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Abstract

We study the classic facility location setting, where we are
given n clients and m possible facility locations in some ar-
bitrary metric space, and want to choose a location to build
a facility. The exact same setting also arises in spatial so-
cial choice, where voters are the clients and the goal is to
choose a candidate or outcome, with the distance from a
voter to an outcome representing the cost of this outcome for
the voter (e.g., based on their ideological differences). Un-
like most previous work, we do not focus on a single ob-
jective to optimize (e.g., the total distance from clients to
the facility, or the maximum distance, etc.), but instead at-
tempt to optimize several different objectives simultaneously.
More specifically, we consider the l-centrum family of ob-
jectives, which includes the total distance, max distance, and
many others. We present tight bounds on how well any pair
of such objectives (e.g., max and sum) can be simultaneously
approximated compared to their optimum outcomes. In par-
ticular, we show that for any such pair of objectives, it is al-
ways possible to choose an outcome which simultaneously
approximates both objectives within a factor of 1 +

√
2, and

give a precise characterization of how this factor improves
as the two objectives being optimized become more simi-
lar. For q > 2 different centrum objectives, we show that
it is always possible to approximate all q of these objectives
within a small constant, and that this constant approaches 3
as q → ∞. Our results show that when optimizing only a
few simultaneous objectives, it is always possible to form an
outcome which is a significantly better than 3 approximation
for all of these objectives.

1 Introduction
When working on optimization problems, it is often difficult
to pick one single objective to optimize: in most real appli-
cations different parties care about many different objectives
at the same time. For example, consider the classic setting
when we are given n clients and m possible facility loca-
tions in some metric space, and want to choose a location
to build a facility. Note that while the setting we consider
is for facility location problems, the exact same setting also
arises in spatial social choice (see e.g., Merrill III, Merrill,
and Grofman (1999); Enelow and Hinich (1984); Anshele-
vich et al. (2021)), where voters are the clients and the goal
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is to choose a candidate or outcome located in some metric
space, where the distance from a voter to an outcome rep-
resents the cost of this outcome for the voter (e.g., based on
their ideological differences). When choosing where to build
a facility (or which candidate to select) for the public good
(e.g., where to build a new post office, supermarket, etc.),
we may care about minimizing the average distance from
users to the chosen facility (a utilitarian measure), or the
maximum distance (an egalitarian measure), or many other
measures of fairness or happiness. Focusing on just a single
measure may not be useful for actual policy makers, who
often want to satisfy multiple objectives simultaneously and
in fact refuse to commit themselves to a single one, as many
objectives have their own unique merits. In this paper we
instead attempt to simultaneously minimize multiple objec-
tives. For example, what if we care about both the average
and the maximum distance to the chosen facility, and not just
about some linear combination of the two? What if we want
to choose a facility so that it is close to optimum in terms of
the average distance from the users, and at the same time is
also close to optimum in terms of the maximum distance? Is
this even possible to do?

More specifically, we consider l-centrum problems (Slater
1978; Tamir 2001; Peeters 1998), where we are given a set
of possible facilitiesF and a set of n clients C in an arbitrary
metric space with distance function d. For each client i ∈ C
there is a cost d(i, j) if we choose to build facility j ∈ F .
Then the goal is to pick one facility from F such that it min-
imizes the sum of the l most expensive costs induced by the
choice of facility location. Such problems generalize mini-
mizing the total client cost (l = n), as well as the maximum
client cost (l = 1). The latter may be considered a measure
which is more fair to all the clients (since it makes sure that
all clients have small cost, not just on average), but would
have the drawback that a solution where all except a single
client have low cost would be considered the same as a solu-
tion where they all have high cost, as long as the maximum
cost stays the same. Because of this, some may argue that an
objective where we consider only the costs of the worst 10
percent of the clients may be better. In this work, we side-
step questions about which objective is best entirely. Since
each of the l-centrum objectives has its own advantages, our
goal is to simultaneously approximate multiple such objec-
tives. This idea of simultaneously approximating l-centrum
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Figure 1: Plot of the tight upper bound of the simultaneous
approximation ratio for ck and cp (denoted as function f )
with respect to p

k . When k and p are similar this factor is
small, and in fact when p ≤ 4k they can both be approxi-
mated within a factor of 2. As p

k becomes larger, the worst-
case approximation approaches 1 +

√
2.

problems as a method of creating “fair” outcomes was pre-
viously discussed in Kumar and Kleinberg (2006); Goel and
Meyerson (2006); Goel, Hulett, and Krishnaswamy (2018),
and was adapted from the idea of approximate majorization
in (Bhargava, Goel, and Meyerson 2001).

Note that our approach is very different from combin-
ing several objectives into a single one (e.g., by taking a
weighted sum); we instead want to make sure that the cho-
sen outcome is good with respect to each objective we are
interested in simultaneously. More formally, for 1 ≤ l ≤ n,
we define the cost function for choosing facility A ∈ F to
be cl(A), which is the sum of the top l distances from A
to each client in C. The l-centrum problem asks to min-
imize cl(A) with a fixed l value; denote the optimal fa-
cility location for this objective by Ol. Now suppose we
have q such objectives that we want to optimize, such that
l ∈ K = {k1, k2, · · · , kq}. We then say a facilityA ∈ F is a
simultaneous α-approximation for all of the q objectives iff
cl(A) ≤ α · cl(Ol) for all l ∈ K.

1.1 Our Contributions
We first consider the setting where we attempt to optimize
two objectives. These objectives could, for example, be min-
imizing the maximum distance maxi d(i, j) and the total
distance

∑
i d(i, j). Or more generally they can be two arbi-

trary centrum objectives with one objective being k-centrum
and the other being p-centrum with k ≤ p. We prove that for
any such pair of objectives, it is always possible to choose an
outcome A ∈ F which simultaneously approximates both
objectives within a factor of 1 +

√
2. In fact, we provide a

tight upper bound for how well any such pair of objectives
can be approximated at the same time, as shown in Figure
1. Our results show that when two people disagree on which
objective is the best to optimize, they can both be made rel-
atively happy in our setting.

We then proceed to study optimizing more than two ob-
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Figure 2: Plot of upper bound of the simultaneous approxi-
mation ratio βq for q different centrum objectives.

jectives at the same time. When optimizing q different cen-
trum objectives, we prove that it is always possible to ap-
proximate all q of these objectives within a small constant;
the plot of this upper bound is shown in Figure 2. When
q = 2 this factor coincides with our above bound for 2 ob-
jectives; as the number of objectives grows this value ap-
proaches 3. Thus our results show, that when optimizing
only a few simultaneous objectives, it is always possible to
form an outcome which is a significantly better than 3 ap-
proximation for all of these objectives.1 Finally, in Section
5 we discuss the important special case when facilities can
be placed at any client location, i.e., F = C, which for the
social choice setting corresponds to all the voters also being
possible candidates.

1.2 Related Work
Facility location, as well as spatial voting problems, are
a huge area with far too much existing work to survey
here; many variants have been studied with many different
objectives (see for example Chan et al. (2021); Farahani,
SteadieSeifi, and Asgari (2010) and the references therein).
As discussed above, we want to simultaneously approxi-
mate multiple objectives. However, there are many other
different approaches when considering multiple objectives,
with a common one being converting multiple objectives
into one objective and optimizing the new objective, as in
Ehrgott and Gandibleux (2000); Farahani, SteadieSeifi, and
Asgari (2010). As discussed in Section 5.1 in (Ehrgott and
Gandibleux 2000), the most commonly used conversion is
the weighted sum of the objectives (such as in, e.g., (Alam-
dari and Shmoys 2017; McGinnis and White 1978; Ohsawa
1999)), but of course there are many ways to combine sev-
eral objectives. Since different people have different opin-
ions and priorities, it is usually impossible to pick one com-
bination that can make everyone satisfied. In addition, a

1If the goal is to approximate all the centrum objectives at
the same time, then (Kumar and Kleinberg 2006) provided a 4-
approximation for this, and the results in (Goel, Hulett, and Krish-
naswamy 2018; Gkatzelis, Halpern, and Shah 2020) imply that this
can be improved to 3.
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good outcome for the new (combined) objective does not
directly imply it is also good with respect to each of the
original objectives, and in fact simultaneously approximat-
ing several objectives may be impossible even if the com-
bined objective is approximable. On the other hand, a simul-
taneous α-approximation for all the objectives does imply
an α-approximation of any convex combinations of the ob-
jectives, and thus forms a strictly stronger result.

In addition to forming a weighted sum of two objectives,
Alamdari and Shmoys (2017) looked at a different notion
of approximation for multiple objectives. They considered
approximating the original objectives with respect to a spe-
cific feasible solution instead of their respective optimal so-
lutions, and gave a polynomial time (4,8)-approximation al-
gorithm for minimax and minisum for the special case when
F = C. A simultaneous α-approximation for both minimax
and minisum (which is what we form for α = 1+

√
2) would

also imply a (α, α)-approximation in their notion of approx-
imation. Note that the result in Alamdari and Shmoys (2017)
applies to selecting more than one facility, however, while
in that setting we know it is impossible to form a bounded
approximation ratio for both minimax and minisum simul-
taneously (Alamdari and Shmoys 2017; Goel and Meyer-
son 2006). Because of this, similarly to much of the work
on this topic (see below), we focus on selecting a single
facility while optimizing multiple simultaneous objectives.
When considering multiple objectives, another approach is
to consider efficient algorithms to find the Pareto optimal
set2 as discussed in Ehrgott and Gandibleux (2000), with
specific examples such as Nickel et al. (2005); Roostapour,
Kiarazm, and Davoodi (2015) for placing one facility. How-
ever, this approach generally does not consider how good
those solutions are in comparison to each of the objectives,
nor if there exists one that is good for all the objectives.

Now that we have discussed different approaches for mul-
tiple objective optimization, we want to consider a set of
objectives that is appropriate for our setting. Two of the
most commonly studied objectives for facility location prob-
lems are minimax (minimize maximum distance) and min-
isum (minimize sum of distances), see the survey Chan et al.
(2021). In this work we study a more general version of these
two objectives named the l-centrum objectives. l-centrum
problems were first introduced by Slater (1978) and were
later studied in other literature such as Tamir (2001); Peeters
(1998). This set of problems is also a subset of the ordered
k-median problems (Sornat 2019; Chakrabarty and Swamy
2018, 2019; Byrka, Sornat, and Spoerhase 2018; Kalcsics
et al. 2002). In fact, ordered k-median objectives can be
represented as convex combinations of the l-centrum objec-
tives as discussed in Sornat (2019); Chakrabarty and Swamy
(2018, 2019). This means that if we were to combine any
l-centrum objectives by convex combination into a new ob-
jective, Chakrabarty and Swamy (2019) gives a (5 + ε) ap-

2Such set contains Pareto optimal solutions, or efficient solu-
tions such that in any of these solutions, none of the objectives
can be improved without simultaneously worsening any other ob-
jectives (Ehrgott and Gandibleux 2000; Farahani, SteadieSeifi, and
Asgari 2010).

proximation for this new objective.
Note that the above work on l-centrum problems only

considered the approximation ratio for a single objective at
a time, but our goal is to approximate multiple objectives
simultaneously. For this goal, Kumar and Kleinberg (2006)
showed the existence of a simultaneous 4-approximation for
all l-centrum objectives, and the results in Goel, Hulett, and
Krishnaswamy (2018); Gkatzelis, Halpern, and Shah (2020)
imply a similar 3-approximation. We provide a much sim-
pler mechanism for obtaining this 3-approximation than the
one in Gkatzelis, Halpern, and Shah (2020).3 However, our
main focus is on improving the upper bound with respect
to the number of l-centrum objectives to be simultaneously
approximated. We provide better approximations when the
number of objectives to be approximated is small (instead
of being all the l-centrum objectives), with a much more de-
tailed tight analysis for two objectives.

Similar questions about facility location and voting have
also been studied in mechanism design. For instance, there
has been a significant amount of work in mechanism de-
sign considering the approximation ratio for strategy-proof
mechanisms for placing a single facility (Walsh 2021; Alon
et al. 2010; Feldman, Fiat, and Golomb 2016; Tang et al.
2020). Note that much of the previous work in this area
studied only the 1D real line metric (e.g., Walsh (2021);
Aziz et al. (2021)), while we look at general arbitrary metric
spaces. For simultaneously approximating two objectives,
Walsh (2021) showed that it is always possible to obtain a
(3,3)-approximation for minimax and minisum for clients
and facilities on a line. In addition, they also showed that
no deterministic and strategy-proof mechanism can do bet-
ter than 3-approximation for either of the two objectives.

Finally, our work also applies to spatial voting instead of
facility location, where voters and candidates are located in
a metric space, and the goal is to choose a candidate which
minimizes some objectives over the voters (Merrill III, Mer-
rill, and Grofman 1999; Enelow and Hinich 1984). Perhaps
the most relevant work to ours in this space is the work on
distortion, where instead of knowing the voters’ exact loca-
tions, each voter only provides their ordinal preferences for
the candidates (see the survey Anshelevich et al. (2021)). As
part of this work, Anshelevich and Postl (2017); Feldman,
Fiat, and Golomb (2016) showed that Random Dictatorship
has an approximation ratio of 3 in a general metric space for
minisum. More generally, the results in Gkatzelis, Halpern,
and Shah (2020) imply a simultaneous 3-approximation for
all l-centrum objectives, by choosing a candidate using a
somewhat complex, but deterministic, mechanism. One of
our goals is to improve this upper bound of 3 for simulta-
neously approximating multiple objectives. Because of this,
just as in most work on distortion, our main focus is not on
strategyproofness. Instead we study how well multiple ob-
jectives can be approximated simultaneously, even if we are
given all the necessary information.

3Although mostly concerned with different questions, the 3-
approximation mechanism we use can also be obtained as an easy
consequence of the results in Goel, Hulett, and Krishnaswamy
(2018).
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2 Preliminaries and Notation
Consider the facility location problem where we are given
the set of client locations C of size n, and the set of possible
facility locations F in a metric space d. We want to select a
location A ∈ F to place a facility such that the placement
would simultaneously minimize some set of objectives. The
kind of objectives that we are particularly interested in is
the summation of the top k distances from the clients to the
chosen facility location. More formally, suppose we order
the n clients a1, a2, a3, . . . , an so that

d(a1, A) ≥ d(a2, A) ≥ . . . ≥ d(an, A).
Then, define the k-centrum objective ck(A) to be the cost

for choosing facility location A when considering the top k
client-facility distances, i.e.,

ck(A) =
k∑
i=1

d(ai, A).

Our goal is to minimize ck(A) for multiple k simultane-
ously. Denote the optimal facility location for the k-centrum
objective by Ok. It will be useful to denote by aik the client
that is i’th farthest from Ok, i.e.,

d(a1k, Ok) ≥ d(a2k, Ok) ≥ . . . ≥ d(ank , Ok).
We are given a set of objectives to minimize, represented

by a a set of distinct positive integersK = {k1, k2, · · · , kq},
with each of its elements less than or equal to n. This means
that we want to simultaneously minimize all objectives cki
for ki ∈ K. We slightly abuse notation and refer to K as
the set of objectives, and say that an objective ck is in K
when k ∈ K. However, in order to simultaneously minimize
the objectives in K, we would have to make some trade-offs
such that the chosen facility location may not be the opti-
mal location for some of the objectives.4 We thus define the
approximation ratio for choosing facility location A with re-
spect to objective ck as

αk(A) =
ck(A)

ck(Ok)
≥ 1

Therefore, by choosing facility location A, we would obtain
a (αk1(A), αk2(A), · · · , αkq (A)) approximation for mini-
mizing the set of objectives K. As discussed in the Intro-
duction, our goal is to establish that we can always choose
some A so that all these values are small simultaneously.

3 Simultaneously Approximating Two
Objectives

We will first consider the case where there are only two
objectives. Let |C| = n, 1 ≤ k < p ≤ n, we then wish

4Here note that we assume c1(A) > 0; this means that the
cost function is always positive. Otherwise we should just choose
the facility location A such that c1(A) = 0. This indicates that
all clients are at most 0 distance away from A, which means that
all clients are at the same location as A given they are located in
a metric space. In other words, A would be the optimal facility
location for all objectives in K.

to simultaneously minimize ck(A) and cp(A). Our goal is
to find some A ∈ F such that both αk(A) and αp(A) are
small. In fact, with this goal in mind, we can obtain the
following result:

Theorem 3.1. For 1 ≤ k < p ≤ n, given the opti-
mal facility location Ok that minimizes ck and the opti-
mal facility location Op that minimizes cp, we have that
αk(Op) ≤ 1

αp(Ok)
+ 2.

Proof sketch. Suppose 1 ≤ k < p ≤ n, let A be a
facility location such that A ∈ F . In the full version
(Han, Jerrett, and Anshelevich 2022) we show two sim-
ple lemmas showing that

∑p
i=1 d(a

i
k, A) ≤ cp(A) and

cp(A) ≤ p
k · ck(A). Note that these lemmas imply that∑p

i=1 d(a
i
k, Ok) ≤ cp(Ok) and cp(Ok) ≤ p

k ·ck(Ok). Then,
note that all the clients and possible facility locations are lo-
cated in metric space d, so we have

ck(Op) =
k∑
i=1

d(aip, Op)

≤
k∑
i=1

[
d(aip, Ok) + d(Ok, Op)

]
=

k∑
i=1

d(aip, Ok) + k · d(Ok, Op).

Then, since we have
∑p
i=1 d(a

i
k, Ok) ≤ cp(Ok) and triangle

inequality induced by metric space d, we have
ck(Op) ≤ ck(Ok) + k · d(Ok, Op)

≤ ck(Ok) +
k

p

[
p∑
i=1

d(aik, Ok) +

p∑
i=1

d(aik, Op)

]

≤ ck(Ok) +
k

p
[cp(Ok) + cp(Op)]

= ck(Ok) +
k

p

[
cp(Ok) + cp(Ok) ·

cp(Op)

cp(Ok)

]
= ck(Ok) +

k

p

[
cp(Ok) +

cp(Ok)

αp(Ok)

]
= ck(Ok) +

k

p

[(
1 +

1

αp(Ok)

)
cp(Ok)

]
.

Recall that cp(Ok) ≤ p
k · ck(Ok), then we can see that

ck(Op) ≤ ck(Ok) +
k

p

[(
1 +

1

αp(Ok)

)
· p
k
ck(Ok)

]
= ck(Ok) +

(
1 +

1

αp(Ok)

)
ck(Ok)

=

(
2 +

1

αp(Ok)

)
ck(Ok).

Now, divide both side by ck(Ok), then
ck(Op)

ck(Ok)
≤
(
2 +

1

αp(Ok)

)
ck(Ok)

ck(Ok)

αk(Op) ≤
1

αp(Ok)
+ 2,
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as desired.

The above theorem indicates that by picking either Ok or
Op, the values of αk(Op) and αp(Ok) cannot be simultane-
ously large. In other words, either setting A to be Ok would
ensure that both αk(A) and αp(A) are small or setting A to
be Op would.

Note that Theorem 3.1 immediately implies the following
corollaries:

Corollary 3.1.1. For 1 ≤ k < p ≤ n,

1. By choosing the optimal facility location Op that mini-
mizes cp, we obtain a (3, 1) approximation for simulta-
neously minimizing ck and cp.

2. There always exists a facility location A ∈ F such that
choosing A would give a 1 +

√
2 approximation both

for minimizing ck and minimizing cp. In fact, we would
either get a (1, 1 +

√
2) approximation by choosing Ok

or a (1+
√
2, 1) approximation by choosing Op. In other

words, at least one of αk(Op) or αp(Ok) is always less
than or equal to 1 +

√
2.

The above results show that it is always possible to ap-
proximate any pair of our objectives to within a factor of
1+
√
2 of optimum. However, it is natural to think that there

exists some relationship between this approximation factor,
and how similar the objectives are. Naturally, as the differ-
ence between k and p becomes smaller, we would expect
that both αp(Ok) and αk(Op) would also become smaller.

In fact, we can form tighter bounds than what we have
shown in Theorem 3.1. We begin by looking at the case
where p is at least twice as large as k. The result follows.

Theorem 3.2. For 1 ≤ k < p ≤ n, k
p ≤ 1

2 , given the
optimal facility location Ok that minimizes ck and the op-
timal facility location Op that minimizes cp, we have that
αk(Op) ≤ 1

αp(Ok)
+ 2− 2 · kp .

See the full version (Han, Jerrett, and Anshelevich 2022)
of this paper for the full proof.

Note that this result is in a form similar to what we have
shown in Theorem 3.1 but with an offset of −2 · kp . What
this means is that if we know the value of αp(Ok), then the
value of αk(Op) would be further restricted by this offset
comparing to the result in Theorem 3.1. In addition, we can
also see that the bigger k

p becomes, the smaller the right-
hand side value of the inequality becomes. In other words,
assume that kp ≤ 1

2 , as the difference between k and p be-
comes smaller, the upper bound of αk(Op) would also be-
comes smaller given a fixed value of αp(Ok).

However, we still have not found the relationship among
k
p , αk(Op) and αp(Ok) when 1

2 <
k
p ≤ 1. In order to show

the underlying relationship between these values, we will
utilize a different (much simpler) method from what we have
been using for Theorem 3.1 and Theorem 3.2 (see the full
version Han, Jerrett, and Anshelevich (2022)), which yields
the following results.

Theorem 3.3. For 1 ≤ k < p ≤ n, given the optimal facility
location Ok that minimizes ck and the optimal facility loca-
tionOp that minimizes cp, we have that αk(Op) ≤ p

k · 1
αp(Ok)

and αp(Ok) ≤ p
k · 1

αk(Op)
.

Interestingly, since the proof for Theorem 3.3 (see the
full version of this paper (Han, Jerrett, and Anshelevich
2022) for the full proof) does not use any properties of
metric spaces, it is true even under non-metric spaces.
In addition, note that as the difference between p and k
becomes smaller, the value of p

k becomes smaller. This
means that the upper bound for αk(Op) would also become
smaller if the value of αp(Ok) is given. And vice versa, the
upper bound for αp(Ok) would become smaller if the value
of αk(Op) is given. Now that we have obtained bounds
over all k

p ∈ (0, 1], which is equivalent to p
k ∈ [1,∞)

from Theorem 3.2 and Theorem 3.3, we can conclude the
following results:

Theorem 3.4. For 1 ≤ k < p ≤ n, let x = p
k . Define

f : [1,∞)→ R as

f(x) =

{√
x 1 ≤ x ≤ 4

1− x−1 +
√
x−2 − 2x−1 + 2 x > 4

For some fixed x, let β = f(x). Then there exists a facil-
ity location A in F such that choosing A would give a β
approximation simultaneously for both minimizing ck and
minimizing cp. In fact, we would either get a (1, β) approxi-
mation by choosing Ok or a (β, 1) approximation by choos-
ing Op. In other words, at least one of αk(Op) and αp(Ok)
is less than or equal to β. Moreover, this result is tight: for
each x we give an instance such that all locations in F are
no better than a β approximation for at least one of the ob-
jectives.

The above theorem means that f( pk ) is a tight upper bound
for the approximation ratio we can obtain for two simulta-
neous objectives in a general metric space.

As a result, as shown in Figure 1, the function f(x), x =
p
k we obtained from Theorem 3.4 is continuous and mono-
tone increasing over p

k ≥ 1. In addition, note that when the
difference between k and p is sufficiently large such that the
value of pk approaches +∞, we have β ≈ f(∞) = 1 +

√
2,

which matches the second result in Corollary 3.1.1. More-
over, note that as the value of pk approaches 1, the value of β
also approaches f(1) = 1. This shows that the upper bound
of the smaller value of αk(Op) and αp(Ok) would approach
1 as the difference between k and p becomes smaller as we
expected. In other words, there must always exist an out-
come such that the approximation ratio for both ck and cp
is between 1 and 1 +

√
2, this bound is tight, and in fact

choosing either Ok or Op is enough to achieve it.

4 Simultaneously Approximating Multiple
Objectives

Now that we have found a tight upper bound for the ap-
proximation ratio for two objectives, we want to see what
would happen if we have more objectives. Assume we
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have a set of q ≥ 2 distinct integers in [1, n], |C| = n,
K = {k1, k2, · · · , kq}, arranged in increasing order such
that k1 < k2 < · · · < kq . Then, the set of objectives that we
would like to simultaneously optimize isK 5. First, immedi-
ately from Corollary 3.1.1, we can get the following result:
Theorem 4.1. Consider the optimal facility location On
that minimizes cn. By picking On, we obtain a 3 approxi-
mation for all other objectives ck for k ≤ n.

While the above theorem gives us a very simple way of
obtaining a 3-approximation for all objectives (and in fact
can also be obtained as a simple consequence of the results
in Goel, Hulett, and Krishnaswamy (2018)), we are inter-
ested in a more fine-grained analysis of when better ap-
proximations are possible. What if we are only interested
in approximating a few objectives simultaneously, instead
of all of them (in other words, what if |K| is small)? Or
what if the setK has some nice properties? Towards answer-
ing these questions, we first make the following observation
from Theorem 3.3:
Corollary 4.1.1. For 1 ≤ k < p ≤ n, we have αk(Op) ≤ p

k
and αp(Ok) ≤ p

k .

Corollary 4.1.1 indicates that when the difference be-
tween any two objectives ck and cp is sufficiently small, both
αp(Ok) and αk(Op) would also be small. One direct obser-
vation we can see from this is whenK = {k, k+1, · · · , 4k−
1, 4k} for some 1 ≤ k ≤ n, by picking O2k we can get a 2
approximation for every other objective inK. The reason for
this is because 2k is of a factor of 2 larger than the smallest
element in K and of a factor of 2 smaller than largest ele-
ment in K. Then by Corollary 4.1.1 we must have for any
k ∈ K \ {2k}, αk(O2k) ≤ 2. Note that this is a better result
than what we have shown in Theorem 4.1 but is only true for
special cases when none of the objectives in K are very dif-
ferent. Now, we want to see if we can obtain a better result
for multiple objectives in general. To do this, we will first
construct a graph representation for this problem.

We construct a complete directed graph G = (V,E)
as follows. First, for each k ∈ K, we will make a node
representing Ok, which is the optimal facility location for
objective ck. For simplicity, we will denote this node by
Ok. Then, for every pair i, j ∈ K, i 6= j, we will make
two edges (Oi, Oj) and (Oj , Oi) with weight αj(Oi) and
αi(Oj) respectively. As an example, Figure 3 is an illustra-
tion of G for three objectives ci, cj and ck. Note that for
every node Ok, k ∈ K, by choosing Ok, we would get a
(αk1(Ok), αk2(Ok), · · · , αkq (Ok)) approximation for min-
imizing the set of objectives K but these values are exactly
the weights of all the edges going out of node Ok. There-
fore, instead of looking at individual approximation ratios
and their relationship, we will utilize this graph representa-
tion.

Our goal is to find some value βq < 3 such that for |K| =
q, there must exist some k ∈ K such that choosingOk would
be at worst a βq approximation for every other objective in
K. Note that the objectives in K can be arbitrarily far apart,

5As defined in Section 2, the set of objectives considered is
{ck1 , ck2 , · · · , ckq}, but is denoted by the set of integers K.

Figure 3: An example graph representation of three objec-
tives, ci, cj and ck. The green circles are nodes, arrows are
directed edges with their respective weight labeled.

for example they could include the max c1 and the sum cn
objectives. In order to find such βq , we will first consider
some βj that satisfies some useful properties as follows.
Lemma 4.2. For every j ≥ 2, j ∈ N, there exists an unique
βj such that:

1. (βj − 2)j−1βj = 1

2. 1 +
√
2 ≤ βj < 3

Moreover, it holds that βj+1 ≥ βj for j ≥ 2.
See the full version (Han, Jerrett, and Anshelevich 2022)

of this paper for the full proof. Then, we can obtain the fol-
lowing results.
Theorem 4.3. Let |K| = q, and consider βq as defined in
Lemma 4.2. Then there must exist some k ∈ K such that
choosingOk would be at worst a βq approximation for every
other objective in K.

Proof sketch. We begin by showing that for the graph rep-
resentation G defined above, there does not exist a cycle of
size j such that all of the edges in the cycle have weight
strictly larger than βj as defined in Lemma 4.2. To do this,
as shown in the full version (Han, Jerrett, and Anshelevich
2022) of this paper, we have

ck(Ok) ≥ γkp ·
k

p
· cp(Op)

γkp =

{
αp(Ok) k < p

αp(Ok)− 2 k > p

We then proceed by assuming there exists a cycle of
size j in G such that all of its edges have weight
larger than or equal to some β. More formally, for
simplicity, denote the edges involved in this cycle
by (Ok1 , Ok2), (Ok2 , Ok3), · · · , (Okj−1

, Okj ), (Okj , Ok1),
where {k1, k2, · · · , kj} ⊆ K. So we have αk2(Ok1) ≥
β, αk3(Ok2) ≥ β, · · · , αkj (Okj−1

) ≥ β, αk1(Okj ) ≥ β.
Now, combine these inequalities with the relationship be-
tween ck(Ok) and cp(Op) discussed above, we can conclude
that (β − 2)j−1β ≤ 1, which implies that β ≤ βj . This
means that one of the α′s has to be smaller than or equal to
βj . Therefore, we can conclude that there does not exist a
cycle of size j such that all of the edges in the cycle have
weight strictly larger than βj .
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Then, recall that in G, for some node Ok, k ∈ K, ev-
ery edge that goes out of Ok into some Op has weight rep-
resenting the approximation ratio using Ok with respect to
objective cp, denoted by αp(Ok). Since the graph G is com-
plete, we will show the above theorem by showing that there
must exist some Ok, k ∈ K, |K| = q such that all of the
edges leaving Ok have weight less than or equal to βq . We
will show this by contradiction. Suppose otherwise, for ev-
ery k ∈ K, we must have at least one of the edges going out
of Ok having weight larger than βq . Denote this set of edges
byE′, note that |E′| = q. We will then consider these edges.
Here note that since each node would not have an edge going
into itself and every edge in E′ has a distinct starting node,
a subset of E′ must be able to form a cycle of size j ≤ q,
denote the cycle by Cj . As discussed before we know thatG
cannot have a cycle of size j such that all of it edge weights
are larger than βj . However, by Lemma 4.2, since we have
j ≤ q, we must also have βq ≥ βj so all the edges in Cj
have weight larger than βj , which is a contradiction. There-
fore, we can conclude that there must exist someOk, k ∈ K,
such that all of the edges leavingOk have weight less than or
equal to βq . This means that choosing Ok would be at worst
a βq approximation for every other objective in K.

Theorem 4.3 indicates that βq defined in Lemma 4.2 is the
upper bound of the approximation ratio for simultaneously
approximating all the objectives in K, which is exactly what
we are looking for.

Note that unlike Theorem 4.1, Theorem 4.3 shows that
an outcome can always be chosen with approximation ratio
better than 3 for every other objective (see Figure 2). This is
true since we have shown that βq < 3 in Lemma 4.2. In fact,
note that β2 = 1 +

√
2, which matches with the tight bound

we obtained in Theorem 3.4 for approximating two simul-
taneous objectives in the case where the difference between
the two objectives is allowed to be arbitrary. As the number
of objectives we care about grows, so does the approxima-
tion factor, and it can become strictly larger than 1 +

√
2, as

we show in the following proposition:

Proposition 4.1. There exists an instance with 3 objectives
such that all possible facility locations in F result in at least
β3 approximation for at least one of the three objectives.

5 Choosing a Facility Location from Client
Locations

So far in this paper we considered the general case when
only some set of locations F allow the building of a facil-
ity. It is also interesting to consider the easier case, as was
done in much of existing work (Chakrabarty and Swamy
2019; Alamdari and Shmoys 2017; Chakrabarty and Swamy
2018), when facilities are allowed to be built at any client
location, i.e., when C = F . A lot of results become simpler
with this assumption; for example it is easy to see that choos-
ing any client location is immediately a 2-approximation for
the c1 (max distance) objective. Thus, choosing On imme-
diately gives a (2, 1) approximation for the c1 (max) and cn
(sum) objectives, while for general F we have shown that
nothing better than 1 +

√
2 simultaneous approximation is

possible. In fact, as an easy extension to the results shown
in Gkatzelis, Halpern, and Shah (2020) (using the fact that
when C = F , decisiveness as defined in that paper equals
zero, see Proposition 6 in the arXiv version of their paper),
we can always get a 2 simultaneous approximation for ar-
bitrarily many l-centrum objectives. This is instead of the
3-approximation bound which we know holds for the gen-
eral case when C 6= F . In this section we further extend our
analysis from Section 3 to the case when C = F .

For simultaneously approximating two objectives, com-
bined with the result implied in Gkatzelis, Halpern, and
Shah (2020), when C = F , the simultaneous approxima-
tion bound is the same as in Figure 1 for p

k ≤ 4, but for
p
k > 4 it simply equals 2. It is not difficult to show that this
bound is tight, using similar examples as our bounds from
Section 3 for general facility locations F . Note that unlike
all the previous results in this paper, the outcome that is cho-
sen may not one of the optimum outcomes for the objectives
in K; to obtain the best simultaneous approximation it is of-
ten necessary to choose an outcome which is sub-optimal for
all individual objectives.

6 Conclusion
We have shown that, when selecting a facility according to
multiple competing interests, it is always possible to form
an outcome approximating several competing objectives, at
least as long as these objectives are one of the l-centrum ob-
jectives. For instance, both minimizing the maximum cost
and minimizing the total cost can be simultaneously approx-
imated within a ratio of 1+

√
2. We can in fact extend the ob-

tained upper bound of the approximation ratio to a broader
range of problems. As discussed in the Introduction, if we
can get an α simultaneous approximation ratio for a set of
l-centrum objectivesK, then we can get an α-approximation
for the corresponding ordered 1-median problems such that
their objectives can be represented as convex combinations
of the objectives inK. This implies that there always exists a
3 approximation for all the ordered 1-median problems, and
in fact all convex combinations of any q l-centrum objec-
tives can be simultaneously approximated within our ratio
βq , with for example β2 = 1 +

√
2.

However, there still exist questions left unanswered. For
example, we do not know if the upper bound of the simulta-
neous approximation ratio for more than 3 objectives is tight,
or if a better approximation is possible. More generally, it
would be interesting to see if other types of objectives can
be simultaneously approximated for these facility location
and voting settings.
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