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Abstract

We study a general allocation setting where agent valuations
are concave additive. In this model, a collection of items
must be uniquely distributed among a set of agents, where
each agent-item pair has a specified utility. The objective is
to maximize the sum of agent valuations, each of which is an
arbitrary non-decreasing concave function of the agent’s to-
tal additive utility. This setting was studied by Devanur and
Jain (STOC 2012) in the online setting for divisible items.
In this paper, we obtain both multiplicative and additive ap-
proximations in the offline setting for indivisible items. Our
approximations depend on novel parameters that measure the
local multiplicative/additive curvatures of each agent valua-
tion, which we show correspond directly to the integrality
gap of the natural assignment convex program of the prob-
lem. Furthermore, we extend our additive guarantees to ob-
tain constant multiplicative approximations for Asymmetric
Nash Welfare Maximization when agents have smooth valua-
tions. This algorithm also yields an interesting tatonnement-
style interpretation, where agents adjust uniform prices and
items are assigned according to maximum weighted bang-
per-buck ratios.

Introduction
In recent years the study of indivisible allocation has re-
ceived increasing attention: given a collection of indivisible
items and a set of agents, each with a specified valuation
function, how should items be distributed among the agents
as to maximize a specified measure of overall welfare or fair-
ness? Many classic allocation and market models consider
divisible goods that can be split fractionally among agents.
From an optimization perspective, there are several well-
known methods for computing optimal fractional assign-
ments in polynomial time (e.g., ellipsoid methods), while in-
divisible variants are often NP-hard. Ensuring fairness also
becomes more complex in the indivisible setting, especially
when agents exhibit diminishing returns in their valuations.

In this paper, we study a general yet natural allocation
model that lies at the intersection of these algorithmic chal-
lenges, which we call Indivisible Allocation with Concave-
Additive Valuations (ICA). As input, we are given a set of
n agents and m indivisible items, where each agent i has a
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specified utility ui,j for each item j. An algorithm must par-
tition the items into disjoint sets (A1, A2, . . . An), one for
each agent. The overall valuation agent i has for her set is
vi(ui), where her valuation vi : R+ → R is permitted to
be any monotone (non-decreasing) concave function of her
total additive utility ui =

∑
j∈Ai

ui,j . The objective is to
maximize the welfare of the allocation, i.e., the sum of agent
valuations

∑
i vi(ui). For ease of comparison to prior work,

we refer to such valuations vi(·) as concave additive.
The focus of this paper is on obtaining efficient allo-

cations for ICA, i.e., designing approximation algorithms.
However, several recent works have established close con-
nections between approximability and fairness guaran-
tees, e.g., see (Barman, Krishnamurthy, and Vaish 2018),
(McGlaughlin and Garg 2020). Indeed, when optimizing
over a concave objective, an efficient allocation must ulti-
mately strike the correct balance between a utilitarian allo-
cation (i.e., assign each item j to agent argmaxi ui,j) and an
egalitarian allocation (one that maximizes mini ui), where
the trade off between these two extremes depends on the de-
gree of concavity. Thus, a primary technical goal of our work
is to provide a precise and unified characterization for how
to achieve this balance for the general class of concave ad-
ditive functions.

Model Motivation. ICA is an indivisible variant of the
fractional online problem studied by Devanur and Jain
(2012). This model was primarily motivated by applications
in internet advertising, where agents correspond to advertis-
ers and items correspond to so-called “impressions” (oppor-
tunities to show ads to users). In this setting, ui,j translates to
the bid value an advertiser i is willing pay for impression j.
The concave objective is then used to capture common con-
tract features in internet ad systems such as under-delivery
penalties and soft budgets.

However, given the special role concave functions have
played in the economics literature, we believe ICA is a nat-
ural problem to consider in its own right. For example, a
standard class of valuations is that of separable concave val-
uations (Chen et al. 2009; Vazirani and Yannakakis 2011;
Anari et al. 2018; Chaudhury et al. 2018), which can be de-
composed into the sum of monotone concave functions over
the amount received from each good (or in the indivisible
settings, the numbers of copies of a single good). Thus, such
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valuations can express varying degrees of diminishing re-
turns for receiving more of the same item.

But in many applications, agent valuations are in fact in-
separable, since how much an agent values an additional
item will likely depend on the other items she has already
received. A canonical example of inseparable valuations
are budget-additive functions, i.e., each valuation vi(ui) =
min (ui, ci) where ci denotes the utility cap for agent i.
Thus, one can view concave-additive valuations as a general
class of inseparable functions that can express diminishing
returns beyond just a global cap on an agent’s overall utility.
There is an extensive line of work that has studied approxi-
mation algorithms for budget-additive valuations (Garg, Ku-
mar, and Pandit 2001; Andelman and Mansour 2004; Azar
et al. 2008; Chakrabarty and Goel 2010; Kalaitzis et al.
2015). To the best of our knowledge, the approximability
of the concave-additive case has yet to be considered for in-
divisible items.

Another key motivation for our model is that an additive
approximation for ICA translates to a standard multiplicative
approximation for the problem of Nash Welfare Maximiza-
tion. Here, the objective is to maximize the weighed product
of valuations (

∏
i(vi(ui))

ηi)
1/η , where ηi > 0 is the weight

of each agent and η =
∑

i ηi is the sum of weights. Observe
that as long as each valuation vi(·) is concave additive, we
can convert the objective to an instance of ICA1 by taking the
logarithm, giving us the objective 1

η

∑
i ηi ln(vi(ui)). Fur-

thermore, an additive approximation of α for the log objec-
tive translates to a multiplicative approximation of eα for the
original product objective.

The main appeal of Nash welfare is that the objective it-
self is a natural balance between utilitarian and egalitarian
welfare and has solutions with appealing fairness guarantees
(see, e.g., (Conitzer, Freeman, and Shah 2017; Caragiannis
et al. 2019)). It has been known for over eighty years that
the optimal Nash-welfare assignment for divisible items can
be obtained by solving the famous Eisenberg-Gale convex
program (Eisenberg and Gale 1959). More recently, there
has been an explosion of work examining the Nash wel-
fare objective in the indivisible setting. As we will show, our
general techniques for ICA contribute to this growing body
of work by yielding new approximations when agents have
smooth valuations. (We formally define this setting momen-
tarily.)

Finally, we remark that in addition to modeling other
settings in computational economics such as agents with
spending constrained utilities (see (Vazirani 2010; Cole
et al. 2017)), concave-additive functions occur naturally in
many other allocation and matching problems in the broader
scope of convex optimization and AI. Such examples in-
clude word alignment in natural language processing (Lin
and Bilmes 2011), match scoring in database search (Bai,
Bilmes, and Noble 2016), and ensuring diversity on team
projects (Ahmed, Dickerson, and Fuge 2020).

1An ICA instance with the added constraint that allocating
vi(ui) = 0 for some agent i is disallowed or infinitely penalized.

Contributions
In this paper, we obtain both multiplicative and additive ap-
proximations for the ICA problem. Our approximations de-
pend on novel curvature parameters that measure the degree
of local change that can occur in the concave valuation of
each agent. For a given agent valuation vi(·) and maximum
item utility maxj ui,j for agent i, we denote the local mul-
tiplicative and additive curvatures of vi(·) as µi and αi,
respectively, where higher/lower values of µi and αi cor-
respond to higher/lower degrees of local curvature in vi(·)
with respect to a local change of maxj ui,j .2 As we will see,
these parameters also provide our algorithms with a precise
guide for striking the balance between utilitarian and egali-
tarian allocations when redistributing items among agents.

For the key applications of our general results, we also
show our guarantees yield approximations for Asymmetric
Nash Welfare with smoothed agent valuations, as well as in-
stances where agents have piecewise-linear valuations. The
details of these results and applications are stated formally
below.

General Guarantees. For our main result, we give a
polynomial-time algorithm for a general instance of ICA
that achieves a multiplicative approximation ratio of (1 +
ϵ)maxi µi. Note for our general multiplicative results, we
assume that each vi maps from R+ to R+ and is differen-
tiable over R+.

Theorem 1. Consider an instance of ICA such that each
vi : R+ → R+ has well-defined first derivative. Let umax

i =∑
j uij and ρmax = maxi(v

′
i(0)u

max
i /vi(u

max
i )). Then

there exists an algorithm that achieves an approximation of
(1 + ϵ)maxi µi that runs in time O(mn ln(ρmax/ϵ)/ϵ).

Additionally, we show this bound is tight among algo-
rithms that utilize the natural assignment convex program,
i.e., the integrality gap of the ICA convex program is pre-
cisely our multiplicative curvature parameter (proof in full
version of the paper).

Theorem 2. Consider an instance ICA where each agent
has valuation function v(·) and let u = maxi,j ui,j . Then
the integrality gap of the ICA assignment convex program is
the multiplicative curvature of the instance µ (determined by
v(·) and u).

These results can also be extended to obtain an algorithm
with an additive guarantee for ICA, where the performance
bound instead scales according to the additive curvatures of
the valuations (formally stated later in Theorem 11). We em-
phasize that our algorithms are simple, efficient, and do not
utilize a black-box convex program solver. Instead, we lever-
age the duality techniques introduced in (Chakrabarty and
Goel 2010) and (Devanur and Jain 2012) to guide a taton-
nement style local-search algorithm.

In fact, one can view our algorithm as a concave gen-
eralization of the LP primal-dual 4/3-approximation al-
gorithm for budget-additive functions in (Chakrabarty and

2These parameters are formally defined and diagrammed in our
preliminaries section.
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Goel 2010). This algorithm begins with a utilitarian allo-
cation by initializing dual bids greedily and assigning each
item j to the agent i with maximum utility ui,j . The algo-
rithm then continuously lowers bids for items assigned to
agents who are “over allocated,” defecting items to the high-
est bidder throughout (thus creating a more egalitarian allo-
cation). The crux of the algorithm is to determine at what
point the bid lowering procedure should stop — an algo-
rithm that stops too soon will leave too many agents either
over or under allocated, whereas one that continues too long
will assign too many items to agents with comparatively
lower utilities.

In (Chakrabarty and Goel 2010), the authors derive the
optimal stopping point from a set of algebraically obtained
equations, which directly corresponds to the 4/3 approxi-
mation ratio. The key to our analysis is also deriving the
correct stopping point; however, a new approach is needed
in our more general setting (e.g., we do not make assump-
tions about the algebraic closed-form of each vi(·)). For our
main technical insight, we show this algebraic approach can
be bypassed via more elegant geometric arguments that co-
incide directly with the definitions of our curvature param-
eters µi and αi in the multiplicative and additive settings,
respectively.

Application: Smooth Asymmetric Nash Welfare. As
discussed earlier, there is a recent line of work that has ex-
tensively examined the Nash welfare objective for indivis-
ible items. This interest was sparked by the seminal result
of Cole and Gkatzelis (Cole and Gkatzelis 2015), who ob-
tained the first constant approximation for symmetric agents
with additive valuations, i.e., for all agents i we have ηi = 1
and vi(ui) = ui. This bound has been subsequently im-
proved and extended to more general valuation functions in
the symmetric agent case. (See our related works section be-
low for a detailed list.)

However, many important applications are in fact cap-
tured by the general asymmetric objective, i.e., agents have
general weights ηi > 0. For instance, Asymmetric Nash
Welfare has been leveraged in applications such as com-
mittee bargaining (e.g., each agent i represents a committee
with size ηi) and ensuring diversity in the housing alloca-
tions, where weights express priority levels of various eth-
nic groups (Laruelle and Valenciano 2007; Benabbou et al.
2018). Other examples include allocating water in trans-
boundary river basins (Degefu et al. 2016) and reaching
compromises in international negotiations for climate pol-
icy (Yu et al. 2017).

Unfortunately, even when agents have additive valuations,
the approximability of the asymmetric case still remains a
key open problem in the area, where the best known ap-
proximation bound is currently O(n) (Garg, Kulkarni, and
Kulkarni 2020). We note that the original breakthrough for
the symmetric objective in (Cole and Gkatzelis 2015) was
directly aimed at circumventing the Ω(n) integrality gap
of the assignment convex program for the Nash objective.
Subsequent work has either generalized these techniques or
utilized other approaches that exploit the symmetry of the
agents’ valuations. Currently it is unclear how to extend

these ideas to the asymmetric setting.
Since our general techniques for ICA compete against the

optimal fractional objective of the assignment convex pro-
gram, the Ω(n) integrality gap also remains a barrier to di-
rectly applying our approach to the standard asymmetric
objective. However, another proposed alternative for natu-
rally handling the large integrality gap is to examine agents
with smooth valuations (Fain, Munagala, and Shah 2018;
Fluschnik et al. 2019; Barman et al. 2022). In the smooth
valuation setting, we give each agent a (potentially frac-
tional) copy of her favorite item at the outset of the allo-
cation, which relaxes the degree to which the objective pe-
nalizes under allocations. Furthermore, smoothing the val-
uations still captures part of the technical challenge of the
standard non-smooth asymmetric objective.3

Thus, as the main application of our general techniques
for ICA, we show that our additive bounds imply multi-
plicative approximations for Asymmetric Nash Welfare with
smooth additive valuations, formally defined as follows.
First observe we can scale the Nash welfare objective of each
agent i by (maxj ui,j)

−ηi without changing the approxima-
tion factor of the algorithm. Therefore, wlog we can assume
that maxj ui,j = 1. We then define the smooth version of the
Nash objective to be (

∏
i(ui + ω)ηi)

1/η , where ω ∈ (0, 1]
denotes the smoothing parameter for the instance. We then
obtain the following result.

Theorem 3. Consider an instance of Asymmetric Nash Wel-
fare Maximization with smooth additive valuations. Then
there exists an algorithm that runs in time O(nm2/(ϵω))
that achieves an approximation of O(eϵ/(ω ln(1 + 1/ω)))
for any smoothing parameter ω ∈ (0, 1].

Observe that for any constant smoothing parameter ω, we
obtain a constant approximation in the smooth setting. For
example when ω = 1, the approximation ratio of the algo-
rithm is ≈ 1.061 as ϵ→ 0. Again, one should interpret ω as
giving each agent a ω-fraction copy of her favorite item at
the start of the allocation.

Furthermore, the resulting algorithm has an interesting
combinatorial interpretation, which we call the Weighted
Bang-Per-Buck (WBB) algorithm. Many approximations for
the symmetric case (e.g., (Anari et al. 2018; Barman, Kr-
ishnamurthy, and Vaish 2018)) also use tatonnement-style
algorithms that adjust prices pj for each item j, maintain-
ing throughout that each item is always assigned to a maxi-
mum “bang-per-buck” agent, i.e., agents i such that the ratio
ui,j/pj is maximized. In our WBB algorithm, we instead ad-
just a uniform bid bi that agent i makes for all items, but then
each item is assigned based on maximum weighted bang-
per-buck ratios, i.e., item j is assigned to the agent that max-
imizes (ηiui,j)/bi. To the best of our knowledge, weighted
bang-per-buck ratios have yet to be considered in the con-
text of algorithm design for Asymmetric Nash Welfare. We
hope this concept and interpretation prove useful for making
progress in the challenging non-smooth case.

3One can verify that the algorithm in (Garg, Kulkarni, and
Kulkarni 2020) still has an approximation of Ω(n) when each agent
gets an additional copy of her most-valued item at the outset.
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Application: Piecewise-linear Valuations. As an addi-
tional application, we apply our techniques to instances with
piecewise-linear valuations. Such functions have been con-
sidered in a variety of settings in computational economics,
since a continuous concave function can be closely approx-
imated by one that is piecewise-linear. Such examples in-
clude computing market equilibria (Vazirani and Yannakakis
2011; Garg et al. 2015), Nash Welfare Maximization (Anari
et al. 2018; Chaudhury et al. 2018), and mixed manna allo-
cations (Chaudhury et al. 2021). To the best of our knowl-
edge, the approximability of welfare maximization for such
functions has yet to be studied.

In the context of ICA, piecewise-linear valuations are for-
mally defined as follows: each agent valuation function vi(·)
is defined over a sequence of conjoined line segments. Let
xi,k denote the transition point on the x-axis between the k-
th and (k + 1)-th segments (where xi,0 = 0). For any such
function, we give an algorithm that achieves an approxima-
tion ratio of at most (1 + ϵ)4/3, as long as the maximum
utility gained for a single item is at most the length (along
the x-axis) of any segment of the piecewise-linear function.
(Proof in full version.)

Theorem 4. Consider an ICA instance where vi(ui) is a
linear piecewise function such that mink (xi,k+1 − xi,k) ≥
maxj uij . Then there exists an algorithm whose approxima-
tion ratio is (1 + ϵ)maxi µi ≤ (1 + ϵ)4/3.

For the special case of budget-additive functions with util-
ity caps ci, the condition required by Theorem 4 is equiva-
lent to the standard assumption that maxj ui,j ≤ ci. Thus,
our bound essentially (i.e., barring the 4/3−δ approximation
for a small constant δ via the configuration LP in (Kalaitzis
et al. 2015)) matches the state-of-the-art approximation for
budget-additive valuations but in the more general setting of
piecewise-linear functions.

Related Work
There is a long line of work that examined the approx-
imability of welfare maximization for the special case of
budget-additive functions. A series of results (Garg, Kumar,
and Pandit 2001; Andelman and Mansour 2004; Azar et al.
2008; Chakrabarty and Goel 2010; Kalaitzis et al. 2015) im-
proved the best approximation to 4/3 − δ for a small con-
stant δ, while the hardness lower bound is currently 16/15
(Chakrabarty and Goel 2010). Budget-additive valuations
have also been heavily studied in the online setting, typically
called the Adwords problem. Please see the excellent survey
by Mehta (2013) for an overview of this area. We note the
algorithm in (Devanur and Jain 2012) for concave-additive
valuations with fractional items is viewed as the state of the
art in the online setting. Their approximation ratio is also ex-
pressed as a parameter that depends on the curvature of the
given concave functions.

Since the seminal result in (Cole and Gkatzelis 2015),
the symmetric Nash welfare objective has been extensively
studied for a variety of valuation classes (Barman, Krishna-
murthy, and Vaish 2018; Cole et al. 2017; Garg, Hoefer, and
Mehlhorn 2018; Anari et al. 2018; Garg, Husić, and Végh
2021a; Li and Vondrák 2021). For the asymmetric objective,

(Garg, Kulkarni, and Kulkarni 2020) gave O(n) approxi-
mations for additive and budget-additive valuations. More
recently, (Garg, Husić, and Végh 2021b) showed approx-
imations parameterized by the max-to-min ratio of agent
weights, and (Garg et al. 2021) gave a PTAS for the cases
of identical and two-value agents.

Nash welfare has also been extensively studied for its ap-
pealing fairness properties; for example, Caragiannis et al.
(2019) call the objective “unreasonably fair.” For additional
results on fairness, see (Barman, Krishnamurthy, and Vaish
2018; Plaut and Roughgarden 2020; McGlaughlin and Garg
2020). Smooth valuations have also been considered pri-
marily in the context of fairness (Fain, Munagala, and Shah
2018; Fluschnik et al. 2019; Barman et al. 2022).

Preliminaries
Convex Program Formulation. Recall that every agent i
has a non-decreasing concave valuation function vi(·). Our
algorithm utilizes the natural assignment convex program
for the problem, which we will refer to as ICA-CP:

(ICA-CP) : max
∑
i

vi(ui)

∀i : ui =
∑
j

ui,jxij

∀j :
∑
i

xi,j ≤ 1

∀i, j : xi,j ≥ 0

The algorithm is primal-dual in nature, and uses the dual
program which was defined for the online variant of the
problem in (Devanur and Jain 2012):

(ICA-D) : min
∑
i

yi(ti) +
∑
j

pj

∀i, j : pj ≥ ui,jv
′
i(ti)

∀i, j : ti, pj ≥ 0

where yi(ti) = vi(ti)− tiv
′
i(ti) is defined as the y-intercept

of the tangent to vi at ti. Thus we have the following lemma.
Lemma 5 (shown in (Devanur and Jain 2012)). The above
convex programs form a primal-dual pair. That is, any fea-
sible solution to ICA-D has objective at least that of any
feasible solution to ICA-CP.

Local Curvature Parameters. Both the definition and
guarantees provided by our algorithm depend on parame-
ters that measure the local curvatures of each agent valuation
function, both in multiplicative (we will use µ) and additive
senses (α). To define these parameters, let

σi(z, w) :=
vi(z + w)− vi(z)

w
, (1)

be the slope of the lower-bounding secant line that intersects
vi at points (z, vi(z)) and (z + w, vi(z + w)). Define the
local multiplicative curvature of a function vi at point z with
x-width w > 0 to be:

µi(z, w) := max
z∗∈(0,w)

[
vi(z + z∗)

vi(z) + z∗σi(z, w)

]
. (2)
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ratio = 

Figure 1: Illustration of the definition of the multiplicative
local curvature at point z with width w for function vi (de-
noted µi(z, w)).

Informally, µi(z, w) measures the largest multiplicative gap
between a the function evaluated at z + z∗ and the corre-
sponding point on the lower bounding secant line; see Fig-
ure 1. The overall local multiplicative curvature for agent i
is then defined to be µi := maxz,ui,j

µi(z, ui,j).
Similarly, we define the local additive curvature for an

agent at point z with x-width w as

αi(z, w) := max
z∗∈(0,w)

[vi(z + z∗)− (vi(z) + z∗σi(z, w))] ,

and let αi := maxz,ui,j
αi(z, ui,j).

General Algorithm for ICA
In this section, we define our (1+ϵ)maxi µi-approximation
algorithm for ICA, assuming that the algorithm has knowl-
edge of the values of the µi for any given set of valuation
functions. (In the full version, we discuss how this assump-
tion can be removed.)

Algorithm Definition. As was done for the algorithm in
(Chakrabarty and Goel 2010) for budget-additive functions,
it will be useful to partition the cost of the dual solution ac-
cording to algorithm’s current assignments. Let ti be the cur-
rent dual variable maintained by the algorithm for agent i.
Define

D(ui) := yi(ti) + uiv
′
i(ti) (3)

to be the utility for agent i but instead evaluated according
to the tangent line in the dual objective taken at point ti.
The algorithm will maintain that at any point, each item j
will be assigned to the bidder i that maximizes ui,jv

′
i(ti)

(and will reassign an item if this doesn’t hold). Call such
an assignment a proper assignment. In an allocation where
all item’s are properly assigned, we can obtain the following
characterization of the dual objective (proof in full version).
Lemma 6. Fix a point in the algorithm with primal and dual
variables ui and ti for each agent i. If all items are prop-
erly allocated, then (i) setting pj = maxi v

′
i(ti)ui,j forms

a feasible solution to the dual program ICA-D, and (ii) the
objective of the dual can be expressed as

∑
i D(ui).

We can now define our algorithm, given formally in Algo-
rithm 1. The algorithm maintains a setting of the dual vari-
able ti for every agent i and pj for every item j. Each ti

Algorithm 1 Multiplicative Algorithm for ICA

1: Initialize all ti = 0
2: Allocate each item j to agent argmaxi (ui,jv

′
i(0))

3: while ∃ an agent i such that D(ui)/vi(ui) > µi do
4: while D(ui)/vi(ui) > µi do
5: if there is an item j such that j is assigned to i and

i ̸= argmaxk (uk,jv
′
k(tk)) then

6: Reassign j to agent argmaxk (uk,jv
′
k(tk))

7: else
8: Increase tangent point ti until v′i(ti) decreases

by a factor of 1/(1 + ϵ)
9: end if

10: end while
11: end while
12: Output resulting allocation ui for all agents

variable is initialized to be 0, and then items are properly as-
signed accordingly. The algorithm proceeds by continuously
increasing ti values (thus decreasing v′i(ti)), allowing items
to defect if they are no longer properly assigned. The goal
of the algorithm is to eventually is obtain an allocation such
that D(ui)/vi(ui) ≤ µi for all agents. Under this condition,
as long items remain (close to) properly assigned upon the
algorithm’s termination, Lemmas 5 and 6 imply that the ap-
proximation ratio of the algorithm is at most maxi µi.

Algorithm Analysis. The algorithm seeks to find an
allocation such that, for every agent i, the inequality
D(ui)/vi(ui) ≤ µi is satisfied. To this end, we use the fol-
lowing terminology.

Definition 7. There are two types of agents such that
D(ui)/vi(ui) > µi: either ui < ti or ui > ti. Call such
agents under allocated and over allocated, respectively.

The main technical hurdles for our more general setting
of concave-additive functions are showing that no agent be-
comes under allocated, and establishing the claimed run
time bound. We first state and prove a useful a property of
monotone-concave functions (proof in full version).

Lemma 8. Let f : R+ → R+ be a monotone concave
function. Suppose ℓ1(·) and ℓ2(·) are the equations of two
lines tangent to f at points (t1, f(t1)) and (t2, f(t2)), re-
spectively. If there exists x ≥ max(t1, t2) such that ℓ2(x) ≤
ℓ1(x), then ℓ1(x̃) ≤ ℓ2(x̃) for all x̃ ≤ t1.

We now establish that throughout the algorithm’s execu-
tion, at no point does an agent become under allocated.

Lemma 9. Throughout the algorithm, an agent never be-
comes under allocated. In particular, if ui < ti then
D(ui)/vi(ui) ≤ µi.

Proof. At the start of the algorithm ti = 0 for all agents,
and so no agent can be under allocated at the outset of the
algorithm. Therefore, the only point at which an agent i with
total utility ui could potentially become under allocated is
when some item j is reassigned to another agent on Line 6 of
the algorithm such that after the reassignment ui−ui,j < ti.
Fix such a point in the algorithm.
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Let s(x) denote the equation for the secant line that
passes through vi(·) at points (ui − ui,j , vi(ui − ui,j)) and
(ui, vi(ui)). More formally, let σ′

i := σi(ui − ui,j , ui,j),
where the definition of σi(·) is given by Equation (1). Then
the equation for s(x) is

s(x) = σ′
ix+ vi(ui − ui,j)− σ′

i(ui − ui,j). (4)

Let µ̃i := µ̃i(ui − ui,j) denote the local multiplicative
curvature of vi(·) at ui − ui,j , and let z∗ be value (given in
Equation (2)) that determines µ̃i. Based on the definition of
µ̃i, observe that if we scale s(x) by a factor of µ̃i, we obtain
an equation for a line that is tangent to vi(·) at the point
(ui− ui,j + z∗, vi(ui− ui,j + z∗)). Denote the equation for
this line as s̃(x) = µ̃is(x).

Since by definition s(ui) = vi(ui), it follows that

s̃(ui) = µ̃is(ui) = µ̃ivi(ui) ≤ µivi(ui) < D(ui), (5)

where the first inequality holds by definition of µi and the
last inequality holds because i entered the loop on Line 3.

Given Inequality (5), it now follows from Lemma 8 that
D(ui−ui,j) ≤ s̃(ui−ui,j) by setting ℓ1(·) = D(·), ℓ2(·) =
s̃(·), and x = ui. This inequality implies:

D(ui − ui,j)

vi(ui − ui,j)
=

D(ui − ui,j)

s(ui − ui,j)
≤ s̃(ui − ui,j)

s(ui − ui,j)
= µ̃i ≤ µi,

(6)
where first equality follows from the definition of s(x). Thus
agent i did not become under allocated after the reassign-
ment of item j, as desired.

The next lemma establishes the run time of the algorithm
(proof in full version). For simplicity, we will assume that ϵ
is selected such that for all agents µi ≥ 1+ϵ. This is possible
as long as µ > 1. (If µi = 1, then vi(ui) = D(ui), and thus
the agent is never under or over allocated.)

Lemma 10. Let umax
i =

∑
j ui,j denote the max-

imum possible utility for a fixed agent i, and let
ρmax = maxi(v

′
i(0)u

max
i /vi(u

max
i )). If for all agents

µi ≥ 1 + ϵ, then the algorithm terminates in time
O(mnT ln(ρmax/ϵ)/ϵ), where T is the time needed to per-
form the update of ti on Line 8.

By combining these lemmas, we can prove Theorem 1;
the proof is in the full version.

Adaptation to Additive Guarantee An appealing feature
of our geometric-based arguments is that they easily extend
to obtain additive guarantees as well. This result is stated
formally as follows . The details of this adaptation are given
in the full version of the paper.

Theorem 11. There exists an algorithm for ICA that
achieves an additive bound of

∑
i αi + ϵ and runs in time

O(nm2Tv′i(0)/ϵ), where T is the time needed to perform
the update of ti on Line 8 of Algorithm 1. Furthermore,
the integrality gap of the assignment convex program is∑

i α = nα for instances with additive curvature α.

Extension to Smooth Asymmetric Nash
Welfare Maximization

We now apply our techniques to Nash Welfare Maximiza-
tion for asymmetric agents with smooth additive additive
valuations. In this problem, each agent i has a weight ηi >
0, and the goal is to find an allocation that maximizes
(
∏

i(ui + ω)ηi)
1/η where η =

∑
i ηi is the sum of the agent

weights and ω ∈ (0, 1] denotes the smoothing parameter of
the instance. Recall that we can scale the objective of each
agent i by (maxj ui,j)

−ηi without changing the approxima-
tion ratio of the algorithm, and thus wlog we assume that
maxj ui,j = 1 for every agent i. To simplify notation, we
also assume weights are normalized by dividing them by η,
so η = 1 (i.e., we bring the 1/η exponent into each term in
the product objective).

Algorithm Definition. Our algorithm has a combinatorial
interpretation which we call the Weighted Bang-Per-Buck
(WBB) algorithm. To define the algorithm, we first explic-
itly define the additive curvature parameter αi in the case
where vi(ui) = ηi ln(ui + ω). Let σi(z, 1) denote the slope
of the lower-bounding secant line that intersects the points
(z, ηi ln(z + ω)) and (z + 1, ηi ln(z + ω + 1)), given as:

σi(z, 1) := ηi ln(z + ω + 1)− ηi ln(z + ω)

= ηi ln
(
1 + (z + ω)−1

)
. (7)

We then define the local additive curvature bound αi at z for
agent i:

αi(z) := max
z∗∈(0,1)

[ηi ln(z + z∗ + ω)−

(ηi ln(z + ω) + z∗σi(z, 1))]. (8)

Thus from the definition of αi (given in the preliminaries),
we have αi = maxi αi(z) since maxj ui,j = 1.

The WBB Algorithm is given in Algorithm 2. Through-
out its execution, we adjust a uniform bid bi each agent
i makes for on every item in the instance. The algorithm
starts with bids that are underestimates of the optimal dual
bids, and thus proceeds by increasing the uniform bid of
each agent one at a time, ensuring throughout that every
item is assigned to a maximum weighted bang-per-buck ra-
tio agent, i.e., an agent that maximizes (ηiui,j)/bi. The al-
gorithm stops increasing the bid of an agent according an
exponential potential function proportional to agent’s aver-
age unweighted MBB ratio.

Analysis. We first argue that the WBB algorithm is equiv-
alent to executing the ICA algorithm for an additive guar-
antee (given by Theorem 11). We then derive a closed-form
for the local additive curvature αi in terms of the smoothing
parameter ω.

Lemma 12. The WBB algorithm (Algorithm 2) is equivalent
to executing the ICA algorithm for an additive guarantee,
where in the ICA instance vi(ui) = ηi ln(ui + ω).

Proof. By Lemma 5, the dual program for an ICA instance
with vi(ui) = ηi ln(ui + ω) is given by the following con-
cave program:
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Algorithm 2 Weighted Bang-per-buck Algorithm (WBB)

1: Initialize fixed bid bi ← ω for each agent i.
2: Allocate each item j to argmaxi

(
ηiui,j

bi

)
3: while there exists an agent i such that

(ui + ω)/bi < exp((ui + ω)/bi − 1− αi) do
4: while (ui + ω)/bi < exp((ui + ω)/bi − 1− αi) do
5: if there is an item j assigned to agent i such that i

is not j’s maximum WBB agent then
6: Reassign j to agent argmaxk

(
ηkuk,j

bk

)
7: else
8: Increase agent i’s bid to be bi ← ηimbi

ηim−ϵbi
9: end if

10: end while
11: end while
12: Output resulting allocation ui for all agents

(ASN-D):min
∑
i

ηi

(
ln(ti + ω)− ti

ti + ω

)
+
∑
j

βj

∀i, j : βj ≥
ηiui,j

ti + ω
, ∀i, j : ti, βj ≥ 0

Note that for this application, we denote the dual variable
pj as βj , since it is interpreted as the weighted MBB ratio,
not the price. In particular, in the WBB algorithm, we sub-
stitute the ti + ω terms in the ASN-D program to be the
uniform bid bi made by agent i for all items. Thus the func-
tion D(ui) becomes:

D(ui) = ηi

[
ui + ω

bi
+ ln(bi)− 1

]
.

Substituting this into the while-loop condition of our
general additive algorithm4 and simplifying, we obtain the
while-loop condition in Algorithm 2. Furthermore, since
the WBB algorithm maintains an assignment where each
item is assigned to the agent with maximum weighted
bang-per-buck ratio, the variables ti = bi − ω and βj =

argmaxi

(
ηiui,j

bi

)
form a feasible dual solution. Finally, one

can verify the update to bid bi decreases v′i(ti) by ϵ/m.

The next lemma is proved in the full version of the paper.
Lemma 13. When valuation function of agent i is vi(ui) =

ηi ln(ui + ω), then αi = O
(
ηi ln

(
1

ω ln(1+1/ω)

))
.

We can now prove Theorem 3.

Proof of Theorem 3. By Theorem 11, the algo-
rithm achieves the desired run-time bound, since
v′i(0) = ηi/ω ≤ 1/ω (recall we normalized agent
weights to be ηi/η) and the update on Line 8 in WBB takes

4The adaptation of Algorithm 1 that instead obtains an additive
guarantee (given in Theorem 11) uses D(ui) − vi(ui) > αi for
its while-loop condition. Similarly in the analysis, one adjusts dual
variables by adding ϵ/m to each βj to obtain a feasible solution.

O(1) time. By Lemma 12 and Theorem 11, the algorithm
achieves an additive approximation of

∑
i αi (where αi is

given by Lemma 13) on the log objective. Thus, we are
left with bounding the multiplicative approximation of the
algorithm for the product objective.

Let OPT and OPTlog denote the objective value of the
optimal solution for the product and log objective, respec-
tively. Consider the dual variables (βj , ti) corresponding to
the allocation returned by the algorithm. By the proof of
Theorem 11, βj + ϵ/m is a feasible solution to the dual pro-
gram ASN-D (see footnote in Lemma 12). Thus by Lemma
5, ASN-D(t, β) is bounded below by:

∑
i

ηi

(
ln(ti + ω)− ti

ti + ω

)
+
∑
j

(
βj +

ϵ

m

)
=
∑
i

D(ui) + ϵ ≥ OPTlog. (9)

When the algorithm terminates we have ηi ln(ui + ω) ≥
D(ui)−αi for every agent i. Along with Inequality (9), this
implies the total objective of the algorithm is bounded by:∑
i

ηi ln(ui+ω) ≥
∑
i

(D(ui)−αi) ≥ OPTlog−
∑
i

αi−ϵ.

From this inequality, and the fact that OPTlog = ln (OPT),
it follows the algorithm’s objective on the product objective∏

i(ui + ω)ηi = exp (
∑

i ln(ui + ω)) is lower bounded by:

exp

(
OPTlog −

∑
i

αi − ϵ

)
= exp

(
−
∑
i

αi − ϵ

)
OPT.

From Lemma 13, we have that
∑

i αi =

O
(
ln
(

1
ω ln(1+1/ω)

))
, and therefore exp (

∑
i αi + ϵ) =

O(eϵ/(ω ln(1 + 1/ω))). Substituting and rearranging the
bound estabalished above, we obtain the theorem.

Conclusion
In this paper we obtain tight approximations for allocating
indivisible items to agents with concave additive valuations.
We conclude by proposing potential directions for future
work. The focus of this paper has been on the approxima-
bility of ICA. As discussed in the introduction, several prior
works have established connections between approximabil-
ity and mechanisms with fairness guarantees. Therefore, it
would be interesting to see if the concepts introduced in this
paper (local curvature, weighted bang-per-buck ratios, etc.)
can be leveraged to define formal notions of fairness.

Another interesting direction would be to examine vector
monotone concave functions (i.e., valuations vi(·) are mono-
tone concave functions of the vector {ui,jxi,j}i,j), and per-
haps see if a more general notion of local curvature can be
used to characterize the approximability of the problem in
this setting. We also believe our techniques could point to
a more general framework for deriving algorithms from the
curvature of their objective functions (as highlighted by our
WBB algorithm).
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