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Abstract

Designing private voting rules is an important and pressing
problem for trustworthy democracy. In this paper, under the
framework of differential privacy, we propose a novel famliy
of randomized voting rules based on the well-known Con-
dorcet method, and focus on three classes of voting rules
in this family: Laplacian Condorcet method (CMLAP

λ ), ex-
ponential Condorcet method (CMEXP

λ ), and randomized re-
sponse Condorcet method (CMRR

λ ), where λ represents the
level of noise. We prove that all of our rules satisfy abso-
lute monotonicity, lexi-participation, probabilistic Pareto ef-
ficiency, approximate probabilistic Condorcet criterion, and
approximate SD-strategyproofness. In addition, CMRR

λ sat-
isfies (non-approximate) probabilistic Condorcet criterion,
while CMLAP

λ and CMEXP
λ satisfy strong lexi-participation. Fi-

nally, we regard differential privacy as a voting axiom, and
discuss its relations to other axioms.

1 Introduction
Voting is a commonly used method for group decision mak-
ing, where voters submit their preferences over a set of al-
ternatives, and then a voting rule is applied to choose the
winner. A major and classical paradigm behind the design
and analysis of voting rules is the axiomatic approach (Plott
1976), under which voting rules are evaluated by their sat-
isfaction to various normative properties, known as (voting)
axioms. For example, the Condorcet criterion requires that
whenever there exists a Condorcet winner, which is the alter-
native that beats all other alternatives in their head-to-head
competitions, it must be selected as the winner.

Recently, privacy in voting has become a critical pub-
lic concern. There are a series of works on examining the
differential privacy (DP) (Dwork 2006) of voting (Shang
et al. 2014; Hay, Elagina, and Miklau 2017; Yan, Li, and Liu
2020). These works mainly focused on applying several ran-
domized mechanisms to existing voting rules, proving upper
bounds on the privacy-preserving level (also called privacy
budget, denoted by ε throughout the paper), and then evalu-
ating the utility loss (measured by accuracy or mean square
error) due to randomness. However, the upper bounds on pri-
vacy in most of them are not tight, which means that the ex-
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act privacy-preserving level of the mechanisms is unclear.
Moreover, we are not aware of a previous work on making
voting private while maintaining the satisfaction to desirable
voting axioms beyond strategyproofness (Lee 2015). There-
fore, the following question remains largely open.

How can we design private voting rules that satisfy
desirable axiomatic properties?

Our contributions. We propose a novel class of random-
ized voting rules, denoted by CMRand

λ , based on the cel-
ebrated Condorcet method, which chooses the Condorcet
winner when it exists, where Rand is a randomized func-
tion (called a mechanism in DP literature) that introduces
noises to pairwise comparisons between alternatives, and λ
represents the level of noise. To choose a winner, CMRand

λ
applies Rand with parameter λ to the pairwise comparisons
for the input profile until a Condorcet winner appears, and
then chooses it as the winner.

We focus on three classes voting rules in this family,
namely CMLAP

λ , CMEXP
λ , and CMRR

λ , which are obtained by
applying the Laplace mechanism, exponential mechanism,
and randomized response mechanism, respectively. Under
these mechanisms, while it may take exponentially many it-
erations to obtain the winner by definition, we show that the
winner can be efficiently sampled (Lemma 1).

Our main technical contributions are three-fold. First, we
prove that all the three classes of voting rules are differen-
tially private by characterizing the upper and lower bounds
on the privacy budget ε (Theorem 1). Second, we study
the satisfaction of our voting rules to probabilistic variants
to Condorcet criterion (p-Condorcet, requiring the winning
rate of the Condorcet winner is not lower than the other alter-
natives), Pareto efficiency (p-Pareto, which requires the win-
ning rate of a is not lower than b, if a Pareto dominates b),
monotonicity (a-monotonicity, which ensures the winning
rate of each alternative does not decrease when her rank-
ing is lifted by any voter simply), strategyproofness (SD-
strategyproofness, SD-SP for short, which ensures that no
voter can benefit herself in the sense of stochastic dominance
by changing her vote), and participation (lexi-participation,
which ensures that no voter can improve the result of the
voting lexicographically by withdrawing her vote). Besides,
we consider the approximate version of p-Condorcet (α-p-
Condorcet, Definition 5) and SD-SP (α-SD-SP, Definition
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p-Condorcet α-p-Condorcet p-Pareto a-Mono. α-SD-SP Lexi-Par. Strong Lexi-Par.

CMRR
λ 3 eλ 3 3 e(2−2m)λ 3 7

CMEXP
λ 7 1+eλ/2

(1+e−λ/2)
m−1 3 3 e(2−2m)λ 3 3

CMLAP
λ 7 2eλ

(
1− e−λ

2

)m−1
3 3 e(2−2m)λ 3 3

Table 1: The satisfaction of our mechanisms to the voting axioms, where “3” indicates that the row rule satisfies the column
axiom, and “7” indicates that the rule does not satisfy the axiom. The expressions in the table represent the level of satisfaction
to the approximate axioms (the α in α-p-Condorcet and α-SD-SP).

7), and the strong version of lexi-participation (Definition
8). Our results suggest that CMLAP

λ outperforms CMEXP
λ in

all aspects examined in the paper, while CMRR
λ sometimes

achieves better p-Condorcet but only satisfies standard lexi-
participation, instead of the strong version (Theorems 2 - 8).
The results in the second part are summarized in Table 1.
Third, we investigate the relations between DP and the vot-
ing axioms. We prove that Condorcet criterion and Pareto
efficiency are incompatible with DP, and capture the upper
bounds of satisfaction to p-Condorcet under ε-DP (Propo-
sition 4 - 6). Besides, we show that DP guarantees a lower
bound of satisfaction to SD-strategyproofness (Proposition
7). All of the missing proofs can be found in Appendix.

Related work and discussions. To the best of our knowl-
edge, DP was first applied to the rank aggregation prob-
lem in (Shang et al. 2014). They analyzed the error rates
and derived upper bounds on them. Lee proposed an al-
gorithm which is both differentially private and robust to
strategic manipulation for tournament voting rules (Lee
2015). Hay et al. used Laplace mechanism and exponen-
tial mechanism to improve the privacy of Quicksort and
Kemeny-Young method (Hay, Elagina, and Miklau 2017).
Kohli and Laskowski explored DP, strategyproofness, and
anonymity for voting on single-peaked preferences (Kohli
and Laskowski 2018). Torra analyzed the privacy-preserving
level of random dictatorship with DP, which is a well-known
randomized voting rule (Torra 2019). He investigated the
condition where random dictatorship is differentially pri-
vate, and improved the mechanism to achieve DP for general
cases. Yan et al. made tradeoff between accuracy and privacy
in rank aggregation to achieve local DP via Laplace mecha-
nism and randomized response (Yan, Li, and Liu 2020).

Most of the above works did not consider the tradeoffs be-
tween privacy and those desirable properties, and the privacy
bounds of them are usually not tight. Liu et al. proposed the
exact version of distributional DP (Bassily et al. 2013) and
studied the privacy-preserving level of several voting rules,
but they did not investigate how to improve the privacy (Liu
et al. 2020). Beyond social choice, DP has also been consid-
ered in other topics of economics, such as mechanism design
(Pai and Roth 2013; Xiao 2013), and matching and resource
allocation (Hsu et al. 2016; Kannan et al. 2018).

There is a large literature on the analysis of randomized
voting (Brandt 2017), most of them studied the satisfaction
to axiomatic properties, e.g., complexity of manipulation
(Walsh and Xia 2012), strategyproofness (Aziz, Brandl, and

Brandt 2014, 2015), Pareto efficiency (Brandl, Brandt, and
Hofbauer 2015; Gross, Anshelevich, and Xia 2017), partici-
pation (Brandl, Brandt, and Hofbauer 2019) and monotonic-
ity (Brandl, Brandt, and Stricker 2018). The fairness proper-
ties of sortition have also been investigated (Benadè, Gölz,
and Procaccia 2019; Flanigan et al. 2020, 2021).

The approximation of those properties was also stud-
ied. Procaccia discussed how much a strategyproof random-
ized rule could approximate a deterministic rule (Procac-
cia 2010). Birrell and Pass explored the approximate strat-
egyproofness for randomized voting rules (Birrell and Pass
2011). They bounded the difference of the expectations of
the utility function with a parameter, but the ratio seems to
be more natural for DP.

2 Preliminaries
Let A = {a1, a2, . . . , am} denote a set of m > 2 alterna-
tives. For any n ∈ N, let N = {1, 2, . . . , n} be a set of
voters. For each j ∈ N , the vote of voter j is a linear order
�j∈ L(A), where L(A) denotes the set of all linear orders
over A, i.e., all transitive, antireflexive, antisymmetric, and
complete binary relations. Let P = {�1,�2, . . . ,�n} de-
note the (preference) profile. For each j ∈ N , let P−j denote
the profile obtained from P by removing �j . A (random-
ized) voting rule is a mapping r : L(A)n → ∆(A), where
∆(A) denotes the set of all probability distributions on A.

Given a profile P ∈ L(A)n, let SP [a, b] denote the num-
ber of voters who prefer a to b, i.e., SP [a, b] = |{j ∈ N :
a �j b}|. Let wP [a, b] = SP [a, b] − SP [b, a] be the ma-
jority margin of a over b. Then the weighted majority graph
(WMG) of P can be defined: the vertices of WMG are al-
ternatives in A and there is a directed edge from a to b with
weightwP [a, b] if and only ifwP [a, b] > 0. Similarly, letting
UP [a, b] = Sgn(wP [a, b]), the unweighted majority graph
(UMG) of P can also be defined: the set of vertices is A
and there is an unweighted directed edge from a to b if and
only if UP [a, b] = 1, where Sgn denotes the sign function,
i.e., Sgn(x) = x/|x| for all x 6= 0 and Sgn(0) = 0. The
Condorcet winner of P is an alternative a ∈ A, such that
UP [a, b] = 1 for all b ∈ A\{a}, denoted by CW(P ). No-
tice that the Condorcet winner is completely determined by
the UMG, we also use CW(UP ) to denote the Condorcet
winner claimed by the UMG.

Axioms of voting. A voting rule r satisfies Condorcet
criterion, if P[r(P ) = CW(P )] = 1 holds for all pro-
file P that CW(P ) exists. The rule r satisfies Pareto effi-
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ciency, if P[r(P ) = b] = 0 for all profile P , where exists
a, b ∈ A that a �j b for all j ∈ N . And r satisfies ab-
solute monotonicity (Brandl, Brandt, and Stricker 2018), if
P[r(P ) = a] 6 P[r(P ′) = a] holds for all P, P ′, such
that P−j = P ′−j , �j 6=�′j , and �′j is a pushup of a in �j ,
i.e., �′j raises the position of a in �j , and keeps the rel-
ative position of other alternatives unchanged. A random-
ized rule r satisfies SD-Strategyproofness (Aziz, Brandt, and
Brill 2013), if for all P, P ′ and j ∈ N that P−j = P ′−j
and �j 6=�′j ,

∑
b�ja P[r(P ) = b] >

∑
b�ja P[r(P ′) = b],

for all a ∈ A 1. A voting rule satisfies lexi-participation
if for all P, P ′ that P ′ = P\{�j}, there does not exist
a ∈ A, such that P[r(P ) = a] < P[r(P ′) = a] and
P[r(P ) = b] = P[r(P ′) = b] for all b �j a.

Differential privacy (Dwork et al. 2006) is a theoretical
guarantee of privacy that requires a function to return similar
outputs while receiving similar inputs.
Definition 1 (Differential privacy). A function r with do-
main D is ε-differentially private (ε-DP for short) if for all
O ⊆ Range(r) and P, P ′ ∈ D differing on only one record,

P[r(P ) ∈ O] 6 eε · P[r(P ′) ∈ O].

In other words, a function r is ε-DP, if the ratio between
the probabilities for the outputs of any pair of neighboring
datasets to be in any given set O must be upper bounded by
eε. In the context of social choice, r is a voting rule and

D = L(A)∗ = L(A) ∪ L(A)2 ∪ · · · ,
and P, P ′ are two profiles differing on only one voter’s vote.
Under this requirement, the winner of any DP voting rule
will not be significantly influenced by any single voter’s
vote. As a result, any individual’s vote will not be revealed
by announcing the winner of the voting process.

Notice that Definition 1 does not require the eε upper
bound to be tight. The tight upper bound is captured by exact
DP, formally defined as follows.
Definition 2 (Exact differential privacy (Dwork 2006)). A
voting rule r is exact DP (ε-eDP for short) if it is ε-DP and
there does not exist ε′ < ε such that r is ε′-DP.

For both DP and eDP, the privacy budget ε usually is de-
cided according to the users’ demand. For example, iOS 11
requires ε ≤ 43 and iOS 10 requires ε ≤ 14 (Orr 2017)2. In
the next section, we provide upper and lower bounds for the
required noise level for any user-defined privacy budget.

3 Differentially Private Condorcet Methods
In this section, we propose a novel class of randomized vot-
ing rules. We apply three randomization mechanisms and
obtain three classes of voting rules. By analyzing the worst
cases, we prove that all of the three rules are differentially
private, and our bounds of privacy budget are tight.

1In fact, absolute monotonicity and SD-strategyproof are equiv-
alent to the nonperverseness and the strategyproofness in (Gibbard
1977), respectively.

2iOS has may have stronger privacy requirement for some spe-
cific data types (e.g., ε ≤ 8 for Safari Auto-play intent detection
data) (Apple Inc. 2017).

Mechanism 1: Randomized Condorcet Method
Input: Profile P , Parameter λ, Randomization Rand
Output: Winning alternative

1 Function Select Rand(S, λ):
2 Get randomized unweighted graph URand

λ,P with
randomized mechanism Rand;

3 if There exists Condorcet winner a for URand
λ,P

then
4 return a;
5 else
6 Select Rand(S,λ);

7 Function CM Rand(P , λ):
8 Compute SP [a, b] for all a, b ∈ A;
9 Select Rand(SP , λ);

As mentioned in Section 2, the existence of Condorcet
winner is completely determined by the UMG. In our mech-
anism, denoted by CMRand

λ , a randomization mechanism
Rand generates a noisy UMG for the given profile, and the
voting rule outputs the Condorcet winner. If the Condorcet
winner does not exist, the mechanism will generate another
UMG, until the Condorcet winner exists, as shown in Mech-
anism 1.
Remark. Notice that for each pair of alternatives a, b ∈ A,
URand
λ,P [a, b] and URand

λ,P [b, a] are determined simultaneously,
i.e., URand

λ,P [a, b] = 1, if and only if URand
λ,P [b, a] = −1. Thus,

any noisy UMG URand
λ,P produced in Mechanism 1 claims at

most one Condorcet winner. In other words, our mechanism
is a well-defined map from L(A)∗ to ∆(A).

In the randomization process, we adopt three different
methods, which are defined as follows.
Definition 3. Given λ > 0, the three randomization mecha-
nisms are
• Laplace mechanism: Given profile P , for any ai, aj ∈
A that i < j, let ŵP [ai, aj ] = wP [ai, aj ] + Xij for
all ai, aj ∈ A and ŵP [aj , ai] = −ŵP [ai, aj ], where

Xij
i.i.d∼ Lap(1/λ)3. Under such a mechanism, the noisy

UMG is

ULAP
λ,P [a, b] = Sgn(ŵP [a, b]).

• Exponential mechanism: For profile P ,

P[UEXP
λ,P [a, b] = 1] ∝ eλ·SP [a,b]/2,

P[UEXP
λ,P [a, b] = −1] ∝ eλ·SP [b,a]/2.

• Randomized response: For the majority margin wP of a
given profile P , if wP [a, b] 6= 0,

URR
λ,P [a, b] =

{
Sgn(wP [a, b]), w.p. eλ

1+eλ
,

− Sgn(wP [a, b]), w.p. 1
1+eλ

.

3The Laplace distribution with scale parameter 1/λ, of which
the probability density function (PDF) is fλ(x) = λ

2
e−λ|x|.
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Figure 1: The lower and upper bounds of privacy budget (left: m = 5, right: m = 20).

If wP [a, b] = 0, then

P[URR
λ,P [a, b] = 1] = P[URR

λ,P [a, b] = −1] = 1/2.

The three randomization mechanisms above are denoted
by LAP, EXP, and RR, respectively. For each Rand ∈
{LAP,EXP,RR}, the Condorcet winner may not exist for
the noisy UMG URand

λ,P . Thus, our mechanism may need to
perform the randomization for several times. In fact, for
any given profile P , the expected times of randomization
is exp(Θ(m)) (see Appendix A.1). However, such a mecha-
nism with high time complexity can be sampled efficiently,
as shown in the following lemma.
Lemma 1. For any Rand ∈ {LAP,EXP,RR} and λ > 0,
CMRand

λ can be sampled as follows:

• For any P ∈ L(A)∗, CMLAP
λ (P ) is a probability distri-

bution in ∆(A), such that for any a ∈ A,

P[CMLAP
λ (P ) =a] ∝

∏
b6=a

Fλ(wP [a, b]),

where Fλ(x) =
∫ x
−∞ fλ(t)dt is the cumulative distribu-

tion function (CDF) of Lap(1/λ).
• For any P ∈ L(A)∗, CMEXP

λ (P ) is a probability distri-
bution in ∆(A), such that for any a ∈ A,

P[CMEXP
λ (P ) = a] ∝

∏
b6=a

1

1 + e−λ·wP [a,b]/2
.

• For any P ∈ L(A)∗, CMRR
λ (P ) is a probability distribu-

tion in ∆(A), such that for any a ∈ A,

P[CMRR
λ (P ) = a] ∝ eλ·|B(a)|

(1 + eλ)m−1
,

where B(a) = {b ∈ A : SP [a, b] > SP [b, a]}.
Since there are totally m alternatives, and the value of

P[CMRand
λ (P ) = a] for each a ∈ A in Lemma 1 can be

computed inO(m) time. Therefore, CMRand
λ can be sampled

in O(m2) time.
Now, we are ready to show the DP bounds of our rules.

For simplicity , we use Gλ(x) to denote P[URand
λ,P [a, b] = 1],

where wP [a, b] = x. For example, when Rand = LAP,
Gλ(x) = Fλ(x); when Rand = EXP, Gλ(x) = 1

1+e−λx/2
.

Theorem 1. Given λ > 0 and Rand, suppose that CMRand
λ

satisfies ε-eDP. When Rand ∈ {LAP,EXP}

ln

(
Gm−1λ (2)−Gm−1λ (−2)

Gλ(2)−Gλ(−2)
· 2m−2

m− 1

)
+ (m− 1)λ

6 ε 6 2(m− 1)λ.

When Rand = RR, (m− 1)λ 6 ε 6 2(m− 1)λ.
Proof Sketch. For the upper bound, w.l.o.g., we make com-
parison between the winning probabilities of a1 under neigh-
boring profile P and P ′. According to Lemma 1, we have

P[CMRand
λ (P ) = a1] =

m−1∏
i=2

P[URand
λ,P [a1, ai] = 1]

m−1∑
j=1

∏
i6=j

P[URand
λ,P [aj , ai] = 1]

.

Then we can prove that for any a ∈ A and any Rand,∏
b6=a

P[URand
λ,P [a, b] = 1] 6 e(m−1)λ ·

∏
b6=a

P[URand
λ,P ′ [a, b] = 1].

Further, we have∑
a∈A

∏
b6=a

P[URand
λ,P [a, b] = 1]∑

a∈A

∏
b6=a

P[URand
λ,P ′ [a, b] = 1]

6 e(m−1)λ.

As a consequence, for any Rand ∈ {LAP,EXP,RR},

P[CMRand
λ (P ) = a1]

P[CMRand
λ (P ′) = a1]

6 e2(m−1)λ,

which completes the proof of upper bound.
For the lower bound, consider the profile P with n = 2k:
• k voters: a1 � a2 � · · · � am;
• k − 1 voters: am−1 � am−2 � · · · a1 � am;
• 1 voter: am � am−1 � · · · � a1.

And another profile P ′:
• k + 1 voters: a1 �′ a2 �′ · · · �′ am;
• k − 1 voters: am−1 �′ am−2 �′ · · · a1 �′ am.
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Then the lower bound is P[CMRand
λ (P )=am]

P[CMRand
λ (P ′)=am]

. �

With Theorem 1, we can get the upper and lower bounds
of exact privacy budget ε for any given λ. The relations be-
tween the lower and upper bounds whenm = 5 andm = 20
are shown in Figure 1.

4 Axioms-Privacy Tradeoff
In this section, we analyze our voting rules with axioms
mentioned in Section 2. We show that our rules do not sat-
isfy Condorcet criterion and Pareto efficiency. To address
these challenges, we explore probabilistic variants of them.
Then we discuss the satisfaction to absolute monotonicity,
SD-strategyproofness, and lexi-participation.

To begin with, we analyze our voting rules with Con-
dorcet criterion. But unfortunately, CMRand

λ does not sat-
isfy Condorcet criterion with any Rand ∈ {LAP,EXP,RR}
and λ ∈ R+, though it is designed based on the Condorcet
method. Intuitively, for any P ∈ L(A)n and any pair of al-
ternatives a, b ∈ A, P[URand

λ,P [a, b] = 1] < 1. Then

P[CMRand
λ (P ) = a] 6

∏
b∈A\{a}

P[URand
λ,P [a, b] = 1] < 1,

even when a is the Condorcet winner. To deal with this, we
propose a probabilistic variant of Condorcet criterion, which
is shown in the following definition.
Definition 4 (Probabilistic Condorcet criterion). A ran-
domized voting rule r satisfies probabilistic Condorcet crite-
rion (p-Condorcet) if for every profile P that CW(P ) exists
and all a ∈ A\{CW(P )},

P[r(P ) = CW(P )] > P[r(P ) = a].

At a high level, Definition 4 is a relaxation of the Con-
dorcet criterion, since it does not always require the voting
rule r to select the Condorcet winner. Further, the following
theorem holds.
Theorem 2. For any λ > 0, CMRR

λ satisfies p-Condorcet.

In other words, CMRR
λ satisfies a weak version of Con-

dorcet criterion for any λ > 0. However, the results for
CMEXP

λ and CMLAP
λ are relatively negative.

Proposition 1. CMEXP
0.5 and CMLAP

0.5 do not satisfy p-
Condorcet.

To measure how much CMEXP
λ and CMLAP

λ deviate from
p-Condorcet, we further extend the axiom.
Definition 5 (α-Probabilistic Condorcet criterion). A
randomized voting rule r satisfies α-probabilistic Condorcet
criterion (α-p-Condorcet) if for every profile P that CW(P )
exists and for all a ∈ A\{CW(P )},

P[r(P ) = CW(P )] > α · P[r(P ) = a].

Note that a larger α is more desirable, as α-p-Condorcet is
almost equivalent to the standard Condorcet criterion when
α→∞. Especially, it reduces to p-Condorcet when α = 1.

For CMEXP
λ and CMLAP

λ , the following theorem holds.
Theorem 3. For any λ > 0,

Figure 2: The satisfaction of p-Condorcet with different λ.

• CMEXP
λ satisfies 1+eλ/2

(1+e−λ/2)
m−1 -p-Condorcet;

• CMLAP
λ satisfies 2eλ

(
1− e−λ

2

)m−1
-p-Condorcet;

• CMRR
λ satisfies eλ-p-Condorcet.

Proof Sketch. Since there is only one profile P , the nor-
malizations in Lemma 1 are not necessarily considered any-
more. Here we take CMEXP

λ as an example. Since CW(P ) =
a, we have wP [a, c] > 1, for any c ∈ A\{a}, which indi-
cates that P[CMEXP

λ (P ) = a] has a lower bound. Similarly,
P[CMEXP

λ (P ) = b] has an upper bound for any b ∈ A\{a}.
Then the lower bound of P[CMEXP

λ (P )=a]

P[CMEXP
λ (P )=b]

can be derived. �

With Theorem 3, we can obtain a more general version of
Proposition 1, which is shown as follows.

Proposition 2. Given λ > 0, CMEXP
λ satisfies p-Condorcet

when ln(eλ/2+1)
ln(eλ/2+1)−λ/2 +1 > m; CMLAP

λ satisfies p-Condorcet

when λ+ln 2
ln 2−ln(2−e−λ) + 1 > m.

Notice that both of the LHS of the two inequalities in
Proposition 2 are increasing functions of λ which diverge
when λ → ∞. Thus, for any m, there must exist some λ
satisfying the inequalities.

Since the upper and lower bounds of the privacy budget
can completely be determined by λ, we use λ to denote the
privacy level. Also, we use the parameter α in Definition 4
to denote the level of satisfaction to p-Condorcet, then the
tradeoff curves when m = 5 are shown in Figure 2.

Similar to the Condorcet criterion, our new class of voting
rules do not satisfy Pareto efficiency either. Suppose there is
an alternative b ∈ A, which is Pareto dominated by a ∈ A
in profile P , i.e., a �j b for all j ∈ N . Then for any λ and
Rand ∈ {LAP,EXP,RR}, we have

P[CMRand
λ (P ) = b] 6

∏
c 6=b

P[URand
λ,P [b, c] = 1].

According to the Definition of LAP, EXP, and RR,
P[URand

λ,P (b, c)] > 0 for all c ∈ A, which indicates that
CMRand

λ does not satisfy Pareto efficiency. However, a still
dominates b in another way. Formally, we have the following
definition.
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Definition 6 (Probabilistic Pareto efficiency). A random-
ized voting rule r satisfies probabilistic Pareto efficiency (p-
Pareto) if for each pair of alternatives a, b ∈ A that a �k b
holds for all k ∈ N ,

P[r(P ) = a] > P[r(P ) = b].

This definition is a relaxation of Pareto efficiency. For our
voting rules, the following theorem holds.

Theorem 4. For any λ > 0, CMRR
λ , CMEXP

λ , and CMLAP
λ

satisfy p-Pareto.
Proof Sketch. Let a, b ∈ A be the pair of alternatives that
a �j b holds for any j ∈ N . Then for any j ∈ N and any
c ∈ A\{a, b} such that b �j c, we have a �j c. Further,

S[a, c] = |{j ∈ N : a �j c}|
> |{j ∈ N : b �j c}| = S[b, c].

Hence, wP [a, c] > wP [b, c], for all c ∈ A\{a, b}. Then the
theorem holds due to the monotonicity of CDFs. �

Unlike Condorcet and Pareto, the definition of mono-
tonicity, strategyproofness, and participation are related to
two distinct profiles. For monotonicity, we use the notion
of absolute monotonicity in (Brandl, Brandt, and Stricker
2018). Intuitively, in Mechanism 1, for any a ∈ A, when-
ever a voter i switches her preference �i to �′i by lifting a
simply, a will be more likely to defeat any b ∈ A\{a} in the
one-on-one comparisons. As a consequence, a will be more
likely to be the winning alternative in our CMRand

λ . Formally,
we have the following theorem.

Theorem 5. For any λ > 0, CMRR
λ , CMEXP

λ , and CMLAP
λ

satisfy a-monotonicity.
Proof Sketch. Let P and P be two profiles in L(A)n, such
that P−j = P ′−j and �′j is a pushup of a ∈ A in �j . Then
we only need to prove that∏

b6=a

P[URand
λ,P [a, b] = 1] >

∏
b6=a

P[URand
λ,P ′ [a, b] = 1],

which is true due to the monotonicity of CDFs. �
Next, we discuss the strategyproofness of CMRand

λ . We
adopt the notion of SD-strategyproofness (Aziz, Brandt, and
Brill 2013), which implies the absolute monotonicity. How-
ever, the results for our rules are not so positive.

Proposition 3. CMRR
1 , CMEXP

1 , and CMLAP
1 do not satisfy

SD-strategyproofness.
Similar to Definition 5, we extend the notion of SD-

strategyproofness.
Definition 7 (α-SD-Strategyproofness). A voting rule r
satisfies α-SD-strategyproofness (α-SD-SP for short) if for
all P, P ′ and j ∈ N , such that P−j = P ′−j and �j 6=�′j ,∑
b�ja

P[r(P ) = b] > α ·
∑
b�′ja

P[r(P ′) = b], for all a ∈ A.

Especially, α-SD-strategyproofness reduces to the stan-
dard SD-strategyproofness when α = 1. For our rules, the
following theorem holds.

Theorem 6. For any λ > 0, CMRR
λ , CMLAP

λ and CMEXP
λ

satisfy e(2−2m)λ-SD-strategyproofness.
Proof Sketch. W.l.o.g., for any Rand ∈ {LAP,EXP,RR}
and any profiles P = {�1,�2, . . . ,�n}, P ′ = {�′1,�2

, . . . ,�n} and a ∈ A, we have

P[CMRand
λ (P ) = a] > e(2−2m)λ · P[CMRand

λ (P ′) = a].

Therefore, for any a ∈ A,∑
b�1a

P[CMRand
λ (P ) = b]∑

b�′1a
P[CMRand

λ (P ′) = b]
> e(2−2m)λ,

which completes the proof. �
Finally, we discuss the participation of our voting rules.

We use the notion of lexi-participation, which requires that
a participating agent is always no worse off under lexico-
graphical order. In our rules, each participating voter j can
benefit herself, since the majority margin w[a, b] for any
a �j b will increase due to her vote. Formally, the following
theorem holds.
Theorem 7. For any λ > 0, CMLAP

λ , CMEXP
λ , and CMRR

λ
satisfy lexi-participation.
Proof Sketch. On the one hand, we can prove that the win-
ning probability of the top-ranked alternative of the voter i
will not decrease after she submits her vote. On the other
hand, if there exists any alternative a that

P[CMRand
λ (P ) = a] < P[CMRand

λ (P\{� i}) = a],

there will exists another alternative b that b �i a, and

P[CMRand
λ (P ) = b] < P[CMRand

λ (P\{� i}) = b],

which completes the proof. �
Theorem 7 shows that for any Rand ∈ {LAP,EXP,RR},

CMRand
λ will not harm any participating voter under lexico-

graphical order. Further more, CMLAP
λ and CMEXP

λ satisfy a
stronger notion, which is defined as follows.
Definition 8 (Strong lexi-participation). A voting rule r sat-
isfies strong lexi-participation if for all P, P ′ that P ′ =
P\{�j}, there exists a ∈ A, such that P[r(P ) = a] >
P[r(P ′) = a] and P[r(P ) = b] = P[r(P ′) = b] for all
b �j a.

Intuitively, strong lexi-participation guarantees that each
voter can benefit from her vote, while lexi-participation only
ensures that each voter will not be harmed by her vote. For
CMLAP

λ and CMEXP
λ , we have the following theorem.

Theorem 8. For any λ > 0, CMLAP
λ and CMEXP

λ satisfy
strong lexi-participation.
Proof Sketch. When Rand = {LAP,EXP}, for any λ >
0, any pair of a, b ∈ A, P[URand

λ,P [a, b] = 1] are strictly in-
creasing functions of wP [a, b]. Thus, the top-ranked alterna-
tive of a voter strictly increases when she submits her vote,
which completes the proof. �

However, CMRR
λ does not satisfy strong lexi-participation,

since only one vote may be not able to increase the win-
ning probability of any alternative. For example, consider
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Pareto efficiency
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ε-Differential privacy
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α6eε

e−ε-SD-Strategyproofness

Figure 3: Relations between ε-DP and other axioms, where X ⇒ Y indicates that X implies Y , a solid line between X and Y
indicates that X,Y are compatible with some condition, and a dash line between X and Y means that X,Y are incompatible.

the profile P , where the votes of all n (n > 3) voters are
exactly the same, a1 � a2 � · · · � am. Then for any
i1 < i2, we have SP [ai1 , ai2 ] = n and SP [ai2 , ai1 ] = 0.
For any P ′ that P ′ = P\{�j}, we have SP ′ [ai1 , ai2 ] =
n − 1 and SP ′ [ai2 , ai1 ] = 0 for any i1 < i2. Then it fol-
lows that URR

λ,P [ai1 , ai2 ] = URR
λ,P ′ [ai1 , ai2 ], for all i1, i2 ∈

{1, 2, . . . ,m}. As a result, we have

P[CMRR
λ (P ) = ai] = P[CMRR

λ (P ′) = ai], for all ai ∈ A,

which indicates that CMRR
λ does not satisfy strong lexi-

participation.

5 Differential Privacy as a Voting Axiom
In Section 4, we explored the tradeoffs between privacy and
some voting axioms. In this section, differential privacy is
regarded as an axiomatic property of voting rules. The re-
lations between DP and some of the voting axioms are dis-
cussed. Our results are summarized in Figure 3.

As proved previously, for any Rand ∈ {LAP,EXP,RR},
CMRand

λ does not satisfy Condorcet criterion under DP. Fur-
thermore, we can prove that they are incompatible.

Proposition 4. There is no voting rule r satisfying Con-
dorcet criterion and ε-DP for any ε > 0.

Proof Sketch. Suppose there is a voting rule r satisfying
Condorcet criterion and ε-DP, where ε > 0. Then the Con-
dorcet criterion ensures that there exist some profile P and
alternative a ∈ A that P[r(P ) = a] = 0. However, all pro-
files inL(A)n are somehow connected by the DP-inequality.
As a result, for such a profile P , we have P[r(P ) = b] = 0
for each b ∈ A, which leads to a contradiction. �

Similarly, Pareto efficiency is also incompatible with DP,
which indicates that the stronger notions of efficiency, e.g.,
PC-efficiency and SD-efficiency (Brandt 2017) are all in-
compatible with DP. Formally, we have the following result.

Proposition 5. There is no voting rule r satisfying Pareto
efficiency and ε-DP for any ε > 0.

To show the limitation of the tradeoff between Condorcet
criterion and DP by any mechanism, we measure the incom-
patibility between Condorcet criterion and DP using the no-
tion of α-p-Condorcet. The result is shown as follows.

Proposition 6. There is no voting rule satisfying ε-DP and
α-p-Condorcet with α > eε.

Proof. LetP, P ′ be profiles that CW(P ) = a,CW(P ′) = b,
P−j = P ′−j , and �j 6=�′j . Then

P[f(P ) = a] > α · P[f(P ) = b] > α · eε · P[f(P ′) = b]

> α2 · eε · P[f(P ′) = a] > α2 · e−2kε · P[f(P ) = a].

Thus, α2e−2ε 6 1, i.e., α 6 eε.

The SD-strategyproofness is compatible with DP, as the
trivial voting rule, i.e., P[r(P ) = a] = 1/m, for all a ∈ A,
satisfies SD-strategyproofness and 0-DP. In fact, DP admits
a lower bound of satisfaction to strategyproofness. To be
more precise, we use the notion of α-SD-strategyproofness.

Then the following proposition holds.

Proposition 7. Any voting rule satisfying ε-DP satisfies e−ε-
SD-strategyproofness.

Proof. Suppose that r is a voting rule satisfying ε-DP and
P, P ′ are profiles differing on only one voter’s ballot. Then,
for any j ∈ N and any a ∈ A, DP indicates that

P[r(P ) = a] 6 e−ε · P[r(P ′) = a].

Then we have∑
b�ia

P[r(P ) = b] 6 e−ε ·
∑
b�ia

P[r(P ′) = b],

which completes the proof.

As is shown in Proposition 7, the satisfaction to strate-
gyproofness increases when ε decreases. This is quite in-
tuitive, since there is little motivation for an adversary to
manipulate the voting process when the outcomes of neigh-
boring datasets are very similar.

6 Conclusion and Future Work
In the paper, we proposed three classes of differentially pri-
vate Condorcet methods and explored their accuracy-privacy
tradeoff and axioms-privacy tradeoff. Further, we investi-
vated the relations between DP and other axioms. For fu-
ture work, we plan to explore more axioms for randomized
voting rules and design new voting rules performing better
on satisfaction to the axioms. The design and analysis of DP
mechanisms for other social choice problems, such as multi-
winner elections, fair division, and participatory budgeting,
are also promising directions for future work.
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