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Abstract

In congestion games, users make myopic routing decisions to
jam each other, and the social planner with the full informa-
tion designs mechanisms on information or payment side to
regulate. However, it is difficult to obtain time-varying traf-
fic conditions, and emerging crowdsourcing platforms (e.g.,
Waze and Google Maps) provide a convenient way for mo-
bile users travelling on the paths to learn and share the traf-
fic conditions over time. When congestion games meet mo-
bile crowdsourcing, it is critical to incentive selfish users
to change their myopic routing policy and reach the best
exploitation-exploration trade-off. By considering a simple
but fundamental parallel routing network with one determin-
istic path and multiple stochastic paths for atomic users, we
prove that the myopic routing policy’s price of anarchy (PoA)
can be arbitrarily large as the discount factor approaches 1.
To remedy such huge efficiency loss, we propose a selective
information disclosure (SID) mechanism: we only reveal the
latest traffic information to users when they intend to over-
explore the stochastic paths, while hiding such information
when they want to under-explore. We prove that our mecha-
nism reduces PoA to less than 2. Besides the worst-case per-
formance, we further examine our mechanism’s average-case
performance by using extensive simulations.

Introduction
In transportation networks of limited bandwidth, mobile

users are selfish to choose routing decisions myopically and
aim to minimize their own travel costs on the way. Tradi-
tional congestion games study such selfish routing to under-
stand the efficiency loss using the concept of the price of
anarchy (PoA) (Roughgarden and Tardos 2002; Cominetti
et al. 2019; Bilò and Vinci 2020; Hao and Michini 2022).
To regulate atomic or non-atomic users’ selfish routing and
reduce social cost, various incentive mechanisms are de-
signed by using monetary payments to penalize users trav-
elling on undesired paths (Brown and Marden 2017; Fer-
guson, Brown, and Marden 2022; Li and Duan 2023). As
it may be difficult to implement such payments on users,
non-monetary mechanisms are also designed to provide in-
formation restriction on selfish users to change their rout-
ing decisions to approach the social optimum (Tavafoghi and
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Teneketzis 2017; Sekar et al. 2019; Castiglioni et al. 2021).
However, these works largely assume that the social plan-
ner has full information of all traffic conditions, and limit
attentions to an one-shot static scenario to regulate.

In common practice, the traffic information dynamically
changes over time and is difficult to predict in advance
(Nikolova and Stier-Moses 2011). To obtain such time-
varying information, emerging traffic navigation platforms
(e.g., Waze and Google Maps) crowdsource mobile users
to learn and share their observed traffic conditions on the
way (Vasserman, Feldman, and Hassidim 2015; Zhang et al.
2018). However, such platforms make all information pub-
lic, and current users still make selfish routing decisions to
the path with shortest travel latency, instead of choosing di-
verse paths to learn more information for future users. As
a stochastic path’s traffic condition alternates between con-
gestion states over time, the platforms may miss enough ex-
ploration to reduce the social cost.

There are some recent works studying information shar-
ing among users in a dynamic scenario. For example, Meigs,
Parise, and Ozdaglar (2017) and Wu and Amin (2019)
make use of former users’ observation to help learn the fu-
ture travel latency and converge to the Wardrop Equilib-
rium under full information. Similarly, Vu, Antonakopou-
los, and Mertikopoulos (2021) design an adaptive informa-
tion learning framework to accelerate convergence rates to
Wardrop equilibrium for stochastic congestion games. How-
ever, these works cater to users’ selfish interests and do not
consider mechanism design to motivate users to reach so-
cial optimum. To study the social cost minimization, multi-
armed bandit (MAB) problems are also formulated to derive
the optimal exploitation-exploration policy among multi-
ple stochastic arms (paths) (Gittins, Glazebrook, and Weber
2011; Krishnasamy et al. 2021). Recently, Bozorgchenani
et al. (2022) apply MAB models to predict the network con-
gestion in a fast changing vehicular environment. However,
all of these MAB works strongly assume that users upon
arrival always follow the social planner’s recommendations
and overlook users’ deviation to selfish routing.

When congestion games meet mobile crowdsourcing,
how to incentive selfish users to listen to the social plan-
ner’s optimal recommendations is our key question in this
paper. As traffic navigation platforms seldom charge users,
we target at non-monetary mechanism design which satisfies
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budget balance in nature. Yet we cannot borrow those in-
formation mechanisms from the literature in mobile crowd-
sourcing, as their considered traffic information is exoge-
nous and does not depend on users’ routing decisions (Kre-
mer, Mansour, and Perry 2014; Papanastasiou, Bimpikis,
and Savva 2018; Li, Courcoubetis, and Duan 2017, 2019).
For example, Li, Courcoubetis, and Duan (2019) consider a
simple two-path transportation network, one with determin-
istic travel cost and the other alternates over time between a
high and a low stochastic cost states due to external weather
conditions. In their finding, a selfish user is always found to
under-explore the stochastic path to learn latest information
there for future users. In our congestion problem, however,
a user will add himself to the traffic flow and change the
congestion information in the loop. Thus, we imagine users
may not only under-explore but also over-explore stochastic
paths over time. Furthermore, since the congestion informa-
tion (though random) depends on users’ routing decisions,
it is easier for a user to reverse-engineer the system states
based on the platform’s optimal recommendation. In conse-
quence, the prior information hiding mechanisms (Tavafoghi
and Teneketzis 2017; Li, Courcoubetis, and Duan 2019; Zhu
and Savla 2022) become no longer efficient.

We summarize our key novelty and main contributions in
this paper as follows.

• Mechanism design when congestion games meet mobile
crowdsourcing: To our best knowledge, this paper is
the first to regulate atomic users’ routing over time to
reach the best exploitation-exploration trade-off by pro-
viding incentives. In Section 2, we model a dynamic con-
gestion game in a transportation network of one deter-
ministic path and multiple stochastic paths to learn by
users themselves. When congestion games meet mobile
crowdsourcing, our study extends the traditional conges-
tion games fundamentally to create positive information
learning generated by users themselves.

• POMDP formulation and PoA analysis: In Section 3,
we formulate users’ dynamic routing problems using the
partially observable Markov decision process (POMDP)
according to hazard beliefs of risky paths. Then in Sec-
tion 4, we analyze both myopic and socially optimal poli-
cies to learn stochastic paths’ states, and prove that the
myopic policy misses both exploration (when strong haz-
ard belief) and exploitation (when weak hazard belief) as
compared to the social optimum. Accordingly, we prove
that the resultant price of anarchy (PoA) is larger than
1

1−ρ , which can be arbitrarily large as discount factor
ρ → 1.

• Selective information disclosure (SID) mechanism to
remedy efficiency loss: In Section 5, we first prove that
the prior information hiding mechanism in congestion
games makes PoA infinite in our problem. Alternatively,
we propose a selective information disclosure mecha-
nism: we only reveal the latest traffic information to users
when they over-explore the stochastic paths, while hiding
such information when they under-explore. We prove that
our mechanism reduces PoA to be less than 1

1− ρ
2

, which
is no larger than 2. Besides the worst-case performance,

(a) A typical parallel transportation network.

(b) The partially observable Markov chain for mod-
elling αi(t) dynamics of stochastic path i.

Figure 1: At the beginning of each time slot t ∈ {1, 2, · · · }, a
user arrives to choose a path among N+1 paths according to
travel latency ℓi(t) of each path i ∈ {0, 1..., N} in Figure 1a.
Path 0 is a safe route and its latency has a fixed correlation
coefficient α ∈ (0, 1) to change from the last round. Yet
any risky path i ∈ {1, · · · , N} has a stochastic correlation
coefficient αi(t), which alternates according to the partially
observable Markov chain in Figure 1b.

we further examine our mechanism’s average-case per-
formance by using extensive simulations.

Due to the page limit, we move the lengthy proofs of the
paper to our supplementary material and online technical re-
port (Li and Duan 2022), and also provide code here. 1

System Model
As illustrated in Figure 1a, we consider a dynamic con-

gestion game lasting for infinite discrete time horizon. At the
beginning of each time epoch t ∈ {1, 2, · · · }, an atomic user
arrives to travel on one out of N + 1 paths from origin O to
destination D. Similar to the existing literature of congestion
games (e.g., Kremer, Mansour, and Perry 2014; Tavafoghi
and Teneketzis 2017; Li, Courcoubetis, and Duan 2019), in
Figure 1a the top path 0 as a safe route has a fixed traffic
condition α that is known to the public, while the other N
bottom paths are risky/stochastic to alternate between traffic
conditions αL and αH over time. Thus, the crowdsourcing
platform expects users to travel to risky paths from time to
time to learn the actual traffic information and plan better
routing advisory for future users.

In the following, we first introduce the dynamic con-
gestion model for the transportation network, and then in-
troduce the users’ information learning and sharing in the
crowdsourcing platform.

Dynamic Congestion Model
Let ℓi(t) denote the travel latency of path i ∈

{0, 1, · · · , N} estimated by a new user arrival on path i at
the beginning of each time slot t ∈ {1, 2, · · · }. Then the
current user decides the best path i ∈ {0, 1, · · · , N} to

1https://github.com/redglassli/Congestion-games-SID
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choose by comparing the travel latencies among all paths.
We denote a user’s routing choice at time t as π(t) ∈
{0, 1, · · · , N}. For this user, he predicts ℓi(t) based on the
latest latency ℓi(t− 1) and the last user’s decision π(t− 1).

Some existing literature of delay pattern estimation (e.g.,
Ban et al. 2009; Alam, Farid, and Rossetti 2019) assumes
that ℓi(t + 1) is linearly dependent on ℓi(t). Thus, for safe
path 0 with the fixed traffic condition, its next travel latency
ℓ0(t+1) changes from ℓ0(t) with constant correlation coef-
ficient α. Here α ∈ (0, 1) measures the leftover flow to be
serviced over time. Yet, if the current atomic user chooses
this path (i.e., π(t) = 0), he will introduce an addition ∆ℓ to
the next travel latency ℓ0(t+ 1), i.e.,

ℓ0(t+ 1) =

{
αℓ0(t) + ∆ℓ, if π(t) = 0,

αℓ0(t), if π(t) ̸= 0.
(1)

Differently, on any risky path i ∈ {1, · · · , N}, its correla-
tion coefficient αi(t) in this round is stochastic due to the
random traffic condition (e.g., accident and weather change)
at each time slot t. Similar to the congestion game literature
(Meigs, Parise, and Ozdaglar 2017), we suppose αi(t) al-
ternates between low coefficient state αL ∈ [0, 1) and high
state αH ∈ [1,+∞) below:

αi(t) =

{
αL, if path i has a good traffic condition at t,
αH , if path i has a bad traffic condition at t.

Note that we consider αL < α < αH such that each path can
be chosen by users and we also allow jamming on risky paths
with αH ≥ 1. The transition of αi(t) over time is modeled
as the partially observable Markov chain in Figure 1b, where
the self-transition probabilities are qLL and qHH with qLL+
qLH = 1 and qHH + qHL = 1. Then the travel latency
ℓi(t+ 1) of any risky path i ∈ {1, · · · , N} is estimated as

ℓi(t+ 1) =

{
αi(t)ℓi(t) + ∆ℓ, if π(t) = i,

αi(t)ℓi(t), if π(t) ̸= i.
(2)

To obtain this αi(t) realization for better estimating future
ℓi(t+1) in (2), the platform may expect current user to travel
on this risky path i to learn and share his observation.

Crowdsourcing Model for Learning
After choosing a risky path i ∈ {1, · · · , N} to travel,

in practice a user may not obtain the whole path informa-
tion when making local observation and reporting to the
crowdsourcing platform. Two different users travelling on
the same path may have different experiences. Similar to Li,
Courcoubetis, and Duan (2019), we model αi(t) dynamics
as the partially observable two-state Markov chain in Fig-
ure 1b from the user point of view. We define a random ob-
servation set y(t) = {y1(t), · · · , yN (t)} for N risky paths,
where yi(t) ∈ {0, 1, ∅} denotes the traffic condition of path
i as observed by the current user there during time slot t.
More specifically, yi(t) = 1 tells that the current user at
time t observes a hazard (e.g., ‘black ice’ segments, poor
visibility, jamming) after choosing path π(t) = i. yi(t) = 0
tells that the user does not observe any hazard on path i. Fi-
nally, yi(t) = ∅ tells that this user travels on another path
with π(t) ̸= i, without making any observation of path i.

Given π(t) = i, the chance for the user to observe yi(t) =
1 or 0 depends on the random correlation coefficient αi(t).
Under the correlation state αi(t) = αH or αL at time t, we
respectively denote the probabilities for the user to observe
a hazard as:

pH = Pr
(
yi(t) = 1|αi(t) = αH

)
,

pL = Pr
(
yi(t) = 1|αi(t) = αL

)
.

(3)

Note that pL < pH because a risky path in bad traffic con-
dition (αi(t) = αH ) has a larger probability for the user to
observe a hazard (i.e., yi(t) = 1). Even if path i has good
traffic condition (αi(t) = αL), it is not entirely hazard free
and there is still some probability pL to face a hazard.

As users keep learning and sharing traffic conditions
with the crowdsourcing platform, the historical data of their
observations (y(1), · · · ,y(t − 1)) and routing decisions
(π(1), · · · , π(t− 1)) before time t keep growing in the time
horizon. To simplify the ever-growing history set, we equiv-
alently translate these historical observations into a hazard
belief xi(t) for seeing bad traffic condition αi(t) = αH at
time t, by using the Bayesian inference:

xi(t) = Pr
(
αi(t) = αH |xi(t− 1), π(t− 1),y(t− 1)

)
. (4)

Given the prior probability xi(t), the platform will further
update it to a posterior probability x′

i(t) after a new user with
routing decision π(t) shares his observation yi(t) during the
time slot:

x′
i(t) = Pr

(
αi(t) = αH |xi(t), π(t),y(t)

)
. (5)

Below, we explain the dynamics of our information learning
model.

• At the beginning of time slot t, the platform pub-
lishes any risky path i’s hazard belief xi(t) in (4)
about coefficient αi(t) and the latest expected latency
E[ℓi(t)|xi(t − 1), yi(t − 1)] to summarize observation
history (y(1), · · · ,y(t− 1)) till t− 1.

• During time slot t, a user arrives to choose a path (e.g.,
π(t) = i) to travel and reports his following observation
yi(t). Then the platform updates the posterior probability
x′
i(t), conditioned on the new observation yi(t) and the

prior probability xi(t) in (5). For example, if yi(t) = 0,
by Bayes’ Theorem, x′

i(t) for the correlation coefficient
αi(t) = αH is

x′
i(t) =Pr

(
αi(t) = αH |xi(t), π(t) = i, yi(t) = 0

)
(6)

=
xi(t)(1− pH)

xi(t)(1− pH) + (1− xi(t))(1− pL)
.

Similarly, if y(t) = 1, we have

x′
i(t) =

xi(t)pH
xi(t)pH + (1− xi(t))pL

. (7)

Besides this traveled path i, for any other path j ∈
{1, · · · , N} with yj(t) = ∅, we keep x′

j(t) = xj(t) as
there is no added observation to this path at t.
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• At the end of this time slot, the platform estimates the
posterior correlation coefficient:

E[αi(t)|x′
i(t)] = E[αi(t)|xi(t), yi(t)]

= x′
i(t)αH + (1− x′

i(t))αL.
(8)

By combining (8) with (2), we can obtain the expected
travel latency on stochastic path i for time t+ 1 as

E[ℓi(t+ 1)|xi(t), yi(t)] = (9)
E[αi(t)|x′

i(t)]E[ℓi(t)|xi(t− 1), yi(t− 1)] + ∆ℓ,

if π(t) = i,

E[αi(t)|x′
i(t)]E[ℓi(t)|xi(t− 1), yi(t− 1)], if π(t) ̸= i.

Based on the partially observable Markov chain in Figure
1b, the platform updates each path i’s hazard belief from
x′
i(t) to xi(t+ 1) below:

xi(t+ 1) = x′
i(t)qHH +

(
1− x′

i(t)
)
qLH . (10)

Finally, the new time slot t + 1 begins and repeats the
process since above.

POMDP Problem Formulations for Myopic
and Socially Optimal Policies

Based on the dynamic congestion and crowdsourcing
models in the last section, we formulate the problems of my-
opic policy (for guiding myopic users’ selfish routing) and
the socially optimal policy (for the social planner/platform’s
best path advisory), respectively.

Problem Formulation for Myopic Policy
In this subsection, we consider the myopic policy (e.g.

used by Waze and Google Maps) that the selfish users will
naturally follow. First, we summarize the dynamics of ex-
pected travel latencies among all N+1 paths and the hazard
beliefs of N stochastic paths into vectors:

L(t) =
{
ℓ0(t),E[ℓ1(t)|xi(t− 1), yi(t− 1)], · · · ,
E[ℓN (t)|xN (t− 1), yN (t− 1)]

}
,

x(t) = {x1(t), · · · , xN (t)}, (11)

which are obtained based on (9) and (10). For a user arrival
at time t, the platform provides him with L(t) and x(t) to
help make his routing decision. We define the best stochastic
path ι̂(t) to be the one out of N risky paths to provide the
shortest expected travel latency at time t below:

ι̂(t) = arg min
i∈{1,··· ,N}

E[ℓi(t)|xi(t− 1), yi(t− 1)]. (12)

The selfish user will only choose between safe path 0 and
this path ι̂(t) to minimize his own travel latency.

We formulate this problem as a POMDP, where the time
correlation state αi(t) of each stochastic path i is partially
observable to users in Figure 1b. Thus, the states here are
L(t) and x(t) in (11). Under the myopic policy, define
C(m)

(
L(t),x(t)

)
to be the long-term discounted cost func-

tion with discount factor ρ < 1 to include social cost of all
users since t. Then its dynamics per user arrival has the fol-
lowing two cases. If E[ℓι̂(t)(t)|xι̂(t)(t − 1), yι̂(t)(t − 1)] ≥

ℓ0(t), a selfish user will choose path 0 and add ∆ℓ to path
0 to have latency ℓ0(t + 1) = αℓ0(t) + ∆ℓ in (1). Since
no user enters stochastic path i, there is no information re-
porting (i.e., yi(t) = ∅) and x′

i(t) in (5) equals xi(t) in
(4) for updating xi(t + 1) in (10). The expected travel la-
tency of stochastic path i in the next time slot is updated
to E[ℓi(t + 1)|xi(t), yi(t) = ∅] according to (9). In conse-
quence, the travel latency and hazard belief sets at the next
time slot t+ 1 are updated to

L(t+ 1) =
{
αℓ0(t) + ∆ℓ,E[ℓ1(t+ 1)|x1(t), y1(t) = ∅],
· · · ,E[ℓN (t+ 1)|xN (t), yN (t) = ∅]

}
,

x(t+ 1) =
{
x1(t+ 1), · · · , xN (t+ 1)

}
. (13)

Then the cost-to-go Q
(m)
0 (t+ 1) since the next user is

Q
(m)
0 (t+ 1) = C(m)

(
L(t+ 1),x(t+ 1)

∣∣yι̂(t)(t) = ∅
)
.

(14)
If E[ℓι̂(t)(t)|xι̂(t)(t− 1), yι̂(t)(t− 1)] < ℓ0(t), the user will

choose the best stochastic path ι̂(t) in (12). Then the
platform updates the expected travel latency on path ι̂(t)
to E[ℓι̂(t)(t)|xι̂(t)(t), yι̂(t)(t)] in (9), depending on whether
yι̂(t)(t) = 1 or 0. Note that according to (3),

Pr
(
yι̂(t)(t) = 1

)
=

(
1− xι̂(t)(t)

)
pL + xι̂(t)(t)pH . (15)

While path 0’s latency in next time changes to αℓ0(t), and
path i ̸= ι̂(t) has no exploration and its expected latency at
time t + 1 becomes E[ℓi(t + 1)|xi(t), yi(t) = ∅]. Then the
expected cost-to-go since the next user in this case is

Q
(m)
ι̂(t) (t+ 1) = (16)

Pr
(
yι̂(t)(t) = 1

)
C(m)

(
L(t+ 1),x(t+ 1)

∣∣yι̂(t)(t) = 1
)

+Pr
(
yι̂(t)(t) = 0

)
C(m)

(
L(t+ 1),x(t+ 1)

∣∣yι̂(t)(t) = 0
)
.

To combine (14) and (16), we formulate the ρ-discounted
long-term cost function since time t under myopic policy as

C(m)
(
L(t),x(t)

)
=

ℓ0(t) + ρQ
(m)
0 (t+ 1),

if E[ℓι̂(t)(t)|xι̂(t)(t− 1), yι̂(t)(t− 1)] ≥ ℓ0(t),

E[ℓι̂(t)(t)|xι̂(t)(t− 1), yι̂(t)(t− 1)] + ρQ
(m)
ι̂(t) (t+ 1),

otherwise. (17)
A selfish user is not willing to explore any stochastic path
i with longer expected travel latency, and the next arrival
may not know the fresh congestion information. On the other
hand, selfish users may keep choosing the path with the
shortest latency and jamming this path for future users.

Socially Optimal Policy Problem Formulation
Different from the myopic policy that focuses on the one-

shot to minimize the current user’s immediate travel cost, the
goal of the social optimum is to find optimal policy π∗(t)
at any time t to minimize the expected social cost over an
infinite time horizon.
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Denote the long-term ρ-discounted cost function by
C∗(L(t),x(t)) under the socially optimal policy. The op-
timal policy depends on which path choice yields the min-
imal long-term social cost. If the platform asks the current
user to choose path 0, this user will bear cost ℓ0(t) to travel
this path. Due to no information observation (i.e., y(t) = ∅),
the cost-to-go Q∗

0(t+ 1) from the next user can be similarly
determined as (14) with L(t+ 1) and x(t+ 1) in (13).

If the platform asks the user to explore a stochastic path
i, this choice is not necessarily path ι̂(t) in (12). Then the
platform updates x(t+ 1), depending on whether the user’s
observation on this path is yi(t) = 1 or yi(t) = 0. Similar
to (16), the optimal expected cost function from next user is
denoted as Q∗

i (t + 1). Then we are ready to formulate the
social cost function under socially optimal policy below:

C∗(L(t),x(t)) (18)

= min
i∈{1,··· ,N}

{
ℓ0(t) + ρQ∗

0(t+ 1), ℓi(t) + ρQ∗
i (t+ 1)

}
.

Problem (18) is non-convex and its analysis will cause the
curse of dimensionality in the infinite time horizon (Bellman
1966). Though it is difficult to solve, we still analytically
compare the two policies by their structural results below.

Comparing Myopic Policy to Social Optimum
for PoA Analysis

In this section, we first prove that both myopic and so-
cially optimal policies to explore stochastic paths are of
threshold-type with respect to expected travel latency. Then
we show that the myopic policy may both under-explore and
over-explore risky paths. 2 Finally, we prove that the myopic
policy can perform arbitrarily bad.
Lemma 1. The cost functions C(m)

(
L(t),x(t)

)
in (17) and

C∗(L(t),x(t)) in (18) under both policies increase with any
path’s expected latency E[ℓi(t)|xi(t− 1), yi(t− 1)] in L(t)
and x(t) in (11).

With this monotonicity result, we next prove that both
policies are of threshold-type.
Proposition 1. Provided with L(t) and x(t) in (11), the user
arrival at time t under the myopic policy keeps staying with
path 0, until the expected latency of the best stochastic path
ι̂(t) in (12) reduces to be smaller than the following thresh-
old:

ℓ(m)(t) = ℓ0(t). (19)
Similarly, the socially optimal policy will choose stochastic
path i instead of path 0 if E[ℓi(t)|xi(t− 1), yi(t− 1)] is less
than the following threshold:

ℓ∗i (t) = argmaxz
{
z|z ≤ ρQ∗

i (t+ 1)− ρQ∗
0(t+ 1)− ℓ0(t)

}
,

(20)
which increases with hazard belief xi(t) of risky path i.

Let π(m)(t) and π∗(t) denote the routing decisions at
time t under myopic and socially optimal policies, respec-
tively. We next compare the exploration thresholds ℓ(m)(t)
and ℓ∗i (t) as well as their associated social costs.

2Over/under exploration means that myopic policy will choose
risky path i more/less often than what the social optimum suggests.

Lemma 2. If π(m)(t) ̸= π∗(t), then the expected travel la-
tencies on these two chosen paths by the two policies satisfy

E[ℓπ∗(t)(t)|x(t− 1),y(t− 1)]

≤ 1

1− ρ
E[ℓπ(m)(t)(t)|x(t− 1),y(t− 1)]. (21)

Intuitively, if the current travel latencies on different paths
obviously differ, the two policies tend to make the same rout-
ing decision. (21) is more likely to hold for large ρ.

Next, we define the stationary belief xi(t) of high hazard
state αH as x̄, and we provide it below by using steady-state
analysis of Figure 1b:

x̄ =
1− qLL

2− qLL − qHH
. (22)

Based on Proposition 1 and Lemma 2, we analytically com-
pare the two policies below.
Proposition 2. There exists a belief threshold xth satisfying

min
{ α− αL

αH − αL
, x̄

}
≤ xth ≤ max

{ α− αL

αH − αL
, x̄

}
. (23)

As compared to socially optimal policy, if risky path i ∈
{1, · · · , N} has weak hazard belief xi(t) < xth, myopic
users will only over-explore this path with ℓ(m)(t) ≥ ℓ∗i (t).
If strong hazard belief with xi(t) > xth, myopic users will
only under-explore this path with ℓ(m)(t) ≤ ℓ∗i (t).

Here α−αL

αH−αL
in (23) is derived by equating path i’s ex-

pected coefficient E[αi(t)|x′
i(t)] in (8) to path 0’s α. Propo-

sition 2 tells that the myopic policy misses both exploita-
tion and exploration over time. If the hazard belief on path
i ∈ {1, · · · , N} is weak (i.e., xi(t) < xth), myopic users
choose stochastic path i without considering the congestion
to future others on the same path. While the the socially op-
timal policy may still recommend users to safe path 0 to fur-
ther reduce the congestion cost on path i for the following
user. On the other hand, if xi(t) > xth, the socially optimal
policy may still want to explore path i to exploit hazard-free
state αL on this path for future use. This result is also con-
sistent with ℓ∗i (t)’s monotonicity in xi(t) in Proposition 1.

In Figure 2, we simulate Figure 1a using a simple two-
path transportation network with N = 1. We plot explo-
ration thresholds ℓ(m)(t) in (19) under myopic policy and
optimal ℓ∗1(t) in (20) versus hazard belief x1(t) of path 1.
These two thresholds are very different in Figure 2. Given
the belief threshold xth = 0.45 here, if the hazard be-
lief x1(t) < xth, we have the myopic exploration thresh-
old ℓ(m)(t) > ℓ∗1(t) to over-explore stochastic path. If
xi(t) > xth, the myopic exploration threshold satisfies
ℓ(m)(t) < ℓ∗1(t) to over-explore. This result is consistent
with Proposition 2.

After comparing the two policies’ thresholds, we are
ready to further examine their performance gap. Following
Koutsoupias and Papadimitriou (1999), we define the price
of anarchy (PoA) to be the maximum ratio between the so-
cial cost under myopic policy in (17) and the minimal social
cost in (18), by searching all possible system parameters:

PoA(m) = max
α,αH ,αL,qLL,qHH ,
x(t),L(t),∆ℓ,pH ,pL

C(m)
(
L(t),x(t)

)
C∗

(
L(t),x(t)

) , (24)
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Figure 2: The socially optimal policy’s exploration threshold
ℓ∗1(t) and myopic policy’s threshold ℓ(m)(t) versus hazard
belief x1(t) in a two-path transportation network with N =
1. We set α = 0.6, αH = 1.2, αL = 0.2, qLL = 0.5, qHH =
0.5,∆ℓ = 2, pH = 0.8, pL = 0.3, ℓ0(t) = 10 and x1(t) =
0.1 at current time t.

which is obviously larger than 1. Then we present the lower
bound of PoA in the following proposition.
Proposition 3. As compared to the social optimum in (18),
the myopic policy in (17) achieves PoA(m) ≥ 1

1−ρ , which
can be arbitrarily large for discount factor ρ → 1.

In this worst-case PoA analysis, we consider a two-path
network example, where the myopic policy always chooses
safe path 0 but the socially optimal policy frequently ex-
plores stochastic path 1 to learn αL. Here we initially set
ℓ0(0) =

∆ℓ
1−α such that the travel latency ℓ0(1) = αℓ0(0) +

∆ℓ in (1) equals ∆ℓ
1−α all the time for myopic users. With-

out myopic users’ routing on stochastic path 1, we also keep
the expected travel latency on stochastic path 1 unchanged,
by setting x1(0) = x̄ in (22) and E[α1(0)|x1(0) = x̄] = 1
in (8). Then a myopic user at any time t will never explore
the stochastic path 1 given ℓ1(t) = ℓ0(t), resulting in the
social cost to be ℓ0(0)

1−ρ in the infinite time horizon. However,
the socially optimal policy frequently asks a user arrival to
explore path 1 to learn a good condition (αL = 0) for fol-
lowing users. We make qLL → 1 to maximally reduce the
travel latency of path 1, and the optimal social cost is thus
no more than ℓ1(0) +

ρ
1−ρ∆ℓ. Letting ∆ℓ

ℓ0(0)
→ 0, we obtain

PoA(m) ≥ 1
1−ρ .

By Proposition 3, the myopic policy performs worse, as
discount factor ρ increases and future costs become more
important. As ρ → 1, PoA approaches infinity and the
learning efficiency in the crowdsourcing platform becomes
arbitrarily bad to opportunistically reduce the congestion.
Thus, it is critical to design efficient incentive mechanism
to greatly reduce the social cost.

Selective Information Disclosure
To motivate a selfish user to follow the optimal path ad-

visory at any time, we need to design a non-monetary in-
formation mechanism, which naturally satisfies budget bal-
ance and is easy to implement without enforcing monetary

payments. Our key idea is to selectively disclose the latest
expected travel latency set L(t) of all paths, depending on a
myopic user’s intention to over- or under-explore stochastic
paths at time t. To avoid users from perfectly inferring L(t),
we purposely hide the latest hazard belief set x(t), routing
history

(
π(1), · · · , π(t−1)

)
, and past traffic observation set(

y(1), · · · ,y(t − 1)
)
, but always provide socially optimal

path recommendation π∗(t) to any user. Provided with se-
lective information disclosure, we allow sophisticated users
to reverse-engineer the path latency distribution and make
selfish routing under our mechanism.

Before formally introducing our selective information dis-
closure in Definition 1, we first consider an information hid-
ing policy π∅(t) as a benchmark. Similar information hid-
ing mechanisms were proposed and studied in the literature
(e.g., Tavafoghi and Teneketzis 2017 and Li, Courcoubetis,
and Duan 2019). In this benchmark mechanism, the user
without any information believes that the expected hazard
belief xi(t) of any stochastic path i ∈ {1, · · · , N} has con-
verged to its stationary hazard belief x̄ in (22). Then he can
only decide his routing policy π∅(t) by comparing α of safe
path 0 to E[αi(t)|x̄] in (8) of any path i.
Proposition 4. Given no information from the platform, a
user arrival at time t uses the following routing policy:

π∅(t) =

{
0, if x̄ ≥ α−αL

αH−αL
,

i w/ probability 1
N , if x̄ < α−αL

αH−αL
,

(25)

where i ∈ {1, · · · , N}. This hiding policy leads to PoA∅ =
∞, regardless of discount factor ρ.

Even if we still recommend optimal routing π∗(t) in (18),
a selfish user sticks to some risky path i given low hazard be-
lief x̄ < α−αL

αH−αL
. This hiding policy can differ a lot from the

socially optimal policy in (18) since users cannot observe
the latest travel latencies. To tell the PoA∅ = ∞, we con-
sider the simplest two-path network example: initially safe
path 0 has ℓ0(t = 0) = 0 with α → 1, and risky path 1
has an arbitrarily large travel latency ℓ1(0) with x̄ = 0 and
E[α1(t)|x̄] = 0, by letting qLL = 1 and αL = 0. Given
E[α1(t)|x̄] < α or simply x̄ < α−αL

αH−αL
, a selfish user always

chooses path π∅(t) = 1, leading to social cost ℓ1(0) + ρ∆ℓ
1−ρ .

While letting the first user exploit ℓ0(0) = 0 of path 0 to
reduce E[ℓ1(1)|x̄, ∅] to 0 for path 1 at time 1, the socially
optimal cost is thus ρ2∆ℓ

1−ρ . Letting (1−ρ)ℓ1(0)
ρ2∆ℓ → ∞, we ob-

tain PoA∅ = ∞.
This is a PoA∅ example with the maximum-exploration

of stochastic paths, which is opposite to the zero-exploration
PoA(m) example after Proposition 3. Given neither informa-
tion hiding policy π∅(t) nor myopic policy π(m)(t) under
full information sharing works well, we need to design an
efficient mechanism to selectively disclose information to
users to reduce the social cost.
Definition 1. (Selective Information Disclosure (SID)
Mechanism:) If a user arrival at time t is expected to
choose a different route π∅(t) ̸= 0 in (25) from optimal
π∗(t) = 0 in (18), then our SID mechanism will disclose
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the latest expected travel latency set L(t) to him. Other-
wise, our mechanism hides L(t) from this user. Besides,
our mechanism always provides optimal path recommen-
dation π∗(t), without sharing hazard belief set x(t), rout-
ing history

(
π(1), · · · , π(t − 1)

)
, or past observation set(

y(1), · · · ,y(t− 1)
)
.

According to Definition 1, if π∗(t) = 0 but a user at time
t makes routing decision π∅(t) ̸= 0 under x̄ < α−αL

αH−αL

in (25), our mechanism discloses L(t) to avoid him from
choosing any stochastic path with large expected travel la-
tency. In the other cases, we simply hide L(t) from any user
arrival, as the user already follows optimal routing π∗(t).

In consequence, the worst-case for our SID mechanism
only happens when π∅(t) ̸= 0 and π∗(t) = 0 under x̄ <
α−αL

αH−αL
in (25). We still consider the same two-path network

example with the maximum-exploration after Proposition 4
to show why this SID mechanism works. In this example,
our mechanism will provide L(t), including ℓ0(0) and ℓ1(0),
to each user arrival. Observing huge ℓ1(0), the first user turns
to choose path 0 with ℓ0(0) = 0, which successfully avoids
the infinite social cost under π∅(t). Furthermore, our SID
mechanism successfully avoids the worst-cases of PoA(m)

in Proposition 3. Next we prove that our mechanism well
bounds the PoA in the following.

Theorem 1. Our SID mechanism results in PoA(SID) ≤
1

1− ρ
2

, which is always no more than 2.

In the worst-case of π∅(t) ̸= 0 and π∗(t) = 0 for our SID
mechanism’s PoA(SID), a user knowing L(t) may deviate to
follow the myopic policy π(m)(t) ̸= 0 in (17). To explain
the bounded PoA(SID), we consider a two-path network ex-
ample with the maximum-exploration under the myopic pol-
icy. Here we start with ℓ0(0) = ℓ1(0) − ε for safe path 0
with α → 1 to keep the travel latency on path 0 unchanged
if no user chooses that path, where ε is positive infinitesi-
mal. We set ℓ1(0) = ∆ℓ

1−E[α1(0)|x̄] for stochastic path 1 with
x1(0) = x̄, such that the travel latency E[ℓ1(t)|x̄, y1(t− 1)]
equals ℓ1(0) all the time if all users choose that path. Then in
this system, users keep choosing path 1 under myopic policy
π(m)(t) in (17) to receive social cost ℓ1(0)

1−ρ . However, the so-
cially optimal policy may want the first user to exploit path
0 to permanently reduce path 1’s expected travel latency for
following users there. Thanks to the first user’s routing of
path 0, the expected travel latency for each following user
choosing path 1 at time t is greatly reduced to be less than
ℓ1(0) yet is still no less than ℓ1(0)

2 for non-zero E[α1(t)|x̄].
Then the minimum social cost is reduced to be no less than
ℓ0(0) +

ρℓ1(0)
2−2ρ , leading to PoA(SID) ≤ 1

1− ρ
2

.
Besides the worst-case performance analysis, we further

verify our mechanism’s average performance using exten-
sive simulations. Define the following average inefficiency
ratio between expected social costs achieved by our SID
mechanism and social optimum in (18):

γ(SID) =
E
[
C(SID)

(
L(t),x(t)

)]
E
[
C∗

(
L(t),x(t)

)] . (26)

Figure 3: Average inefficiency ratios γ(m) under myopic
policy in (17) and γ(SID) under our selective information dis-
closure. We vary risky path number N in set {2, 3, 4, 5}.
We set α = 0.99, αL = 0,∆ℓ = 1, pH = 0.8, pL =
0.2, qHH = 0.99, qLL = 0.99 here, and we change αH = 2
and αH = 5 to make comparison. At initial time t = 0, we
let ℓ0(0) = 100, ℓi(0) = 105 and xi(0) = 0.5 for any path.

To compare, we define γ(m) to be the average inefficiency
ratio between social costs achieved by the myopic policy in
(17) and socially optimal policy in (18). After running 50
long-term experiments for averaging each ratio, we plot Fig-
ure 3 to compare γ(m) to γ(SID) versus risky path number N .
Figure 3 shows that our SID mechanism obviously reduces
γ(m) > 10 to γ(SID) < 2 at N = 2, which is consistent with
Theorem 1. Figure 3 also shows that the efficiency loss due
to users’ selfish routing decreases with N , as more choices
of risky paths help negate the hazard risk at each path. Here
we also vary high hazard state αH to make a comparison,
and we see that a larger αH causes less efficiency loss due
to users’ reduced explorations to risky paths.

We can also show using simulations that the average inef-
ficiency ratio under information hiding mechanism in Propo-
sition 4 has a big gap compared to our SID mechanism, es-
pecially when users over-explore with x̄ < α−αL

αH−αL
.

Conclusion
In this paper, we studied how to incentive selfish users

to reach the best exploitation-exploration trade-off. We use
the POMDP techniques to summarize the congestion proba-
bility into a dynamic hazard belief. By considering a simple
but fundamental parallel routing network with one determin-
istic path and multiple stochastic paths for atomic users, we
proved that the myopic policy’s price of anarchy (PoA) is
larger than 1

1−ρ , which can be arbitrarily large as ρ → 1.
To remedy such huge efficiency loss, we proposed a selec-
tive information disclosure (SID) mechanism: we only re-
veal the latest traffic information to users when they intend
to over-explore stochastic paths, while hiding such informa-
tion when they under-explore. We proved that our mecha-
nism reduces PoA to be less than 1

1− ρ
2

. We further exam-
ined our mechanism’s average-case performance by exten-
sive simulations. We can also extend our system model and
key results to a chain road network.
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