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Abstract

Platforms for online civic participation rely heavily on
methods for condensing thousands of comments into a
relevant handful, based on whether participants agree or
disagree with them. These methods should guarantee fair
representation of the participants, as their outcomes may
affect the health of the conversation and inform impactful
downstream decisions. To that end, we draw on the
literature on approval-based committee elections. Our setting
is novel in that the approval votes are incomplete since
participants will typically not vote on all comments. We
prove that this complication renders non-adaptive algorithms
impractical in terms of the amount of information they must
gather. Therefore, we develop an adaptive algorithm that
uses information more efficiently by presenting incoming
participants with statements that appear promising based on
votes by previous participants. We prove that this method
satisfies commonly used notions of fair representation, even
when participants only vote on a small fraction of comments.
Finally, an empirical evaluation using real data shows that
the proposed algorithm provides representative outcomes in
practice.

1 Introduction
A recent surge of interest in empowering citizens through
online civic participation has spurred the development of
a number of platforms (Salganik and Levy 2015; Ito et al.
2020; Shibata et al. 2019; Fishkin et al. 2019; Aragón
et al. 2017; Iandoli, Klein, and Zollo 2009). A particularly
successful example is Polis (Small et al. 2021),1 an open-
source “system for gathering, analyzing, and understanding
what large groups of people think in their own words.” It has
been widely used by local and national government agencies
around the world. Most notably, it is the basis of vTaiwan, a
system commissioned by the government of Taiwan, whose
participatory process — involving thousands of ordinary
citizens — has led to new regulation of ride-sharing services
and financial technology. A similar (albeit commercial)
system called Remesh2 allows users to “save resources by
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democratizing insights in live, flexible conversations with up
to 1,000 people at the same time.”3

The key idea underlying both systems is simple
and broadly applicable: Participants can submit free-text
comments about the discussion topic at hand and choose
to agree or disagree with others’ comments presented to
them by the platform. An essential part of the process is
the aggregation of these opinions toward an “understanding
of what large groups of people think.” Polis, for instance,
displays a list of comments that received the most support
among participants to whom they were shown. But this
aggregation method may fail to represent minority groups,
even those that are very large: if 51% of participants agree
with one set of comments, while 49% of participants agree
with another set of comments, only comments from the
first set will appear on this list. Polis has recognized this
problem and sought to mitigate it by employing a second,
more elaborate procedure (Small et al. 2021).4 While this
procedure has produced interesting results in practice, it
does not guarantee summarizations that are representative
of the discussion in a rigorous sense.

In this paper, we reexamine opinion aggregation in
systems such as Polis and Remesh through the lens of
computational social choice (Brandt et al. 2016). We observe
that selecting a subset of comments based on agreements
and disagreements is equivalent to electing a committee
based on approval votes. From this viewpoint, the primary
aggregation method used by Polis corresponds to classical
approval voting (AV). There is substantial work — starting
with the paper of Aziz et al. (2017) — on approval-based
committee elections that seeks to avoid the shortcomings
of AV by guaranteeing that the selected committee satisfies
fairness notions. To define one such notion (which is not
satisfied by AV), note that if the size of the committee is k
and the number of voters is n, a subset of n/k voters is large
enough to demand a seat on the committee if they agree on at
least one candidate. This intuition is captured by a property
called justified representation (JR), which guarantees that
every such subset of voters has an approved candidate on

3See also consider.it, citizens.is, make.org, kialo.com.
4sThe idea is to find clusters of participants with similar

opinions and then ensure that each cluster is represented by
comments that distinguish it from the others.
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the committee.
There is a major gap, however, between the literature

on approval-based committee elections and the reality of
systems like Polis and Remesh: these systems only have
access to partial votes. For example, in the discussion
facilitated by Polis around ridesharing regulation in Taiwan,
197 comments were submitted, but each participant only
cast a vote on 10.57 comments on average — roughly 5%
of all comments. Our main conceptual insight is that we
can overcome the partial-information gap via statistical
estimation and adaptive querying (i.e., by deciding which
comments to show to incoming users based on previous
votes).5

Our approach and results. In our model, each
voter (user) can be asked to express their opinion
(approval/disapproval) about at most t candidates
(comments). More formally, a query asks a randomly-
chosen voter for their approval votes on a subset of
candidates S of size |S| ≤ t. Note that this query model is
consistent with how Polis works, where participants express
their agreement or disagreement with the comments shown
to them by the system. We can view the response to such
a query, i.e., the approval votes of a single voter, as noisy
information about the profile of the entire population of
voters (restricted to these t candidates). Therefore, we refer
to these real-world queries as noisy queries.

Before we discuss this setting, we consider a simplified
setting in Section 3, where queries yield the profile of the
entire population of voters on the t candidates in the query.
While such exact queries are not realistic, they provide an
abstraction that is easier to study and allows us to derive
lower bounds on the number of queries required to achieve
JR (which apply also to the noisy-query setting, since it is
strictly harder). We start by studying the required number
of queries of non-adaptive algorithms, which decide on
their queries before any votes are cast. While non-adaptive
algorithms may be preferable in some cases (e.g., because
no voter can influence what alternatives are shown to other
voters or because computation can be performed offline), we
show that they are impractical because they must ask at least
Ω(m11) queries (and hence voters) to achieve JR, where m
is the number of candidates.

Therefore, we focus on adaptive algorithms in the rest of
the paper. In Section 3.2 we adapt a local-search algorithm
of Aziz et al. (2018) to the case of exact queries and show

5There is a body of work in computational social choice related
to incomplete votes. For instance, some papers aim to find winning
committees, given incomplete approval votes, or to fill in the
missing votes, given knowledge about the domain of approval
profiles (Imber et al. 2022; Terzopoulou, Karpov, and Obraztsova
2021; Zhou, Yang, and Guo 2019). However, these papers are
primarily concerned with the computational complexity of these
problems, while we focus on information-theoretic questions.
There is also related work that studies the problem of determining
the winner given only partial rankings (Xia and Conitzer 2011;
Filmus and Oren 2014), but this setting is mathematically different
from ours. Furthermore, prior work does not consider the adaptive
setting, where we query voters sequentially and decide on the next
question based on previous votes.

that it can achieve JR (and even stronger properties) with
O(mk2 log k) queries.

In Section 4, we move on to the realistic, noisy-query
model, where a query corresponds to a single voter. Since
we need to estimate the answer to each exact query
using multiple noisy queries to control uncertainty, the
query complexity of the adaptive algorithm for the same
guarantees increases to O

(
mk6 log k logm

)
. By applying

martingale theory, we develop an extension of this algorithm
that allows the reuse of votes in a statistically sound way.

In Section 5 we show empirically (on real datasets
from Polis and Reddit) that this extension allows us to
find committees satisfying (approximate) JR (and stronger
properties) despite access to little information (i.e., few
voters, each voting on only a small fraction of the
comments).

2 Preliminaries
We begin by introducing the standard approval-based
committee selection setting (Aziz et al. 2017). For s ∈ N,
we use the notation [s] = {1, . . . , s}. We have a set N = [n]
of n voters and a set C of m candidates. Each voter i ∈ N
approves a set of candidates Ai ⊆ C. We refer to the vector
A = (A1, . . . , An) as an approval profile. The goal is to
choose a committee W ⊆ C of size k ≤ m. The value k
is called the target committee size. We refer to an algorithm
that takes as input the profile and candidates and outputs a
committee of size k as a k-committee-selection algorithm.

Notions of representation. We say that a group of voters
V ⊆ N is ℓ-large if |V | ≥ ℓ · n

k ; V is ℓ-cohesive if
|
⋂

i∈V Ai| ≥ ℓ. Aziz et al. (2017) introduced the following
two fairness notions:

Definition 2.1 (Justified Representation (JR)). A committee
W provides JR if for every 1-large, 1-cohesive group of
voters V , there exists a voter i ∈ V who approves a member
of W , i.e., |Ai ∩W | ≥ 1.

Definition 2.2 (Extended Justified Representation (EJR)). A
committee W provides EJR if for every ℓ ∈ [k] and every ℓ-
large, ℓ-cohesive group of voters V , there exists a voter i ∈
V who approves at least ℓ members of W , i.e., |Ai∩W | ≥ ℓ.

We also study the following approximate version of EJR:

Definition 2.3 (α-Extended Justified Representation
(α-EJR)). A committee W provides α-EJR if for every
ℓ ∈ [k] and every ℓ

α -large, ℓ-cohesive group of voters V ,
there exists a voter i ∈ V who approves at least ℓ members
of W , i.e., |Ai ∩W | ≥ ℓ.

Fernández et al. (2017) proposed another notion of
representation called the average satisfaction of a group
of voters V for a committee W , defined as avsW (V ) =
1

|V |
∑

i∈V |Ai ∩W |. Related to this quantity, we define the
following property:

Definition 2.4 (α-Optimal Average Satisfaction (α-OAS)).
A committee W provides α-OAS if for every λ ∈ [0, k]
and every λ+1

α -large, λ-cohesive group of voters V , we have
avsW (V ) ≥ λ.
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This property measures how close a committee is to the
maximum average satisfaction that can be guaranteed to
hold for all elections. To see this, note that the condition
above is equivalent to the following condition: for every
ℓ ∈ [ 1α ,

k+1
α ] and every ℓ-large, (αℓ − 1)-cohesive group

of voters V , we have avsW (V ) ≥ αℓ − 1. This implies
a proportionality guarantee (Skowron 2021) of g(ℓ, k) =
αℓ − 1. Since there is no selection rule that satisfies a
proportionality guarantee with g(ℓ, k) > ℓ − 1 for all
elections (Aziz et al. 2018; Skowron 2021), α = 1 is the
best we can hope for, so we refer to 1-OAS simply as OAS.

Proportional approval voting. Proportional Approval
Voting (PAV) is a widely-studied committee selection
algorithm: given an approval profile A and a committee size
k, it returns a committee W of size k maximizing the PAV
score, defined as

PAV-SC(W ) :=
1

n

∑
i∈N

|Ai∩W |∑
j=1

1

j
.

PAV satisfies EJR and OAS (Fernández et al. 2017; Aziz
et al. 2018), but is NP-hard to compute (Aziz et al. 2015).
Consequently, Aziz et al. (2018) propose a local search
approximation of PAV (LS-PAV), which continues to satisfy
EJR and OAS, but, unlike PAV, runs in polynomial time. As
we shall see, LS-PAV is a useful basis for algorithms in our
query model.

3 Exact Queries
In the exact-query setting, the response R to a query Q
consists of a proportion pS for every subset S ⊆ Q,
where pS is the proportion of voters who only approve the
candidates in S among the queried candidates Q, i.e.,

pS :=
1

n

∑
i∈N

I[Ai ∩Q = S],

where I is the indicator function. We refer to an algorithm
that makes queries of size t, receives this type of response,
and outputs a committee of size k as a (k, t)-committee
selection algorithm with exact queries. We say an algorithm
is adaptive if the queries it chooses depend on responses
from previous queries. Note that we allow all of our
algorithms to be randomized. In the following, we ask
how many queries are needed to guarantee the notions of
representation introduced in Section 2.

3.1 Nonadaptive Algorithms
In this section, we think of m as large (many comments
will be submitted to the system), while we think of k
and t as small constants (since we wish to select only a
few comments and voters have limited time). Since we
are primarily interested in lower bounds on the query
complexity of non-adaptive algorithms, we consider only
JR, the weakest fairness criterion.

An initial observation is that, if t ≥ k, JR can always be
guaranteed with O(mk) queries, as simply querying every
set of k candidates provides all the information necessary

to run PAV. For k = 1, this bound is tight, as voters could
all approve only a single candidate, which will take a linear
number of queries to find. Our first result is a tight quadratic
lower bound for k = 2.
Theorem 3.1. For any constants k and t such that k ≥ 2,
and any ε > 0, any non-adaptive (k, t)-committee selection
algorithm that makes fewer than Ω(m2) queries satisfies JR
with probability at most ε.

This result provides a separation between the non-
adaptive and the adaptive settings: In Section 3.2, we
discuss an adaptive (k, t)-committee selection algorithm
guaranteeing JR with only O(m) queries for any k and t
such that k < t.

Theorem 3.1 follows from a more general result that we
present formally in Appendix B. Here, we illustrate the
argument by considering the special case where t = k = 2
and ε = 5

6 : Consider an adversary that picks a random set
of 3 candidates, call them 1, 2, and 3, and answers queries
according to the approval matrix visualized in Figure 1(a):
half of the voters approve only candidate 1, and the other
half of the voters approve only candidates 2 and 3. To
satisfy JR, the algorithm needs to include candidate 1 in
the committee. However, if the algorithm never queries
{1, 2}, {1, 3}, or {2, 3}, it receives no information that can
distinguish candidates 1, 2, and 3 from each other, so it
can do no better than selecting a random pair from these
three candidates, which will succeed with probability 2

3 .
This problematic case will occur frequently if the number
of queries is not very large, say 1

18 ·
(
m
2

)
: Since there are(

m
2

)
pairs of candidates, the probability that the algorithm

queries any randomly selected pair of candidates is at most
1
18 . By the union bound, the probability that the algorithm
queries any of {1, 2}, {1, 3}, or {2, 3} is at most 3 · 1

18 = 1
6 .

To summarize, for the algorithm to succeed, it either needs
to get lucky during the querying phase, which happens with
probability at most 1

6 , or during the selection phase, which
happens with probability at most 2

3 . By the union bound, the
algorithm succeeds with probability at most 1

6 + 2
3 = 5

6 .
A natural follow-up question is whether the O(mk) upper

bound is tight for larger k. Interestingly, this is not the case
for k ≥ 3, as we prove in Appendix A:
Theorem 3.2. For any t ≥ 2

3k, there exists a (k, t)-
committee selection algorithm guaranteeing JR with O(mt)
exact queries.

However, the exponent does have a dependence on k.
In particular, we find that guaranteeing JR requires Ω(m3)
queries starting at k = 6. The adversary employs an
analogous strategy, now picking 7 random candidates and
imposing the approval matrix depicted in Figure 1(b).
Satisfying JR requires that the algorithm include candidate
1, which is indistinguishable from the other six candidates
unless the algorithm makes Ω(m3) queries, since every
candidate is approved by 6

18 of the voters and every pair of
candidates is approved by 2

18 of the voters.
In Appendix B, we describe a computational search we

conducted to find similar instances for larger values of k.
The best lower bound obtained is as follows.
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Figure 1: Adversarial approval matrices. Each region
represents a disjoint, equally-sized set of voters who approve
only the candidates within the region. In (a), queries of size
t ≥ 2 are needed to distinguish the candidates; in (b), we
need t ≥ 3.

Theorem 3.3. For any ε > 0, there exists a target committee
size k with k = Θ(log 1/ε) such that for all t, any non-
adaptive (k, t)-committee selection algorithm with exact
queries that makes fewer than Ω(m11) queries satisfies JR
with probability at most ε.

This theorem closes the book on the (im)practicality of
non-adaptive committee selection algorithms. We therefore
turn our attention to adaptive algorithms.

3.2 An Efficient Adaptive Algorithm
In this section, we propose an adaptive algorithm based on
LS-PAV (Aziz et al. 2018), and we show that it achieves EJR
and OAS with a practically-feasible number of queries.

For convenience, we introduce the following notation: For
a committee W and candidates c ∈W and c′ /∈W , let

∆(W, c′, c) := PAV-SC(W ∪ {c′} \ {c})− PAV-SC(W )

denote the difference in PAV score obtained by replacing c
with c′ in W . Additionally, let

∆(W, c) := PAV-SC(W ∪ {c})− PAV-SC(W )

denote the marginal gain in PAV score by adding c to W .
LS-PAV starts with an arbitrary committee W and

repeatedly replaces a committee member c ∈ W with a
candidate c′ /∈ W , provided the improvement to the PAV
score satisfies ∆(W, c′, c) ≥ 1

k2 . Aziz et al. (2018) show
that after at mostO(k2 log k) swaps, no such swap pairs c, c′
remain, at which point W satisfies OAS and EJR.

We first observe that LS-PAV can be implemented using
exact queries: For any set of candidates S, PAV-SC(S) can
be computed using any query Q ⊇ S, as it is sufficient to
know the proportion of voters that approve each subset of
S. Hence, for any W , c ∈ W , and c′ /∈ W , ∆(W, c′, c)
can be computed using a query Q that contains both W and
c′. Using

⌈
m−k
t−k

⌉
queries of size t, we can cover all m − k

candidates that are not in W , which leads to an overall query
complexity of O

(
mk2 log k

)
.

We next present a version of LS-PAV, which we call α-
PAV (Algorithm 1), that has the same query complexity
as LS-PAV for finding a committee that satisfies EJR and

Algorithm 1: (k, t)-α-PAV

1: Choose W ∈
(
C
k

)
, c ∈W , and c′ /∈W arbitrarily

2: γ ←∞
3: while γ ≥ 1

αk do
4: W ←W ∪ {c′} \ {c}
5: Choose Q = {Qi}i, with |Qi| = t, s.t. W ⊆

⋂
Q

and C ⊆
⋃
Q

6: c′ ← argmaxx/∈W ∆(W,x) ▷ (using Q)
7: c← argmaxx∈W ∆(W, c′, x) ▷ (using Q)
8: γ ← ∆(W, c′)

9: return W

OAS, but lower query complexity for approximate (α < 1)
α-EJR and α-OAS. Besides introducing the approximation
parameter α, we make two other modifications to LS-PAV:
First, Algorithm 1 terminates when there is no candidate
c′ such that ∆(W, c′) ≥ 1

k (for α = 1), while LS-PAV
terminates when there is no pair c, c′ such that ∆(W, c′, c) ≥
1
k2 . As we shall see in Lemma 3.6, the termination condition
of Algorithm 1 is weaker than that of LS-PAV, implying that
it may terminate earlier. Second, instead of considering all
possible swaps c, c′, we only consider adding the candidate
c′ with the largest ∆(W, c′). This modification makes
the algorithm slightly simpler and more computationally
efficient (by a factor of k).

Theorem 3.4. For any m ≥ t > k, Algorithm 1 yields
a committee satisfying α-OAS and α-EJR while making at
most ⌈

m− k

t− k

⌉
αk2

(1− α)k + 1
Hk

queries, where Hk is the kth harmonic number. For α = 1,
this leads to a query complexity of O

(
mk2 log k

)
while

for any fixed α < 1, this leads to a query complexity of
O (mk log k).

The proof of Theorem 3.4 essentially follows from the
following two lemmas, the first of which uses the notation

∆∗(W ) := max
c∈C

∆(W, c).

Lemma 3.5. If a committee W satisfies ∆∗(W ) < 1
αk , then

W satisfies α-EJR and α-OAS.

Lemma 3.6. For any committee W and c /∈W , we have
that maxx∈W ∆(W, c, x) ≥ (k+1)∆(W,c)−1

k . In particular, if
∆(W, c) ≥ 1

αk , then maxx∈W ∆(W, c, x) ≥ (1−α)k+1
αk2 .

Lemma 3.5 guarantees that when Algorithm 1 terminates
the desired fairness properties are satisfied. Lemma 3.6
establishes that the PAV score increases over the algorithm’s
run. This bounds the number of swaps it performs since
PAV-SC(W ) is at most Hk.

Lemma 3.5 is a generalization of the lower bound from
Lemma 1 of Skowron (2021). This generalization is useful
because it states that to establish EJR and OAS of any given
committee W (no matter how it is derived), it is sufficient
to prove that ∆∗(W ) is small; hence it can be used as
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a certificate of satisfaction. In Appendix E, we show that
standard PAV and LS-PAV satisfy ∆∗(W ) < n

k , which is
noteworthy in that it provides a simple proof of the known
result that they satisfy EJR and OAS.

We observe that, for exact queries, an α-approximation
with α < 1 improves the query complexity by a factor of k.
In the next section, we will see that such an approximation
yields an even larger improvement in query complexity for
noisy queries, as it also reduces the accuracy with which we
need to estimate ∆(W, c′, c).

4 Noisy Queries
We now turn to a query model that includes the noise we
abstracted away in Section 3. In order to represent voters
arriving to the platform one-by-one, we assume that each
time the algorithm performs a query Q ⊆ C a voter i ∈ N
is selected independently and uniformly at random6and then
the algorithm observes their votes on the queried candidates
Q ∩ Ai. We refer to an algorithm that performs queries of
size t, receives as a response the votes of a single voter, and
outputs a committee of size k as a (k, t)-committee selection
algorithm with noisy queries.

To see the connection between this query model and the
previous one, note that an algorithm with noisy queries
can approximate an exact query Q by estimating the
values of pS by taking the empirical proportion of repeated
samples. By standard sample complexity bounds, using
Θ
(
log(2t/δ)/ε2

)
queries, a noisy-query algorithm could

guarantee±ε estimates of pS for all S ⊆ Q with probability
1 − δ. Hence if an exact-query algorithm requires no more
than poly(m) queries with additive ε error, then it can be
implemented using a factor of Θ(logm) more noisy queries
and yield a correct result with probability 1−δ. What’s more,
this log factor is in some cases necessary when moving from
the exact-query to the noisy-query setting. In Appendix C,
we demonstrate instances for which a non-adaptive exact-
query algorithm needs only Θ(m) queries, while in order to
be correct with any fixed probability δ, a non-adaptive noisy-
query algorithm requires Ω(m logm) queries.

Conversely, notice that one can use exact queries to
simulate noisy queries. Indeed, pS is exactly the probability
that an incoming voter will vote yes on candidates S and
no on Q \ S in response to a query Q. An algorithm with
access to exact query values can simply sample a voter
response and feed it to a noisy-query algorithm. Therefore,
the lower bounds on the query complexity of exact-query,
non-adaptive algorithms, in particular Theorem 3.3, apply
to noisy-query, non-adaptive algorithms as well. As the
number of candidates becomes large, adaptivity is therefore

6Note that a voter-profile Ai may be queried more than
once during the run of the algorithm because we sample with
replacement. This model simplifies the statistical analysis and
has a natural interpretation: Rather than thinking of a finite
population of voters, we draw samples from an underlying
population distribution where each profile A1, .., An has the
same frequency (probability). Furthermore, our model approaches
sampling without replacement if the size of the underlying
population n is large compared to the number of queried voters,
hence both models are qualitatively interchangeable.

Algorithm 2: (k, t)-noisy-α-PAV

1: ℓ←
⌈
288

(
αk2

(1−α)k+1

)2

log
(

8mk4

δ

)⌉
2: Choose W ∈

(
C
k

)
, c ∈W , and c′ /∈W arbitrarily

3: γ ←∞
4: while γ ≥ 1/(αk)− ((1− α)k + 1)/(12αk2) do
5: W ←W ∪ {c′} \ {c}
6: Choose Q = {Qi}i, with |Qi| = t, such that

W ⊆
⋂
Q and C ⊆

⋃
Q

7: Ask each query Q ∈ Q to ℓ new voters
8: ∆̂(W,x)← estimate of ∆(W,x) using ℓ voters

from query Q containing W ∪ {x} ▷ ∀x /∈W

9: ∆̂(W,x, y)← estimate of ∆(W,x, y) using ℓ voters
from Q containing W ∪ {x} ▷ ∀x /∈W, ∀y ∈W

10: c′ ← argmaxx/∈W ∆̂(W,x)

11: c← argmaxx∈W ∆̂(W, c′, x)

12: γ ← ∆̂(W, c′)

13: return W

necessary to attain theoretical guarantees — mirroring the
approach of online platforms in practice.

A natural starting point is the exact-query adaptive
algorithm, namely Algorithm 1. Indeed, it can be adapted to
the noisy setting by replacing exact queries with a sufficient
number of noisy queries, ℓ, to obtain high-probability
bounds on ∆, yielding Algorithm 2.

The key is to choose ℓ large enough that if the termination
condition is not met, i.e., we have ∆̂(W, c′) < 1

αk −
(1−α)k+1

12αk2 , the resulting swap is guaranteed to yield a
positive improvement in the PAV-score, such that the number
of steps of the algorithm is bounded. With the choice of ℓ in
Algorithm 2, we obtain the following theorem, whose proof
can be found in Appendix F.
Theorem 4.1. For any m ≥ t > k, with probability at least
1− δ, Algorithm 2 returns a committee that satisfies α-EJR
and α-OAS after querying no more than

578Hk

⌈
m− k

t− k

⌉(
αk2

(1− α)k + 1

)3

log

(
4mk4

δ

)
voters. For any fixed δ > 0, if α = 1, this leads to a query
complexity of O

(
mk6 log k logm

)
, and if α < 1, this leads

to a query complextiy of O
(
mk3 log k logm

)
.

While Algorithm 2 achieves good worst-case query
complexity, it may be suboptimal on certain instances
because of two reasons: (i) after each swap, Algorithm 2
discards all previous information so each candidate is
reassessed from scratch, and (ii) it presents each candidate
c /∈ W to the same number of voters, even though it may
quickly become apparent that some candidates are more
promising than others.

To address issue (i), we can use all past votes to compute
bounds on ∆. A difficulty with this approach is that past
voters may not have voted on all candidates in W (which
is necessary to directly estimate ∆(W, c)), since they may
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have been queried on a different committee W ′. But we can
nonetheless use these past votes to obtain upper and lower
bounds on estimated values. To address issue (ii), we can
present promising candidates to voters more often. Further,
it is possible to perform swaps as soon as we are confident
they yield an increase of the PAV-score of at least some
value ε, rather than first querying a predetermined number
of voters as in Algorithm 2.

These ideas are incorporated into Algorithm 4, called ucb-
α-PAV; see Appendix G for a formal description of the
algorithm and an analysis of its query complexity.

5 Experiments
Since the analysis in the theoretical sections considers
worst-case approval profiles, it is possible that, in practice,
we may be able to find good committees with fewer queries
than required by Theorem 4.1. We investigate this question
empirically on real data from online discussions with only
a few hundred voters, each voting on only a fraction of all
comments.

Datasets. Polis provides open-use data from real
deliberations hosted on their platform.7 These include,
for instance, a discussion organized by the government of
Taiwan, which led to the successful regulation of Uber.
Since participants typically only vote on a fraction of
comments, most votes are missing. To be able to simulate
the proposed adaptive algorithms, we first infer these
missing votes using a matrix factorization library, LensKit.8
Importantly, we infer votes only for the purpose of the
experiments; if our algorithms were executed during
the discussion, they would adaptively query users about
the relevant comments without relying on any inference
method.

In most datasets, we observe several comments that are
nearly universally approved. Since these comments make
achieving EJR and OAS trivial, we remove comments
approved by more than 60% of participants. This step
may also be appropriate in practice to gain insights into
participants’ opinions beyond uncontroversial issues.

The number of queried voters L ranges from 87 to 1000
across the 13 datasets (see Appendix H for details). For
all datasets, we assume that each voter votes on t = 20
comments. Since the total number of comments m ranges
from 31 to 1719 across datasets, the percentage of comments
each voter votes on, t/m, ranges from 1% to 65%. For
each dataset, we run the algorithms with target committee
sizes k = 5, 7, 10. Hence, there are a total of 13 · 3 = 39
experiments (times 10 random seeds).

The second dataset we consider consists of Reddit
discussions.9 To obtain an interesting dataset, we
combined voting data from two subreddits, r/politics
and r/Conservative, which are arguably situated at opposite
ends of the American political spectrum. More details about
this dataset can also be found in Appendix H.

7https://github.com/compdemocracy/openData
8https://lenskit.org
9https://www.kaggle.com/datasets/

josephleake/huge-collection-of-reddit-votes

Algorithms. We evaluate noisy-α-PAV (Algorithm 2) and
ucb-α-PAV (Algorithm 4). Both query L voters in random
order, each of whom votes on t = 20 comments. To
enable these algorithms to swap candidates after querying
only a small number of voters, we make the following
modifications: For both Algorithm 2 and Algorithm 4 we
treat ℓ, the number of times we ask voters about each
candidate, as a parameter. In addition, for Algorithm 4, we
replace the numerator in the confidence intervals errs with
a parameter θ. Both ℓ and θ were chosen based on validation
on a separate dataset, see Appendix H for details. We run
both algorithms on all the L voters, rather than terminating
as soon as we can guarantee ∆∗(W ) < 1

αk (and hence EJR
and OAS).

To obtain an upper bound on the attainable performance,
we execute α-PAV (Algorithm 1) with access to exact
queries. To obtain the best possible α, we let Algorithm 1
run as long as the swap increases the PAV score, i.e.,
∆(W, c′, c) > 0, instead of terminating as soon as
∆(W, c′) < 1/k (which would be sufficient to guarantee
EJR and OAS).

To verify that the proposed algorithms do indeed take the
complementarity of different candidates into account, we
also compare against standard approval voting (AV) with
access to all votes, which simply selects the k candidates
with the most approval votes.

Performance Metric. As a performance metric, we use
α̂ := 1

k∆∗(W ) , where W is the committee selected by the
respective algorithm. According to Lemma 3.5, α > α̂, so
this implies α̂-EJR and α̂-OAS. As discussed in Section 2,
α = 1 is the best that can be guaranteed across all possible
approval profiles. Note that α may be larger than α̂, hence
obtaining α̂ = 1 is a sufficient, but not a necessary condition
for OAS and EJR. Nevertheless, we will use α̂ as a metric
for two reasons: first, verifying whether α ≥ 1 (i.e., whether
a committee satisfies EJR and OAS) is computationally hard
(Aziz et al. 2017), which makes it impractical for evaluation;
and the stronger condition α̂ ≥ 1 provides the additional
benefit that EJR and OAS can easily be verified through
Lemma 3.5. Second, one could argue that α̂ is a meaningful
quantity in its own right since it (or rather its inverse 1/α̂)
measures how much voter satisfaction could be improved by
adding another candidate (giving lower weight to voters who
already have many approved candidates).

Polis Results. In Figure 2, we show the α̂ achieved on all
the Polis datasets for each of the four algorithms. Recall that
higher α̂ is better and that α̂ ≥ 1 implies OAS and EJR.
As expected, α-PAV performs best since it has access to
exact queries. Note that it often achieves an α substantially
larger than 1, which means that the corresponding instance
allows for better representation than can be guaranteed
in the worst case. AV performs surprisingly well in most
experiments, but in 38% of the cases, it yields α̂ smaller
than 1 (and sometimes much smaller). We conclude that for
some datasets, it is important to take the complementarity
of candidates into account rather than selecting them
individually. The challenge for the proposed algorithms is to
do so while being sample-efficient. We see that noisy-α-PAV
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yields a α̂ ≤ 1.
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Figure 3: Results on Reddit dataset (with L = 608,m =
2135, k = 10): the fraction of voters (y-axis) that approve
of at least 1, 2, .., 10 candidates (x-axis) among the selected
committee of size k = 10.

often fails to achieve an α̂ ≥ 1. We know from Theorem 4.1
that given enough queries, noisy-α-PAV achieves α̂ ≥ 1,
so this failure is due to the low number of queried voters.
By contrast, ucb-α-PAV yields α̂ ≥ 1 in 83% of the cases,
and α̂ ≥ 0.75 in all cases, which indicates that the proposed
extensions (i.e., querying promising candidates more often,
swapping as soon as possible, and reusing voters) indeed
lead to more efficient use of data.

Reddit Results. To illustrate why approval voting can
perform poorly despite having access to the full votes,
we execute the algorithms on the Reddit dataset described
above. In this experiment, AV achieves only α̂ = 0.68.
To understand why this happens, we show in Figure 3 the
fraction of voters who have at least 1, . . . , 10 approved
comments in the committee. We see that AV yields a
committee where a high fraction of voters approve many
candidates, e.g., about 60% of voters approve 7 or more
candidates, whereas for α-PAV, this is the case for only

about 40%. This comes at the cost of a high fraction of
voters who are poorly represented by AV, e.g., about 25% of
voters get at most one approved candidate, whereas for α-
PAV, this percentage is less than 10%. This is to be expected
as approval voting does not take the complementarity
of candidates into account and can therefore lead to
less equitable results. Finally, we observe that ucb-α-
PAV achieves an α̂ close to 1, and its approval fractions
look similar to α-PAV, i.e., more equitable than AV. It is
interesting that ucb-α-PAV performs well on this example,
since it only has access to t = 20 votes for each of the
L = 608 queried candidates, while it has to select from a
large number of comments, m = 2135.

6 Discussion
This work bridges the gap between online civic-participation
systems, such as Polis, and committee-election methods by
enabling them to handle incomplete votes. To deploy the
proposed algorithms on such platforms, two practical issues
must be considered.

First, our adaptive approach requires control over what the
Polis creators call comment routing (Small et al. 2021): the
algorithm that decides which comments are shown to which
participants. If on a given platform a comment-routing
algorithm is already in place, shared control is possible: each
algorithm could determine part of the slate of comments
shown to a participant, or the participants themselves can
be divided between the algorithms.

Second, in our analysis, we assumed that all comments
have been submitted — or all candidates are known — at the
time we run our algorithms. Nevertheless, our algorithms
can be extended straightforwardly to a growing set of
comments, but we would inevitably lose the representation
guarantees for comments that were submitted late if not
enough participants could vote on them. In practice,
this could be resolved by setting a comment submission
deadline, which has been done previously by Polis.

An alternative to our approach would be to complete
partial approval votes using collaborative filtering (Resnick
and Varian 1997). The completed approval votes can then be
aggregated through any approval-based committee election
rule, such as PAV. The disadvantage of this approach is that
it is unlikely to lead to worst-case guarantees of the type we
establish in this paper.

Finally, we emphasize that our approach may be
applicable to social media more generally. For instance,
as mentioned in Section 5, Reddit users also approve
or disapprove comments through upvotes and downvotes.
However, Reddit uses these inputs to produce a ranking
of the comments, in contrast to our goal of selecting a
subset. There is work on obtaining justified-representation-
type guarantees for rankings (Skowron et al. 2017), which
could possibly be extended to the setting of incomplete votes
using the techniques developed in this paper. More broadly,
this article provides insights into how to fairly represent
opinions of groups given incomplete information, which
may be relevant for the design of more constructive online
ecosystems.
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