinney 2011; Yu, Debo, and
Kapuscinski 2016; Golrezaei, Nazerzadeh, and Randhawa
2020) demonstrate that dynamic pricing can gain more rev-
enue for the seller when we have no idea of the total demand.
The most related work is (Yang 2021). He considers a gen-
eral model where a principal screens an agent with multi-
dimensional private information: a one-dimensional produc-
tive component and a multidimensional costly component.
In our model, a buyer’s value for an item corresponds to
the productive component and a buyer’s cost per unit time
(CPUT) corresponds to the costly component. We consider
a special case of Yang’s model from a more computational
perspective. His result implies that if the productive compo-
nent (value for the item) and the costly component (CPUT)
have positive correlation (negative correlation in our model),
then there exists an optimal mechanism that involves no
costly screening (posted pricing in our model). We comple-
ment his result by solving a positive correlation case.

Dynamic Scheme Design. One related line of research
to our paper is using the dynamic approach to design the
pricing scheme (Gallien 2006; Bergemann and Said 2010;
Akan, Ata, and Dana Jr 2015; Golrezaei and Nazerzadeh
2017; Kakade, Lobel, and Nazerzadeh 2013; Pavan, Segal,
and Toikka 2014). A seminal paper by (Gallien 2006) con-
siders an infinite horizon and discounted sets and designs the
first tractable pricing policy for strategic buyers. Board and
Skrzypacz (2016) discuss the same problem with discrete
and finite time horizons. Both works assume that buyers’
valuations could be discounted with some parameters geo-
metrically, and the discounted knowledge is even public to
the seller. We consider the same finite horizon setting as (Pai
and Vohra 2013; Board and Skrzypacz 2016), which is more
relevant to the applications in daily life. In addition, we have
no restriction to the discounted value of buyers, except that
they are non-increasing over time. One of the most related
papers to our work is that by (Chen and Farias 2018), who
propose a 0.29-approximation revenue optimal pricing al-
gorithm in the sense that valuations of the customers decay
with different rates, and the customers arrive with a Poisson
process.

All the works in this research line consider a different
buyer model and assume the demands and supplies change
over time. In contrast, buyers in our paper are unit-demand,
and the supply is unlimited. We face the issue of wasted time
while they do not.

Bayesian Revenue Maximization. Since the celebrated
work due by (Myerson 1981), the revenue both computer
science and economic communities has extensively stud-
ied maximization in Bayesian setting (Bei and Huang 2011;
Cai, Daskalakis, and Weinberg 2013; Haghpanah and Hart-
line 2015; Bei et al. 2017; Cai, Devanur, and Weinberg
2019; Chen et al. 2022; Tang and Wang 2016; Wang and
Tang 2015). One of the prominent factors that contrast our
paper with the aforementioned research is introducing the
time vs. money dilemma in the views of buyers. All related
papers in the literature assume that buyers are ideally ratio-
nal, meaning that they can come up with the best way to
maximize their utility without losing time.

Preliminaries

In our model, a seller sells identical and indivisible items
with unlimited supply to unit-demand buyers, who needs
at most one item. Each buyer has a type, consists of two
parameters (θ, v), where θ represents her CPUT (Cost Per
Unit Time), and v is her valuation to the item. We assume
that buyers’ types are generated by a joint probability dis-
tribution F over θ and v. For convenience, we also denote
by f the probability density function of F . The goal of the
problem is to maximize the seller’s expected revenue with
respect to the joint distribution F .

To maximize the revenue, the seller can design a pub-
licly known pricing function p : R → R, which only de-
pends on the time the buyer spends on the deal. That is,
any buyer needs to pay the same price p(t) if she spends
time t ≥ 0. W.L.O.G., we assume that the price charged
by the seller cannot increase if one spends more time on
the deal, i.e., the function p(t) is non-increasing in terms
of the time t. A buyer’s action is to take the item at the
right time or leave it. According to the pricing function,
each buyer makes a trade-off between the time she spends
and the price she pays. We assume each buyer is strategic.
Therefore she tries to get more utility by spending the right
amount of time in promotions. We also assume the buyer is
individually rational (IR) such that she always gets a non-
negative utility. Hence the buyer with type (θ, v) will buy
the item if and only if mint{p(t) + θt} ≤ v, that is, the
total cost including money and time is at most the value to
an item in the view of the buyer. Once the buyer with type
(θ, v) buys the item, the set of best actions of the buyer is
T ∗(θ) = argmint{p(t)+θt} which only depends on CPUT
θ. Let t∗(θ) = min {t | t ∈ T ∗(θ)} denote the best action of
the buyer, that is, when multiple best actions exist, we as-
sume the buyer will purchase the item with the least time on
the deal. We can formulate such a problem for the seller as
follows,

max
p(·)

∫
(θ,v)∼F

p(t∗(θ))I {θt∗(θ) + p(t∗(θ)) ≤ v} f(θ, v)dθdv,

s.t. t∗(θ) = min {t | t ∈ T ∗(θ)} , (1)

where I{·} is an indicator function.
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Figure 1: An illustration for the separation function

Characterizations of the Optimal Pricing
Scheme

Before designing our solution for the problem, we first char-
acterize several properties for the pricing function. The first
one is the convexity of the region where buyers cannot afford
no matter how much time they spend.

Lemma 1. Given the pricing function p : R → R, the set of
types {(θ, v) | mint{p(t) + θt} > v} is convex.

Proof. Given the time t spent on the deal, we denote by A(t)
the set of types where the buyer spends time t but receive the
negative utility, formally,

A(t) = {(θ, v) | p(t) + θt > v}.

Note that a buyer would not like to buy the item if the util-
ity is always negative, no matter how much time she spends
on the deal. Therefore, the buyer gets no item if and only if
her type belongs to the intersection set

⋂
t≥0 A(t). One can

verify that the set A(t) is the half-plane, as shown in Fig-
ure 1a. By the fact that the intersection of convex sets is also
convex, we know that

⋂
t≥0 A(t) is also convex.

Given a pricing function p(·), we have such a convex set
as mentioned above. We call the upper boundary of the con-
vex set as the separation function, denoted by ℓp : R → R.
According to Lemma 1, the function ℓp(·) is weakly in-
creasing and concave. Therefore, it is differentiable at all
but few points. In other words, the derivative of ℓ(·) is well
defined on almost every point. The following lemma demon-
strates that for each type (θ, ℓp(θ)) on this function, the cor-
responding buyer will spend time t which exactly equals to
its derivative of the function at θ.

Lemma 2. Given the pricing function p, if t∗(·) = min{t |
t ∈ T ∗(·)} is continuous at θ, we have ℓ′p(θ) = t∗(θ).

Proof. According to the definition of separation function ℓp
and the fact that the pricing function is non-increasing, given
a sufficiently small quantity δ > 0, we have

ℓp(θ) = θt∗(θ) + p(t∗(θ)),

ℓp(θ + δ) ≤ (θ + δ)t∗(θ) + p(t∗(θ)),

and that is
ℓp(θ + δ)− ℓp(θ) ≤ δt∗(θ). (2)

Similarly, we have the followings,

ℓp(θ) ≤ θt∗(θ + δ) + p(t∗(θ + δ)),

ℓp(θ + δ) = (θ + δ)t∗(θ + δ) + p(t∗(θ + δ)),

and that is

ℓp(θ + δ)− ℓp(θ) ≥ δt∗(θ + δ). (3)

By combining Equations (2) and (3), we can bound ℓp(θ +
δ)− ℓp(θ) from below and above:

δt∗(θ + δ) ≤ℓp(θ + δ)− ℓp(θ) ≤ δt∗(θ).

Dividing the above inequality by δ and taking the limit as δ
approaches zero yields the constraint

ℓ′p(θ) = t∗(θ).

The payment by the buyer with type θ is p(t∗(θ)), shown
in Figure 1b. Note that for a buyer with the type (θ, ℓp(θ))
which is on the separation function, her utility is zero, that
is

p(t∗(θ)) = ℓp(θ)− θt∗(θ) = ℓp(θ)− θℓ′p(θ). (4)

Lemma 1 states that, given a pricing function p(·), our
separation function ℓp(·) is determined, concave and weakly
increasing. In reverse, given a concave and weakly increas-
ing separation function ℓp(·), we can also infer the function
p(·). We define H as the set of derivatives ℓ′p(θ), i.e., H =
{ℓ′p(θ) | ∀θ ∈ R}. We define p(ℓ′p(θ)) = ℓp(θ) − θℓ′p(θ)
for all θ and thus the value of function p is defined on points
in H . Even though there might exist multiple θ’s with the
same value of ℓp(θ), at that time, the values of ℓp(θ)−θℓ′p(θ)
are identical. As above, the function p is well defined. Fur-
thermore, it is also possible that different pricing functions
might result in the same function ℓp. Given the separation
line function ℓp(·), the differences in these preimages are the
values on points excluding the set H . One of the preimages
could be p(t) = p (max{s | s ≤ t and s ∈ H}).

As discussed above, we could design the separation func-
tion ℓp, instead of designing the pricing function p directly.
In Equation (1), the integral of v can be simplified as fol-
lows, ∫

v

I {θt∗(θ) + p(t∗(θ)) ≤ v} f(θ, v)dv

=

∫
v≥ℓp(θ)

f(θ, v)dv

= (1− Fv|θ[ℓp(θ)|θ])fθ(θ).

Here fθ(θ) represents the probability density function of θ
in F and Fv|θ[ℓp(θ)|θ] represents the conditional cumulative
probability function. Thus we can simplify our problem as

max

∫
θ

(ℓp(θ)− θℓ′p(θ))(1− Fv|θ[ℓp(θ)|θ])fθ(θ)dθ (5)

s.t. ℓp(·) is concave and non-decreasing.
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The Optimal Pricing Scheme
Above we have shown that the posted-pricing is optimal if
we assume that the distributions of the value and the CPUT
are independent. However, it is not the case when we con-
sider arbitrary distributions, which makes the question much
more complicated. In this section, we first show how to find
the optimal scheme in a discrete distribution setting and then
shows that the problem with a continuous distribution can be
solved with arbitrarily accuracy by applying discretization
technique.

The following theorem shows that given a discrete distri-
bution of buyers’ types with finite size, the optimal pricing
scheme can be found efficiently.
Theorem 1. Given a discrete distribution of buyers’ types,
whose support size is n, the optimal pricing scheme can be
found in time complexity O(n4 log n).

Proof. Suppose these n different types in the distribution are
{Qi = (θi, vi)}i∈[n]. Without the loss of generality, we can
assume that θ1 ≤ θ2 ≤ . . . ≤ θn. In addition, there are m ≤
n different θ’s over these n types. We let (θβ(1), . . . , θβ(m))
denote all the different CPUTs.

Given the optimal pricing scheme, each type chooses how
much time to invest in the deal or leave without buying
anything. We denote by ℓ∗ the separation line in the opti-
mal pricing. Given any i ∈ [m], we define a new function
Ki(θ) = ℓ∗′(θβ(i))(θ−θβ(i))+ℓ∗(θβ(i)). Due to the unique-
ness of Ki’s, we can construct a new separation function K
which outputs the minimum of Ki’s given any θ > 0. For-
mally, we define

K(θ) = min
i∈[m]

{Ki(θ)} .

It is easy to see that K is a piecewise linear function with
respect to θ. If we use K as a separation line, each buyer with
the same type will pay the same amount of money. Thus, K
is also the optimal solution.

We can then search over all such piecewise linear bound-
aries and find the optimal one. Note that on any lin-
ear segment where two lines Ki and K overlap, i.e.,
{(θ,Ki(θ))|Ki(θ) = K(θ)}, if it is not horizontal then there
exist two types Qj and Qk lying on it. Otherwise, we can
make transformations as follows, maintaining the revenue
non-decreasing:

• If the line segment passes no type, we can push it up-
wards until it touches some discrete type. This operation
only increases the payment for some type.

• If the line segment only passes one type Qj in the dis-
tribution, we rotate this line on Qj in the clock-wise di-
rection until it touches another type, say Qk or becomes
horizontal on the premise that this line passes through
Qj . If θk < θj , type Qk will pay more. If θk > θj and
type Qk is already on the line K, then type Qk’s payment
is unchanged. If θk > θj and type Qk is beneath the line
K, then the buyer with type Qk will buy an item now. So
this operation would never decrease the revenue.

We define two functions to make our descriptions eas-
ier. Let d(i, j) = (vj − vi)/(θj − θi) denote the slope of

the straight line segment connecting points Qi and Qj . The
other is the pricing function z(i, j) = vi − d(i, j)θi. Let
cross(i, j, k, h) denote the intersection point between the
straight line passing types Qi, Qj and the straight line pass-
ing Qk, Qh.

We abuse the notation and let f(Qi, Qj) (assume that
θi < θj) denote the total sum of probabilities of types
Q = (θ, v) lying above the straight line connecting type
points Qi and Qj and θ ∈ [θi, θj). We define a partial or-
der over the pair of types. Given i, j, k, h ∈ [n], we say
(i, j) ≺ (k, h) if the point cross(i, j, k, h) is larger than
Qj = (θj , vj) and weakly smaller than Qk = (θk, vk) in
both coordinates.

Now we are ready to present our dynamic programming
algorithm. The recursive formula is as follows,

OPT(i, j) = max
(i,j)≺(k,h)

{z(i, j)f(Qi, x)

+ OPT(k, h) + z(k, h)f(x,Qk)},

where x = cross(i, j, k, h). Here OPT(i, j) represents
the optimal revenue if the distribution is restricted to
(Qi, Qi+1, . . . , Qn) and the line segment connecting Qi and
Qj is part of the separation line. To compute OPT(i, j), the
algorithm enumerates all possible line segments that adja-
cent to the line segment connecting Qi and Qj . Then the
optimal revenue is the maximum over maxi,j OPT (i, j).
When we have found the optimal revenue, we can deduce
the optimal separation function in reverse.

This dynamic programming can be solved efficiently. We
first prepare all possible w(Qi, Qj), ∀i, j values which takes
O(n2) time. There are O(n2) sub-problems OPT(i, j) to
solve. For each one, it enumerates all (k, h) pairs which has
O(n2) cases. Given (i, j, k, h), x can be solved in O(1) time.
By utilizing the prepared values w(Qi, Qj), ∀i, j, we can
find w(Qi, x) in O(log n) time. Therefore, the overall com-
plexity is O(n4 log n).

Next we solve the continuous distributions approximately
by discretization. The basic idea is clear: we partition the
given joint continuous distribution as a discrete distribution,
and calculate the optimal solution with respect to the dis-
crete one efficiently. Given any continuous distribution C
over [θ, θ] × [v, v], we construct a new discrete distribution
D as follows: we partition the space into squares of size ϵ×ϵ
where ϵ > 0 is sufficiently small such that the probability of
the types in each area [kϵ, (k + 1)ϵ] × [v, v] is bounded by
η. Then we put all the probability density of one square to
the mass point at the right bottom of the square. Note that η
could be arbitrarily small as long as ϵ is small enough. The
following theorem says the approximation loss could be ar-
bitrarily small.
Theorem 2. In the optimal scheme for distribution C and
D, the separation lines are denoted by OPTC and OPTD

respectively. For the given distribution C, the difference be-
tween the revenue achieved by separation lines OPTD and
OPTC is within ηv + ϵ.

Proof. Denote by ÔPTC the separation function achieved
by shifting OPTC with a distance ϵ downwards. This oper-
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ation guarantees that every buyer who lies above the separa-
tion line OPTC will stay above the separation line ÔPTC

after the discretization. Therefore, any buyer who purchases
the item in the scheme corresponding to OPTC will con-
tinue purchasing the item in the scheme corresponding to
ÔPTC but pay less. We use OPTC(C) to represent the rev-
enue achieved by OPTC on distribution C. ÔPTC(D) is
defined similarly. Then we have

OPTC(C) ≤ ÔPTC(D) + ϵ. (6)

Since OPTD is the optimal scheme for distribution D, it
holds that

ÔPTC(D) ≤ OPTD(D). (7)

In the scheme corresponding to OPTD, a buyer always
purchases the item as long as her type after discretization
purchases the item. But her payment might decrease due to
the horizontal shift in the discretization. For a buyer whose
type lying in the space [kϵ, (k + 1)ϵ] × [v, v], her payment
decreases at most

[ℓD(θ)− θℓ′D(θ)]
∣∣∣(k+1)ϵ
θ=kϵ ,

then the total decrease of the payment is at most∑
k

η · [ℓD(θ)− θℓ′D(θ)]
∣∣∣θ=(k+1)ϵ
kϵ = η(v − 0) .

Thus we have that

OPTD(D) ≤ OPTD(C) + ηv. (8)

The combination of Equations (6), (7) and (8), we have

OPTC(C) ≤ OPTD(C) + ηv + ϵ.

Revenue and Wasted Time
In this section, we investigate the impact by switching from
fixed pricing scheme to our optimal pricing scheme. Specif-
ically, we first examine the increased revenue and then the
degree of wasted time.

In real-world scenarios, the seller may set the pricing
function as a step function for simplicity. When the time
spent approaches a predefined threshold, the price decreases
to a lower level. As such, the separation function becomes
piecewise constant. The following result demonstrates that a
k-piecewise linear separation function could achieve k times
as much revenue as the optimal fixed pricing scheme.
Theorem 3. For k-step pricing scheme, the revenue is at
most k times the optimal fixed pricing scheme. Moreover,
the ratio is tight in the worst case.

Proof. Suppose there are k different prices p1, . . . , pk in the
pricing function. The total revenue is the sum of payments
collected from the buyers who pay pi in this pricing scheme
for all i ∈ [k]. Note that the revenue gained from the buyers,
who pay pi is no more than that of the posted pricing with
the price pi, not to say the best scheme using fixed price.
Therefore, the total revenue using k-step pricing scheme is
at most k times the optimal fixed pricing scheme. It can be

construed as the seller sells the item k times and with a dif-
ferent fixed price in each time.

Now we illustrate an example and show that this above
ratio is tight. For any r > 1, k, and a small constant ϵ >
0, we construct a discrete distribution with k types Qi =
(θi, vi), where vi = ri and

θi = (r − 1) · (r/ϵ)
i − 1

r/ϵ− 1
.

The probability of being type Qi is as follows, for 1 ≤ i ≤
k − 1 we set Pr[Q = Qi] = r1−i − r−i and Pr[Q = Qk] =
r1−k otherwise. One can easily verify that such a distribu-
tion is well defined.

The marginal value distribution is similar to the equal rev-
enue distribution where the revenue is unchanged, no matter
what the posted price is. In our distribution, the revenue is
always r for every posted price ri, given i ∈ [k].

We construct a separation function which almost yields
the revenue kr indeed. Our separation function ℓ(·) connects
all the type points using straight line segment:

ℓ(θ) =

{
ri + ϵi(θ − θi), θ ∈ [θi, θi+1);

rk, θ ≥ θk.

It is easy to see that our function ℓ(·) is convex and weakly
increasing since its derivative is weakly decreasing and al-
ways non-negative. Hence function ℓ is a valid separation
function.

According to Equation (5) in continuous setting, the rev-
enue under the discrete distribution becomes∑

1≤i≤k

[ℓ(θi)− θiℓ
′(θi)] · Pr[Q = Qi].

By our assumption, when a buyer has several actions with
the same highest utility, she will pays the highest possible
money in favor of the seller. Therefore, we should set ℓ′(θi)
to be the right-handed derivative.

ℓ(θi)− θiℓ
′(θi)

= ri − ϵiθi

= ri − ϵi(r − 1)((r/ϵ)i − 1)

r/ϵ− 1

≥ ri − r − 1

r − ϵ
· ϵri

≥ (1− ϵ)ri.

By plugging it into the revenue formula, the revenue is at
least ∑

1≤i≤k

(1− ϵ)ri(r1−i − r−i) =
1− ϵ

1− r−1
rk.

Taking the limit as ϵ to zero and r to infinity yields the ratio
to be k.

People are wasting time in their pursuit of low prices. We
measure the value of wasted time. Suppose a customer with
type (θ, v) would buy one item given the separation func-
tion ℓ(·). By Lemma 2, she spends ℓ′(θ) amount of time.
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We name her value of this amount of time as time loss. In
this case, her time loss is l′(θ)θ. Her money payment is
ℓ(θ) − ℓ′(θ)θ. Let loss denote the total time loss from all
customers and rev denote the total money payment collected
from all customers. The following theorem says while pur-
suing profit it could also cause a serious waste of time.
Theorem 4. Given a discrete distribution with k different
types, we have loss ≤ (k − 1)rev when using the optimal
pricing scheme. The ratio is tight.

Proof. We consider the optimal separation line, denoted by
ℓ(·). According to the construction algorithm of the opti-
mal separation line introduced in Theorem 1, the separation
line would be horizontal when θ is large enough and there
is a type with which the buyer does not have a time loss.
We assume it is type (θk, vk). We abuse the notation and
let fi denote the probability of being type (θi, vi). For ev-
ery type (vi, θi), we could set a posted price and collect a
revenue at least vifi. Hence, we have rev ≥ vi. For ev-
ery type (vi, θi), i < k, if vi ≥ ℓ(θi), her loss would be
lossi = (vi − ℓ′(θ)θ)fi ≤ vifi ≤ rev. Therefore, we have
loss ≤

∑
i<k lossi ≤ (k − 1)rev.

To prove the ratio is tight, we construct an instance. Let
d denote a large number which will be determined later. Let
ϵ denote a small number close to zero which will be deter-
mined later. We give a discrete distribution with k possible
types. For i ≤ k, we define θi = 1+ d+ · · ·+ di−1 = di−1

d−1

and vi = 1+d(1−ϵ)+d2(1−2ϵ)+· · ·+di−1(1−(i−1)ϵ) =
di−1
d−1 − ϵ(i− 1) · di

d−1 + ϵd · di−1−1
(d−1)2 . Define weight wi as

wi =
∏

2≤j≤i

θj−1 · d2−j

1 + d+ θj−1 · d1−j
.

Next we set fi = wi/w where w =
∑

1≤j≤k wk. It can be
shown that wi = d1−i(1 + O(1/d)). Given this probability
distribution with k different types, it is easy to check that the
optimal separation function is exactly the piecewise linear
function that connects these points consecutively. Formally,
the optimal function ℓ(·) is

ℓ(θ) =


v1

θ1
· θ, θ ∈ [0, θ1];

vi−1 +
vi−vi−1

θi−θi−1
· (θ − θi−1), θ ∈ (θi−1, θi];

vk, θ ∈ (θk,∞),

where i = 2, . . . , k. Then we measure the extracted rev-
enue and the time loss for each type. The revenue from type
(θi, vi), i < k is

revi = (vi − θi · (vi+1 − vi)/(θi+1 − θi)) · fi
= (vi − θi · (1− iϵ)) · fi

= ϵ ·
(
di − 1

d− 1
+

di − d

(d− 1)2

)
· wi

w

= ϵ/w · (1 +O(1/d)).

The time loss from the same type is

lossi = θi · (vi+1 − vi)/(θi+1 − θi) · fi
= θi · (1− iϵ) · wi/w

v

θ0 1

1

2

2

3

ℓ(θ)
4/3

2/3

2/3

Figure 2: Buyers’ type distribution

= di−1(1 +O(1/d))(1− iϵ) · d1−i(1 +O(1/d))/w

= (1 + o(1))/w.

The revenue collected from the type (θk, vk) is

revk = vkfk

=
di − 1

d− 1
(1 +O(ϵk)) · d1−i(1 +O(1/d))/w

= (1 +O(ϵn) +O(1/d))/w.

There is no time loss for type k. To sum up, as long as d ≫ k
and ϵ = o(1), we have rev =

∑
i≤k revi = (1 + o(1))/w

and loss =
∑

i≤k−1 lossi = (1 + o(1))(k − 1)/w. Then
loss/rev = k − 1 + o(1).

Revenue and Correlations
In this section, we show how to use calculus method to find
optimal pricing scheme in an example and explain the lim-
itations of this method. At last we discuss the implications
from the example. We give a closed form of the optimal so-
lution to a challenging case where the value and the CPUT
are positively correlated shown in Figure 2. To be specific,

f(θ, v) =

{
1
2 , 0 ≤ v − θ ≤ 1 and 0 ≤ θ ≤ 2;

0, otherwise.

Theorem 5. Consider the distribution defined by f as
above, the optimal separation line is

ℓp(θ) =


2/3 + θ, 0 ≤ θ ≤ 2/3;

4/3, 2/3 < θ;

0, otherwise,

and the optimal pricing scheme is

p(t) =

{
4/3, t ∈ [0, 1];

2/3, t > 1.

Proof. According to the distribution, we have that
Fv|θ[ℓp(θ)|θ] = θ + 1 − ℓp(θ) for ℓp(θ) ∈ [θ, θ + 1]. We
can simplify the objective function in Equation (5) as

1

2

∫ 2

θ=0

(ℓp(θ)− θℓ′p(θ))[θ + 1− ℓp(θ)]
+dθ,

where we use [·]+ to denote the larger one between the in-
put and zero. W.L.O.G., we claim that ℓp(0) is non-negative.
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Assuming that ℓp(0) < 0, we can draw a shooting line
ℓ2(·) from origin point (0, 0) touching the separation func-
tion ℓp(·) with the touching point (θ̂, ℓp(θ̂)). If we use ℓp
as the separation function, the payment from the buyer with
type θ < θ̂ will be negative. Therefore, the performance of
the separation function ℓ̂p by replacing ℓp with ℓ2 over the
interval (0, θ̂).

Since ℓp(θ) is concave, we define b such that [0, b] =
[0, 2]

⋂
{θ|ℓp(θ) ≥ θ}. In other words, [0, b] is the interval

where the separation function is above the line v = θ.
At present, we focus on the payment from the buyer with

θ ∈ [0, b] which depends on the design of the separation
function ℓp(θ), θ ∈ [0, b]. We also relax the term [θ + 1 −
ℓp(θ)]

+ to be θ+1− ℓp(θ) since it cannot be negative in the
optimal solution.

To find the optimal solution ℓp, we use the method from
the calculus of variations. We define the Lagrangian L as
follows:

L(ℓp + αg) =

∫ b

θ=0

[
ℓp(θ) + αg(θ)− θℓ′p(θ)− θαg′(θ)

]
· [θ + 1− ℓp(θ)− αg(θ)] dθ.

When ℓp is the optimal solution, its restriction on [0, b]
is also the optimal solution with fixed value between ℓp(0)
and ℓp(b). Then as long as ℓp+αg satisfies convex and non-
decreasing constraint and g(0) = g(b) = 0, we have that
∂L
∂α |α=0 is zero.

∂L

∂α
=

∫ b

0

[
(g(θ)− θg′(θ))(−ℓp(θ) + θ + 1)

− [ℓp(θ)− θℓ′p(θ)]g(θ)

]
dθ

=

∫ b

0

g(θ)
(
θ + 1− 2ℓp(θ) + θℓ′p(θ)

)
dθ

−
∫ b

0

θ(θ + 1− ℓp(θ))g
′(θ)dθ

=

∫ b

0

g(θ)
(
θ + 1− 2ℓp(θ) + θℓ′p(θ)

)
dθ

− θ(θ + 1− ℓp(θ))g(θ)|b0

+

∫ b

0

g(θ)
(
2θ + 1− ℓp(θ)− θℓ′p(θ)

)
dθ

=

∫ b

0

(3θ + 2− 3ℓp(θ))g(θ)dθ.

For any interval where 3θ + 2 − 3ℓp(θ) > 0, any so-
lution ℓp(θ) + αg(θ) is feasible and α > 0, we have
g(θ) = 0. With the fact that g(0) = g(θ) = 0, the function
θ(θ+1− ℓp(θ))g(θ)|b0 can be dropped from the equation. It
implies that in such an interval, ℓp(θ) has already achieves
the highest possible value. Similarly, in any interval where
3θ + 2 − 3ℓp(θ) ≥ 0 , ℓp(θ) achieves the lowest possible
value.

Assume the intersection between ℓp and straight line v =

θ+ 2/3 is at point (θ̃, θ̃+ 2/3). According to the argument,

we have ℓp is a straight line for θ ∈ [0, θ̃] and is a horizontal
line for θ ∈ [θ̃, b].

By simple calculations, the optimal intersection point is
(θ̃, ℓp(θ̃)) = (2/3, 3/4). The optimal separation function is
given as follows,

ℓp(θ) =


2/3 + θ, 0 ≤ θ ≤ 2/3;

4/3, 2/3 < θ;

0, otherwise.

The pricing scheme can be computed easily and the calcula-
tion is omitted.

As shown in the proof, we can see that the calculation
of the closed-form of the separation line heavily depends
on the distribution assumption, which could be much more
complicated if the distribution is not very well.

When the value v and the CPUT θ are positively corre-
lated, the pricing scheme may help, as illustrated in Theo-
rem 2. In the positive correlation example, the optimal rev-
enue using posted price is 25/32, and the optimal revenue
using our pricing scheme is 22/27, which increases about
22/27
25/32 − 1 ≈ 4.6%. The time loss is 1/27, which is slightly
smaller than the increase of the revenue.

Conclusion
In this paper, we introduce the pricing scheme problem with
time-sensitive buyers. We then propose a polynomial algo-
rithm to find the optimal scheme in the discrete distribution
setting. We consider the revenue change and measure wasted
time in our pricing scheme. There are several future direc-
tions based on this work. In this paper, we study the revenue
maximization problem. It could be interesting to know some
results about the welfare maximization. Now we focus on
the offline model in the sense that the customers are known
in advance. We are also interested this problem in the on-
line model. Furthermore, we assume that the cost of time is
linear with respect to the time, one interesting question is to
explore general cost functions which could be more practi-
cal.
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