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Abstract

We study PAC learnability and PAC stabilizability of He-
donic Games (HGs), i.e., efficiently inferring preferences
or core-stable partitions from samples. We first expand the
known learnability/stabilizability landscape for some of the
most prominent HGs classes, providing results for Friends
and Enemies Games, Bottom Responsive, and Anonymous
HGs. Then, having a broader view in mind, we attempt to
shed light on the structural properties leading to learnabil-
ity/stabilizability, or lack thereof, for specific HGs classes.
Along this path, we focus on the fully expressive Hedonic
Coalition Nets representation of HGs. We identify two sets
of conditions that lead to efficient learnability, and which en-
compass all of the known positive learnability results. On the
side of stability, we reveal that, while the freedom of choosing
an ad hoc adversarial distribution is the most obvious hur-
dle to achieving PAC stability, it is not the only one. First,
we show a distribution independent necessary condition for
PAC stability. Then, we focus on W-games, where players
have individual preferences over other players and evaluate
coalitions based on the least preferred member. We prove that
these games are PAC stabilizable under the class of bounded
distributions, which assign positive probability mass to all
coalitions. Finally, we discuss why such a result is not easily
extendable to other HGs classes even in this promising sce-
nario. Namely, we establish a purely computational property
necessary for achieving PAC stability.

Introduction
Hedonic Games (HGs) (Dreze and Greenberg 1980) are a
formal model for describing selfish individuals gathering to-
gether in order to form coalitions. Both HGs and general
coalition formation games attracted considerable research
attention in the last years due to their applicability to multi-
agent environments. Solution concepts for HGs are usually
in the form of agent partitions with some suitable proper-
ties. The one we consider in this paper is core stability. A
partition is said to be core-stable (or in the core) if there ex-
ists no subset of players that could regroup into a so-called
core-blocking coalition, which is preferred by all of them.

The usual assumption when considering any solution con-
cept is that the preferences of the agents are fully known,
which is arguably unrealistic. Could we instead efficiently
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infer the whole game structure, or even directly learn so-
lution concepts, while having only partial knowledge of the
preferences? Questions of this kind are naturally captured by
the probably approximately correct (PAC) learning frame-
work (Valiant 1984), which formalizes the problem of learn-
ing a target concept from a limited number of samples from
any possible unknown but fixed distribution.

Sliwinski and Zick (2017) were the first to leverage the
PAC framework to study the problem of learning HGs pref-
erences and core-stable partitions from samples. In partic-
ular, they define PAC stabilizability of a HGs class as the
property of being able to, upon seeing a limited number of
samples, either report that the core is empty or propose a par-
tition that is unlikely to be core-blocked by further coalitions
sampled from the same distribution. In a recent paper, Lev
et al. (2021a) apply the notion of PAC stabilizability of HGs
in the context of political coalition formation. In particular,
they use the publicly available Israeli parliament voting data
to fit a Friends Appreciation HG, and compare the actual
political parties of the voters to the PAC-stable coalitions re-
sulting from the model. This example shows how learning
concepts have the potential to create space for applications
of mainly theoretical models, as HGs.

While the work of Sliwinski and Zick (2017) and the ones
that followed considered PAC learnability and stabilizabil-
ity of many specific classes of HGs, the overall picture is
still far from being complete. Most prominently, the char-
acterization of the underlying general conditions explaining
the existing results is missing. Furthermore, PAC stabiliz-
ability seems very hard to achieve and it is natural to won-
der whether some restrictions on the PAC stability definition
can yield better results. Here, we address these questions,
attempting to provide a deeper theoretical understanding of
what makes HGs learnable and stabilizable.

Our Contribution
We first extend the knowledge on PAC learnable and PAC
stabilizable classes of HGs. We start by focusing on Friends
and Enemies Games, examining whether the negative re-
sults on stabilizability of Additively Separable HGs transfer
to this simple subclass. By exploiting previous results and
proposing an algorithm stabilizing Friends and Enemies un-
der Enemies Aversion, we deduce that Friends and Enemies
Games belong to the very few lucky HGs classes that can
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both be learned and stabilized. Next, we study Bottom Re-
sponsive HGs and show that while they are not efficiently
learnable, they are stabilizable. Finally, we turn our atten-
tion to Anonymous HGs and show that the opposite holds
here, i.e., they are efficiently learnable but not stabilizable.

After exploring specific HGs classes, we use the gained
insights to follow a more general research direction, devoted
to a deeper understanding of the structural properties that
make HGs learnable and/or stabilizable.

We first consider the learning problem. Additively Sep-
arable, Anonymous, W and B-games are all known to be
learnable, and we investigate why this is the case. To this
aim, we consider Hedonic Coalition Nets (HCNs), a general
framework for representing HGs that is universally expres-
sive, i.e., it can represent any HGs class. We identify two
sets of conditions on the HCNs representation that imply ef-
ficient learnability, and as special cases explain the learn-
ability of all of the aforementioned HGs classes.

We then turn our attention to stability. Achieving PAC sta-
bility does not seem possible for most HGs classes, and we
try to find general reasons causing this fact. First, we show a
simple necessary condition for PAC stability, abstracting the
proof pattern of all the known negative results for specific
HGs classes. Then, we consider the problem of PAC stabil-
ity with bounded probability distributions and prove that un-
der this restriction it is possible to PAC stabilizeW-games,
which is known not to be possible in general. Finally, we dis-
cuss why the same result cannot be easily extended to other
HGs. In particular, we determine a general purely computa-
tional property necessary for achieving PAC stability.

Due to space limitations, some proofs and details are
omitted. We refer the interested reader to the full version
of the paper.

Related Work
Many works have dealt with learning game-theoretic solu-
tion concepts from data. Sliwinski and Zick (2017) first in-
troduced the PAC learning framework into the study of HGs.
Their work was extended by Igarashi, Sliwinski, and Zick
(2019) to tackle HGs with underlying players’ interaction
networks. Moreover, Jha and Zick (2020) laid further foun-
dations for learning game-theoretic solution concepts from
samples. More recently, Trivedi and Hemachandra (2021)
studied the problem of learning HGs with noisy preferences.

Other works have considered learning cooperative
games (Balcan, Procaccia, and Zick 2015), markets (Lev
et al. 2021b), auctions (Balcan, Sandholm, and Viter-
cik 2018) but also, more generally, combinatorial func-
tions (Balcan, Vitercik, and White 2016; Balcan 2015).

There is a vast body of literature on HGs. For a thor-
ough introduction to the main concepts and results, we refer
to Aziz and Savani (2016), where both all the HGs classes
studied in this paper and also HCNs are discussed.

Preliminaries
Let N be a set of n players. We call any non-empty subset
S ⊆ N a coalition and denote byNi the set of all coalitions
which contain a given player i ∈ N . We call any coalition

of size one a singleton. We denote by ≿i any binary prefer-
ence relation of player i over the coalitions in Ni, which is
reflexive, transitive, and complete. A Hedonic Game (HG)
is then a pair H = (N,≿), where ≿= (≿i, . . . ,≿n) is a
preference profile, i.e., the collection of all players’ pref-
erences. Throughout this work we will assume that play-
ers’ preferences are expressed as real numbers by means of
valuation functions vi. In other words, given S, T ∈ Ni:
vi(S) ≥ vi(T ) if and only if S ≿i T . We will denote by
v⃗ = (v1, . . . , vn) the collections of players’ valuations and
assume that vi(S) = ∅ for S /∈ Ni. Let H be a HG and π a
coalition structure, i.e., a partition of players into coalitions.
A set S is said to core-block π if vi(S) > vi(π(i)) for each
i ∈ S, where π(i) denotes the coalition containing i in π.
A coalition structure π is core-stable if there does not exist
a core-blocking coalition S ⊆ N . Among the many possi-
ble solution concepts, the one we will consider in this paper
is core stability, as it is the most prominent one in the PAC
stability model.

Defining Classes of Hedonic Games
In this subsection, we provide the definitions of some HGs
classes already considered from the perspective of PAC
learning by (Sliwinski and Zick 2017), that will be fre-
quently mentioned in the sequel. In all of these classes, for a
player i ∈ N and a coalition S ∈ Ni, the valuation vi(S) is
completely determined by the values vi(j) for j ∈ S \ {i}.
More precisely, the valuation of i for S is equal to:

1. Additively Separable: the sum of the values of its mem-
bers, i.e., vi(S) =

∑
j∈S\{i} vi(j);

2. Fractional: the sum of the values of its members, but
normalized by the size of the coalition, i.e., vi(S) =∑

j∈S\{i} vi(j)/|S|;
3. W-games: the value of the worst player in the coalition;

4. B-games: the value of the best player in the coalition, but
coalitions of smaller size are preferred.

PAC Learning
The PAC learning model, originally introduced by Valiant
(1984), mathematically formalizes the process of learning a
target concept v belonging to a hypothesis class H, by us-
ing a sample of labeled examples as input. There are many
variants, which adapt to different learning paradigms. In the
following, we will formally present only the one that we will
use in this work. Our aim is to learn an unknown valua-
tion function v : 2N → R within a class H, given as in-
put S = {(S1, v(S1)), . . . , (Sm, v(Sm))}, i.e., a collection
of coalition/valuations pairs. The distribution D, according
to which the i.i.d. input coalitions are sampled, is unknown,
while the classH is determined by the HG instance one con-
siders, e.g., if one is studying Additively Separable HGs, H
will be the class of additively separable functions over (the
other) n−1 players. Starting from a sample S , learning is the
process of producing a hypothesis v∗ ∈ H which is as close
as possible to the real v. Formally, a hypothesis v∗ ∈ H is
ε-approximately correct w.r.t. a distribution D over 2N and
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a function v ∈ H, if the following holds:

Pr
S∼D

[ v∗(S) ̸= v(S) ] < ε .

Given ε, δ > 0, class H is (ε, δ) probably approximately
correctly (PAC) learnable if there exists an algorithmA that,
for every distribution D over 2N , and any v ∈ H, given a
sample drawn from D, is able to produce a hypothesis v∗

which is ε-approximately correct with probability at least
1 − δ. A class H is said to be PAC learnable if it is (ε, δ)
PAC learnable for all ε, δ > 0. Furthermore, if the sample
size m and the running time ofA are polynomial in 1

ε , log
1
δ

and n,H is said to be efficiently PAC learnable.
The inherent complexity of efficiently PAC learning a

concept class of real functionsH is usually measured by the
so-called pseudo-dimension (see, e.g., Anthony and Bartlett
(2002)), which is the analog of the more renowned VC-
dimension (Kearns and Vazirani 1994) defined only for
classes of binary functions. In order to formally define
pseudo-dimension, we first need to introduce the concept
of pseudo-shattering. Given a collection of coalition/value
pairs S = {(S1, r1), . . . , (Sq, rq)}, we say that a class H
can pseudo-shatter S if, for every possible binary labeling
l1, . . . , lq of S , there exists a function f ∈ H such that
f(Sj) > rj ⇐⇒ lj = 1. Intuitively, the more H is ex-
pressive, the bigger the sets that it can pseudo-shatter. The
pseudo-dimension of H, denoted as Pdim(H), is the size of
the maximal set S that can be pseudo-shattered byH.

We conclude this section by reporting the theorem which
bridges learning and pseudo-dimension.
Theorem 1 (Anthony and Bartlett 2002). A hypothesis class
H with Pdim(H) polynomial in n is (ε, δ) PAC learnable us-
ing m samples, where m is polynomial in Pdim(H), 1

ε and
log 1

δ , by any algorithm A that returns a hypothesis f∗ con-
sistent with the sample, i.e., f∗(Si) = f(Si) for all i. Fur-
thermore, if Pdim(H) is superpolynomial in n,H is not effi-
ciently PAC learnable.

PAC Stabilizing Hedonic Games
The concept of PAC stabilizing HGs was first introduced
in (Sliwinski and Zick 2017). A coalition structure π
is said to be ε-PAC stable under a distribution D if
PrS∼D [S core-blocks π ] < ε. A class of HGs H is PAC
stabilizable if there exists an algorithm A that for any HG
in H, any ε, δ > 0, and any D over 2N , given a sample
S = {(S1, v⃗(S1)), . . . , (Sm, v⃗(Sm))} of coalitions drawn
according to D, produces an ε-PAC stable coalition struc-
ture π under D with probability at least 1 − δ, or reports
that the core is empty. If the sample size m and the running
time of A meet the same conditions required for efficient
PAC learnability, we say that H is efficiently PAC stabiliz-
able. Intuitively, this concept formalizes the learnability of
a solution concept for a HGs class, independently from the
learnability of the class itself. We will rely on the following
theorem in the next section.
Theorem 2 (Jha and Zick 2020). A class of HGs H is effi-
ciently PAC stabilizable iff there exists an algorithm that out-
puts a partition π consistent with the sample, i.e., no coali-
tion from the sample core-blocks π.

HGs class Learnable Stabilizable

Friends and Enemies
Friends Appreciation ✓∗ ✓∗

Enemies Aversion ✓∗ ✓
Bottom Responsive ✗ ✓
Anonymous ✓ ✗

Table 1: A summary of the learnability and stabilizability
landscape discussed below. Entries marked by an asterisk
symbol are consequences of previous work.

Learnability and Stabilizability of New Classes
of Hedonic Games

In this section we broaden the picture of learnability and sta-
bilizability of different classes of HGs, studying the follow-
ing HG classes that were not considered by previous work.

Friends and Enemies. Friends and Enemies Games have
been traditionally investigated under two types of preference
profiles, called Friends Appreciation and Enemies Aversion,
where agents prefer coalitions with a greater number of
friends (and smaller number of enemies in case of ties) or
with a smaller number of enemies (and greater number of
friends in case of ties), respectively.

Bottom Responsive. The bottom responsiveness property
was first defined by Suzuki and Sung (2010) as bottom re-
fuseness and then further considered by Aziz and Brandl
(2012), where it was renamed in analogy to a related prop-
erty called top responsiveness. Intuitively, it models pes-
simistic agents who rank coalitions based on sets of players
that they would like to avoid.

Definition 1. For each player i ∈ N and S ∈ Ni, we define
the avoid set of player i in coalition S as

Av(i, S) = {S′ ⊆ S : (i ∈ S′) ∧ (∀S′′ ⊆ S, S′ ⪯i S
′′)}.

A game satisfies bottom responsiveness if for each i ∈ N
and for each pair S, T ∈ Ni the following conditions hold:

(i) if for each S′ ∈ Av(i, S) and for each T ′ ∈ Av(i, T ) it
holds that if S′ ≻i T

′, then S ≻i T ;
(ii) if Av(i, S) ∩Av(i, T ) ̸= ∅ ∧ |S| ≥ |T |, then S ⪰i T .

In what follows, we assume a minimum a priori
knowledge of the values. Namely, we assume to know
vi({i}), ∀i ∈ N . A similar, yet significantly stronger, as-
sumption was used by (Sliwinski and Zick 2017) to prove
that Top Responsive HGs (i.e. HGs which satisfy top respon-
siveness) are efficiently PAC stabilizable.

Anonymous. A HG is said to satisfy anonimity, as defined
in (Banerjee, Konishi, and Sönmez 2001; Bogomolnaia and
Jackson 2002), if vi(S) = vi(T ) for any player i ∈ N and
any S, T ∈ Ni with |S| = |T |, i.e., players evaluate coali-
tions only according to their size.

We are now ready to state the following theorem, summa-
rizing our results for the just defined HGs classes.

Theorem 3. The results described in Table 1 hold.
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Proof. We give here just a sketch of the proof.
Friends and Enemies. The efficient PAC learnability of
both Friends Appreciation and Enemies Aversion profiles
follows directly by observing that they are both subclasses
of Additively Separable HGs (see (Dimitrov et al. 2006)),
known to be efficiently PAC learnable by the results of Sli-
winski and Zick (2017).

For what concerns stabilizability, Suzuki and Sung (2010)
showed that Friends and Enemies Games under Friends Ap-
preciation are a subclass of Top Responsive HGs. Sliwinski
and Zick (2017) proved that Top Responsive HGs are ef-
ficiently PAC stabilizable, which then implies the same for
Friends Appreciation. For Enemies Aversion, Dimitrov et al.
(2006) prove that core-stable partitions always exist, while
Dimitrov and Sung (2004) provide an algorithm returning
such a partition. Inspired by their algorithm, we provide an
algorithm PAC stabilizing this class.
Bottom Responsive. To show that the class is not efficiently
PAC learnable, we prove that its pseudo-dimension is lower
bounded by 2

n−1
2 , and thus is exponential in n. The result

then follows by Theorem 1. The construction in our proof
bears similarities to the one of Sliwinski and Zick (2017) for
Top Responsive HGs.

Regarding stabilizability, we first observe that Suzuki and
Sung (2010) show that a core-stable coalition structure al-
ways exists for this class. Moreover, a simple necessary con-
dition for S to be part of a core-stable partition π, is that for
all i ∈ S it must hold that {i} ∈ Av(i, S). Indeed, if this
condition is not satisfied, at least one player prefers to devi-
ate to a singleton. To give a viable alternative for checking
the condition while knowing the values of the singletons,
we prove the following property: Given a Bottom Respon-
sive HG H = (N, v), for every i ∈ N and every S ∈ Ni, it
holds that {i} ∈ Av(i, S) ⇐⇒ vi({i}) ≤ vi(S). Starting
from this property, we construct Algorithm 1 which, given a
sample, returns a coalition structure that is not core-blocked
by any coalition from the sample. By Theorem 2 this is suf-
ficient for concluding the efficient PAC stabilizability.
Anonymous. To show efficient PAC learnability, we prove
that the pseudo-dimension of this class is upper bounded by
n(1 + log n), and thus is polynomial. Then, for each i ∈ N ,
the following procedure computes a hypothesis v∗i consis-
tent with the sample in time polynomial in n and m: For
every coalition C of size k ∈ [n], if there exists Sj s.t.
i ∈ Sj and |Sj | = k, then set vi(C) = vi(Sj), otherwise
set vi(C) = −∞.

For what concerns stabilizability, we can provide a
counter-example showing that the class is not PAC stabiliz-
able, even in the case of natural single-peaked preferences,
where every player has a given preferred size, and the valua-
tion decreases as the distance from such size increases.

Notice that, according to the above theorem, the nega-
tive results on stabilizability of Additively Separable HGs
of (Sliwinski and Zick 2017) do not transfer to Friends and
Enemies Games. Furthermore, while the Bottom Reponsive
HGs class is not PAC learnable but efficiently PAC stabiliz-
able, exactly the opposite holds for Anonymous HGs.

Algorithm 1: Stabilizing Bottom Responsive HGs
Input: N , S = {(Sj , v⃗(Sj))}mj=1
Output: π: an ε-stable partition of N

1 π ← ∅, T ← ∅
2 for ⟨S, v⃗(S)⟩ ∈ S do
3 f ← 1
4 if ∃i ∈ S s.t. vi(S) < vi({i}) then f ← 0 break
5 if f=1 then T ← T ∪ {S}
6 while T ̸= ∅ do
7 T+ ← argmaxT∈T |T \

⋃
P∈π P |

8 π ← π ∪
(
T+ \

⋃
P∈π P

)
9 T ← T \ {T+}

10 N ← N \ T+

11 for i ∈ N do π ← π ∪ {{i}}
12 return π

A General Framework for Learnability:
Hedonic Coalition Nets

To provide a general unifying framework for learnability
of HGs, a direction worth investigating is the one of de-
termining a suitable superclass or a small number of super-
classes encompassing all the learnable HG classes. Such re-
sults would contribute to the general understanding of the
crucial properties leading to learnability, or lack thereof, and
would also provide means to easily determine whether a spe-
cific class of HGs is learnable.

A universal HGs class, maintaining the full expressive-
ness for representing any HG, is the one of the so-called
Hedonic Coalition Nets (HCNs) (Elkind and Wooldridge
2009). Before giving the definition, we note that, since there
exist classes of HGs that are not learnable, it is not possible
to get a positive result for the learnability of any fully ex-
pressive HGs representation, so not for HCNs either, without
imposing further restrictions. Thus, our goal here is to deter-
mine suitable restrictions allowing for efficient learnability.
Definition 2. A hedonic coalition net (HCN) is a tuple
(N,R1, . . . , Rn) where N is a set of variables (each cor-
responding to a player) and Ri is the set of rules for player
i. A single rule in Ri is given by a pair (ϕ, β), where ϕ is a
formula of propositional logic over N and β ∈ R is a real
number. We will denote a rule in Ri by ϕ 7→i β. Then, as-
suming the conventional semantic satisfaction relation “|=”,
the valuation of player i for a coalition S ∈ Ni is

vi(S) =
∑

ϕj 7→iβ
j∈Ri:

S|=ϕj

βj . (1)

The first HCNs subclass we consider comprises HCNs in
which the formulas appearing in each set of rules Ri are
known a priori. Namely, for any rule ϕ 7→i β ∈ Ri we only
need to learn β. We first show that, in this case, the pseudo-
dimension depends on the number of rules.
Proposition 4. Let H(Ri) be the class of valuation func-
tions that can be expressed with a fixed set of a priori known
distinct rules Ri. Then, Pdim (H(Ri)) = O (|Ri|).
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Proof. Let r = |Ri|. We will show that no set of size
r + 1 can be pseudo-shattered by H(Ri). As a conse-
quence Pdim (H(Ri)) ≤ r, which implies the result. Let
S = {Sj}r+1

j=1 be any set of coalitions fromNi of size r+1,
and (t1, . . . , tr+1) any sequence of r+1 real numbers. Given
any labeling l, the condition vi(Sj) > tj ⇔ ℓj = 1 can be
written as a system of r + 1 linear inequalities of the form

r∑
k=1

ajkβk > tj if ℓj = 1, and
r∑

k=1

ajkβk ≤ tj if ℓj = 0,

where ajk = 1 if Sj |= ϕk and 0 otherwise. This is a system
of r + 1 inequalities with r unknowns β1, . . . , βr, thus the
coefficient matrix A = (ajk) must have linearly dependent
rows. Let us w.l.o.g. assume that the last row Ar+1 can be
written as Ar+1 =

∑r
j=1 yjAj where the coefficients yj are

not all null. Let us define the labelings ℓ(1), ℓ(2) in this way:
ℓ
(1)
j = 1 ⇔ yj < 0 for j ∈ [r], ℓ(1)r+1 = 1 and ℓ

(2)
j = 0 ⇔

ℓ
(1)
j = 1. By contradiction, assume that there exist solutions
b⃗1 and b⃗2 that satisfy the respective systems of inequalities.
Let us consider the first system. By definition of ℓ(1) and
b⃗1, if ℓ(1)j < 0 then

(
Aj · b⃗1

)
> tj but yj < 0 implying

that yj
(
Aj · b⃗1

)
< yjtj . When ℓ

(1)
j = 0, instead, it holds

that yj
(
Aj · b⃗1

)
≤ yjtj . We can then conclude that this

last inequality holds for all j ∈ [r]. Regarding ℓ(2), with the
same line of reasoning one can prove that yj

(
Aj · b⃗2

)
≥∑r

j=1 yjtj for all j ∈ [r]. Writing Ar+1 as a combination of
the other rows, and including the inequalities associated to
Sr+1, we obtain the following:

tr+1 < Ar+1 · b⃗1 =
r∑

j=1

yj

(
Aj · b⃗1

)
≤

r∑
j=1

yjtj

tr+1 ≥ Ar+1 · b⃗2 =
r∑

j=1

yj

(
Aj · b⃗2

)
≥

r∑
j=1

yjtj

implying tr+1 <
∑r

j=1 yjtj ≤ tr+1, a contradiction.

We say that H admits a compact HCN representation if
it is possible to represent every v ∈ H with a polynomial
number of rules for each player i. Observe that so far ev-
ery class that has been shown to be learnable, also admits
a compact HCNs representation. Elkind and Wooldridge
(2009) give HCNs representations for Additively Separable,
Anonymous,W and B-games.

The following result shows that HGs admitting a compact
HCN representation, for which we know the formulas a pri-
ori, are efficiently PAC learnable.
Theorem 5. LetH be a class of HGs that admits a compact
HCN representation. Suppose that for every set of rules Ri,
we know the corresponding set of formulas Φ. Then, H is
efficiently PAC learnable.

While the class presented above includes Additively Sep-
arable, Fractional, and Anonymous HGs, which have all

been shown to be efficiently PAC learnable, there exist other
learnable classes which do not fall within the above charac-
terization. Indeed, forW-games and B-games, knowing the
ϕ for each rule a priori is not possible, since the formulas
themselves depend on the ordered preferences that we need
to learn. On the other hand, the maximum number of distinct
coalition values in both cases is only n.

To capture these remaining classes of learnable HGs
through another suitable subclass of HCNs, we resort to de-
cision lists, which were introduced by Rivest (1987) as al-
ternative representations for Boolean functions.
Definition 3. A decision list (DL) L is defined by a set of l
rules L = {(κ1, b1), . . . , (κl, bl)} such that κi is a conjunc-
tion of literals, bi ∈ {0, 1}, ∀i ∈ [l], and κl is the constant
function true. Given L and a truth assignment x, L(x) is
equal to bj where j is the least index such that κj(x) = 1.

We use the term k-decision lists (k-DL) if all the conjunc-
tions in the DL are of size at most k.

For our purposes, for any coalition S and i ∈ [l], κi(S) =
1 if S |= κi and κi(S) = 0 otherwise. It is convenient to
think of a DL as an “if – then – else if – ... - else –” rule.

if κ1(S) = 1 then return b1
else if κ2(S) = 1 then return b2

. . .

else return bl

Note that all the HGs classes we mentioned, other than
Anonymous HGs can be represented as k-DL with k con-
stant. It is known that for constant k, k-DL are efficiently
PAC learnable: Rivest (1987) shows an efficient learning
procedure LEARN-k-DL(k,S) that takes the size k and a
sample S as input and returns a k-DL L. Furthermore, in the
same work it is proven that k-DL are strictly more expres-
sive than k-CNF and k-DNF formulas, and decision trees of
depth k, meaning that every Boolean function that is repre-
sentable in one of these forms admits a representation as a
k-DL, but not viceversa.

Now, if we consider HCNs which contain rules that are
represented by k-DL and additionally restrict our attention
to representations in which every coalition satisfies exactly
one rule, it turns out that we can again efficiently PAC learn
the valuations, as shown in the following.
Theorem 6. Let H be a class of HGs that admits a HCN
representation such that
(i) every coalition S ∈ Ni satisfies exactly one rule in Ri,

(ii) every rule is of the form L 7→ β, where L is a k-DL with
k constant, and β unique, i.e., no pair of distinct rules
have the same value β.

Then,H is efficiently PAC learnable by Algorithm 2.
While the second assumption in Theorem 6 seems rather

strong, we argue that asking for unique values β actually
does not impose a further restriction, even though it seems
fundamental for proving the result. Indeed, if there is more
than one k-DL associated with the same value β, using the
assumption that every coalition satisfies exactly one rule, it
is always possible to merge them into one k-DL.
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Algorithm 2: Learning HCN in k-DL form
Input: k ∈ N, S = {(Sj , vi(Sj))}mj=1
Output: Ri consistent with S

1 Ri ← ∅
2 for β in {vi(Sj) : Sj ∈ S} do
3 for Sj ∈ S do
4 if vi(S) = β then bj = 1 else bj = 0

5 S ′ = {(Sj , bj)}mj=1

6 L← LEARN-k-DL(k,S ′)
7 Ri ← Ri ∪ {L 7→ β}
8 return Ri

Theorem 6 includes as a special case all HGs that can be
represented by sets of mutually exclusive conjunctions, each
containing at most k positive literals. This is so, because we
can phrase the negative literals positively within the DL, by
associating the presence of such a variable with returning 0.
Thus, the conjunction size depends only on the number of
positive literals. The case k = 1 includesW- and B-games.

Stabilizability of Hedonic Games
We start this section by identifying a property that a HGs
class needs to satisfy if it has any ambitions of being PAC
stabilizable. To this end, we first define the set of core stable
partitions w.r.t. a fixed sample S , and equivalence classes in
a HGs classH w.r.t. a fixed sample S . Then, we state a theo-
rem that abstracts on the arguments used in proofs showing
that a specific HGs class is not PAC stabilizable. Recall that
a sample S is a set {(S1, v⃗(S1)), . . . , (Sm, v⃗(Sm))}.
Definition 4. Let H be a class of HGs, S a sample and let
H ∈ H. We denote by:

(i) CS(H) = {π : ∀S ∈ S, S does not core block π}, the
set of partitions consistent with the sample S;

(ii) H[S] the set of all instances H = (N, v⃗ ′) ∈ H such that
v⃗ ′(S) = v⃗(S), for each (S, v⃗(S)) ∈ S .

We are now able to define the following property.

Definition 5. HGs classH satisfies the sample resistant core
property, or has SRC in short, if for every S ⊆ 2N

• CS(H) = ∅, ∀H ∈ H[S], or
•
⋂

H∈H[S] CS(H) ̸= ∅.

Theorem 7. IfH is PAC stabilizable, thenH has SRC.

Notice that Theorem 7 formalizes the standard approach
of Sliwinski and Zick (2017) and of our work, to show that
a specific HG class is not PAC stabilizable. Furthermore,
property SRC, which is of course satisfied by Top and Bot-
tom Responsive HGs (as they can be PAC stabilized), does
not seem to be a common HGs property.

One could argue that aiming to PAC stabilize a specific
HG class without having any a priori knowledge on the dis-
tribution D is too ambitious. Thus, a natural question is
whether restricting the attention to special distributions in-
creases the prospect of stabilizing some classes of HGs. This

direction was left as an open question by Sliwinski and Zick
(2017) and is our focus in the remaining part of the paper.

The motivation for limiting the scope of allowed distribu-
tions is to get a more fine-grained insight into PAC stabil-
ity. The simple counterexamples from (Sliwinski and Zick
2017), while providing valuable understandings, do not re-
veal “how far away” from achieving PAC stability certain
classes of HGs are. Thus, we proceed by studying PAC sta-
bility under a class of distributions that excludes the usual
adversarial examples. In particular, we focus on distributions
having a fair amount of probability mass on all coalitions.

Definition 6. A distribution D is said to be bounded if there
exists λ ≥ 1 such that, for every two coalitions S1, S2, it
holds that PrD [S1 ] ≤ λPrD [S2 ].

Observe that the uniform distribution is a special case of
the above definition, obtained by setting λ = 1.

A useful property that we will use extensively in our cal-
culations is that, if D is bounded with a factor λ, then

1

λ2n
≤ 1

λ(2n − 1)
≤ Pr

S∼D
[S ] ≤ λ

2n − 1
. (2)

These simple bounds follow from the definition of a
bounded distribution and the fact that

∑
T∈2N PrD [T ] = 1,

where the sum goes over the 2n − 1 non-empty coalitions.
By Equation (2), every coalition now has a positive proba-
bility of being sampled. Since the counterexamples to PAC
stabilizability of specific HGs classes usually rely on ad hoc
distributions where most of the coalitions are never sampled,
this feature provides hope of obtaining better results.

W-games under Bounded Distributions
As a case study we consider W-games with no ties. This
class admits a polynomial algorithm for finding a core sta-
ble partition (Cechlárová and Hajduková 2004), but, despite
that, it has been shown not to be PAC stabilizable (Sliwinski
and Zick 2017). Thus, it seems a natural first candidate for
being PAC stabilizable under bounded distributions. In the
rest of this subsection, we indeed show the following result.

Theorem 8. W-games under bounded distributions are ef-
ficiently PAC stabilizable.

To this end, in what follows, when focusing on a fixed
player i, w.l.o.g. we assume that the other players are or-
dered such that vi(1) < vi(2) < . . . < vi(n − 1). We start
by exploiting the fact that the distribution is bounded.

Lemma 9. Let ε > 0 be fixed. If we denote by A
(i)
j the

event that a sampled coalition S satisfies i, j ∈ S and S \
{i, j} ⊆ {j + 1, . . . , n − 1}, and by B

(i)
j the event that

a sampled coalition S satisfies i, j ∈ S and S \ {i, j} ⊆{⌊
log2

1
ε

⌋
+ 2, . . . , n− 1

}
, it holds that

Pr
S∼D

[
A

(i)
j

]
≥ ε

2λ
for 1 ≤ j ≤

⌊
log2

1

ε

⌋
, and

Pr
S∼D

[
B

(i)
j

]
≥ ε

4λ
for j >

⌊
log2

1

ε

⌋
.
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Algorithm 3: StabilizingW-games
Input: N players, S = {(Sj , v⃗(Sj))}mj=1, ε > 0
Output: A partition π

1 v⃗∗ ← LEARN-W -GAMES(N , S)
2 π ← ∅
3 while N ̸= ∅ do
4 Pick i ∈ N
5 if N \ {i} ̸= ∅ then
6 j ← argmaxk∈N\{i} v

∗
i (k)

7 π ← π ∪ {{i, j}}, N ← N \ {i, j}
8 else π ← π ∪ {{i}}
9 return π

Sliwinski and Zick (2017) presented a simple procedure,
that we will refer to as LEARN-W -GAMES, which takes in
input the set of players and a sample, and returns a consistent
estimate v⃗∗ for the players’ valuations in W-games. This
procedure sets v∗i (j) to be the maxS∈Sij

vi(S) where Sij =
{S ∈ S : {i, j} ⊆ S}, if Sij is non-empty, −∞ otherwise.
Next, we define what we call an ε-estimate of a function,
and show that the output of LEARN-W -GAMES is actually
such an estimate.
Definition 7. Function v′i is an ε-estimate of vi if{

v′i(j) = vi(j) for 1 ≤ j ≤
⌊
log2

1
ε

⌋
, and

v′i(j) > vi(
⌊
log2

1
ε

⌋
) for j >

⌊
log2

1
ε

⌋
.

(3)

Proposition 10. Let ε, δ > 0 and S be a sample of size m.
If m ≥ 2λ

ε log n2

δ , LEARN-W -GAMES returns an ε-estimate
v⃗∗ of v⃗ with confidence 1− δ.

We want to show that, by relying on the ε-estimate given
by LEARN-W -GAMES for ε “not too small”, Algorithm 3
returns an ε-stable partition. We first state a technical lemma.
Lemma 11. Let π be the output of Algorithm 3 and let us
call a player i green if it is not in a coalition with one of his⌊
log2

1
ε

⌋
least preferred choices according to v∗i . Then,

a) for i green, PrS∼D [ i ∈ S ∧ vi(S) > vi(π(i)) ] < λε,

b) for ε ≥ 3

√
λ2

2n , PrS∼D [S does not contain green i ] < ε.

We are now finally ready to prove the main theorem,
stated in the beginning of this subsection.

Proof of Theorem 8. For δ > 0 and ε ≥ 3

√
λ5

2n−3 , we call Al-

gorithm 3 with ε′ = ε/2λ and m ≥ 2λ
ε′ log

n2

δ = 1
ε log

n2

δ ,
and obtain an ε-stable partition with probability at least
1 − δ. By point a) of Lemma 11, a green node has prob-
ability < λε′ = ε/2 to get a better outcome by moving
from π(i) to S. Furthermore, ε′ satisfies the requirement of
point b) in Lemma 11, so the probability of sampling an S
without a green node is < ε′ ≤ ε/2. In conclusion, if we
call G the event that S contains a green player, then since
PrS∼D [S core blocks π ] equals

Pr
S∼D

[S core blocks π | G ] + Pr
S∼D

[
S core blocks π | G

]
,

we see that PrS∼D [S core blocks π ] ≤ ε/2 + ε/2 = ε.

For δ > 0 and ε < 3

√
λ5

2n−3 , with a sample of size

m ≥ 8λ6

ε3 log n2

δ , we can reveal the exact valuation functions
with probability at least 1− δ and return the core stable par-
tition π using the algorithm of Cechlárová and Hajduková
(2004). Indeed, since the probability of drawing any coali-
tion is by Equation (2) at least 1/λ2n, this also holds for the
coalition containing only agents i and j, which provides both
vi(j) and vj(i). The probability of not drawing a particular
coalition of size 2 is ≤ (1− 1/λ2n)

m ≤ e−m/λ2n ≤ δ/n2.
Taking a union bound over all the

(
n
2

)
< n2 coalitions of

size 2, we see that the probability of not seeing all the exact
valuations is upper bounded by δ.

Barriers to the Restricted Distributions Approach

Encouraged by the positive results of the last subsection, one
could try to extend the approach of focusing on bounded dis-
tributions in the hope that other classes that are known not
to be PAC stabilizable, such as Additively Separable, Frac-
tional, and Anonymous HGs, are in fact stabilizable under
such distributions. Unfortunately, this does not seem to be
always the case, as we discuss below.

Definition 8. For a HGs classH , let T (H) be the time com-
plexity of the best algorithm solving the core for this class,
i.e., the runtime of the fastest algorithm that for every in-
put instance either correctly replies that the core is empty or
returns a core-stable partition.

Theorem 12. If T (H) = ω(poly(2n)) for a HG class H,
then H is not efficiently PAC stabilizable, even under the
uniform distribution.

Notice that the assumption T (H) ∈ ω(poly(2n)) is not
that strong. In most of the HGs classes the complexity of the
problem of deciding the existence of the core is either Σp

2-
complete or NP-hard. Although this does not imply that it
is not possible to find a O(poly(2n)) algorithm (in the case
of the total collapse of the polynomial hierarchy, this would
even be possible in polynomial time), such algorithms are
currently not known and at this point it seems that finding
them is unlikely. In particular, the brute force approach, that
searches for an element in the core by examining all the pos-
sible partitions, has a running time of Ω((n/2)n/4) (as this
is one possible lower bound on the Bell number), and thus
its running time is also in ω(poly(2n)).

Conclusions
In this work, we initiated the study of a unified approach
for determining the learnability and stabilizability of spe-
cific HGs classes. One of the obvious goals for future work
is finding a unique characterization of HCN representations
that imply learnability. Another one is exploring further con-
sequences of Theorem 12 and expanding the knowledge on
the exact computational complexity of solving the core for
the different classes of HGs.
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