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Abstract

The conditional commitment abilities of mutually transparent
computer agents have been studied in previous work on com-
mitment games and program equilibrium. This literature has
shown how these abilities can help resolve Prisoner’s Dilem-
mas and other failures of cooperation in complete information
settings. But inefficiencies due to private information have
been neglected thus far in this literature, despite the fact that
these problems are pervasive and might also be addressed
by greater mutual transparency. In this work, we introduce a
framework for commitment games with a new kind of con-
ditional commitment device, which agents can use to condi-
tionally disclose private information. We prove a folk theorem
for this setting that provides sufficient conditions for ex post
efficiency, and thus represents a model of ideal cooperation
between agents without a third-party mediator. Further, ex-
tending previous work on program equilibrium, we develop
an implementation of conditional information disclosure. We
show that this implementation forms program ϵ-Bayesian Nash
equilibria corresponding to the Bayesian Nash equilibria of
these commitment games.

Introduction
What are the upper limits on the ability of rational, self-
interested agents to cooperate? As autonomous systems be-
come increasingly responsible for important decisions, in-
cluding in interactions with other agents, the study of “Co-
operative AI” (Dafoe et al. 2020) will potentially help en-
sure these decisions result in cooperation. It is well-known
that game-theoretically rational behavior — which will po-
tentially be more descriptive of the decision-making of ad-
vanced computer agents than humans — can result in im-
perfect cooperation, in the sense of inefficient outcomes.
Some famous examples are the Prisoner’s Dilemma and the
Myerson-Satterthwaite impossibility of efficient bargaining
under incomplete information (Myerson and Satterthwaite
1983). Fearon (1995) explores “rationalist” explanations for
war (i.e., situations in which war occurs in equilibrium);
these include Prisoner’s Dilemma-style inability to credibly
commit to peaceful alternatives to war, as well as incentives
to misrepresent private information (e.g., military strength).

*These authors contributed equally.
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Because private information is so ubiquitous in real strate-
gic interactions, resolving these cases of inefficiency is a
fundamental open problem. Inefficiencies due to private in-
formation will be increasingly observed in machine learn-
ing, as machine learning is used to train agents in complex
multi-agent environments featuring private information, such
as negotiation. For example, Lewis et al. (2017) found that
when an agent was trained with reinforcement learning on
negotiations under incomplete information, it failed to reach
an agreement with humans more frequently than a human-
imitative model did.

But greater ability to make commitments and share
private information can open up more efficient equilibria.
Computer systems could be much better than humans at
making their internal workings legible to other agents, and
at making sophisticated conditional commitments. More
mutually beneficial outcomes could also be facilitated by
new technologies like smart contracts (Varian 2010). This
makes the game theory of interactions between agents with
these abilities important for the understanding of Cooperative
AI — in particular, for developing an ideal standard of
multi-agent decision making with future technologies. An
extreme example of the power of greater transparency
and commitment ability is Tennenholtz (2004)’s “program
equilibrium” solution to the one-shot Prisoner’s Dilemma.
The players in Tennenholtz’s “program game” version of
the Prisoner’s Dilemma submit computer programs to play
on their behalf, which can condition their outputs on each
other’s source code. Then a pair of programs with the source
code ‘‘If counterpart’s source code == my
source code: Cooperate; Else: Defect’’
form an equilibrium of mutual cooperation.

In this spirit, we are interested in exploring the kinds of
cooperation that can be achieved by agents who are capable
of extreme mutual transparency and credible commitment.
We can think of this as giving an upper bound on the ability of
advanced artificially intelligent agents, or humans equipped
with advanced technology for commitment and transparency,
to achieve efficient outcomes. While such abilities are inac-
cessible to current systems, identifying sufficient conditions
for cooperation under private information provides directions
for future research and development, in order to avoid failures
of cooperation. These are our main contributions:

1. We develop a new class of games in which players can
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condition both their commitments and disclosure of pri-
vate information on their counterparts’ commitments and
decisions to disclose private information. We present a
folk theorem for these games: The set of equilibrium pay-
offs equals the set of feasible and interim individually
rational payoffs, notably including all ex post efficient
payoffs. The equilibria are conceptually straightforward:
For a given ex post payoff profile, players disclose their
private information and play according to an action pro-
file attaining that payoff profile; if anyone deviates, they
revert to a punishment policy (without disclosing private
information to the deviator). The problem is to avoid circu-
larity in these conditional decisions. Our result builds on
Forges (2013)’ folk theorem for Bayesian games without
conditional information disclosure, in which equilibrium
payoffs must also be incentive compatible. This expansion
of the set of equilibrium payoffs is important, because in
several settings, such as those of the classic Myerson-
Satterthwaite theorem (Myerson and Satterthwaite 1983),
ex post efficiency (or optimality according to some func-
tion of social welfare) and incentive compatibility are
mutually exclusive.

2. In these commitment games, the conditional commitment
and disclosure devices are abstract objects. The devices
in Forges (2013)’ and our folk theorems avoid circularity
by conditioning decisions on the particular identities of
the other players’ devices, but this precludes robust co-
operation with other devices that would output the same
decisions. Using computer programs as conditional com-
mitment and disclosure devices, we give a specific imple-
mentation of ϵ-Bayesian Nash equilibria corresponding
to the equilibria of our commitment game. This approach
extends Oesterheld (2019)’s “robust program equilibria.”
We solve the additional problems of (1) ensuring that the
programs terminate with more than two players, (2) in cir-
cumstances where cooperating with other players requires
knowing their private information. Ours is the first study
of program equilibrium (Tennenholtz 2004) under private
information.

Related Work
Commitment games and program equilibrium. We build
on commitment games, introduced by Kalai et al. (2010) and
generalized to Bayesian games (without verifiable disclosure)
by Forges (2013). In a commitment game, players submit
commitment devices that can choose actions conditional on
other players’ devices. This leads to folk theorems: Players
can choose commitment devices that conditionally commit
to playing a target action (e.g., cooperating in a Prisoner’s
Dilemma), and punishing if their counterparts do not play
accordingly (e.g., defecting in a Prisoner’s Dilemma if coun-
terparts’ devices do not cooperate). A specific kind of com-
mitment game is one played between computer agents who
can condition their behavior on each other’s source code.
This is the focus of the literature on program equilibrium
(Rubinstein 1998; Tennenholtz 2004; LaVictoire et al. 2014;
Critch 2019; Oesterheld 2019; Oesterheld and Conitzer 2021).
Peters and Szentes (2012) critique the program equilibrium

framework as insufficiently robust to new contracts, because
the programs in, e.g., Kalai et al. (2010)’s folk theorem only
cooperate with the exact programs used in the equilibrium
profile. Like ours, the commitment devices in Peters and
Szentes (2012) can disclose their types and punish those that
do not also disclose. However, their devices disclose uncon-
ditionally and thus leave the punishing player exploitable,
restricting the equilibrium payoffs to a smaller set than that
of Forges (2013) or ours.

Our folk theorem builds directly on Forges (2013). In
Forges’ setting, players lack the ability to disclose private
information. Thus the equilibrium payoffs must be incen-
tive compatible. We instead allow (conditional) verification
of private information, which lets us drop Forges’ incentive
compatibility constraint on equilibrium payoffs. Our program
equilibrium implementation extends Oesterheld (2019)’s ro-
bust program equilibrium to allow for conditional information
disclosure.

Strategic information revelation. In games of strategic
information revelation, players have the ability to verifiably
disclose some or all of their private information. The ques-
tion then becomes: How much private information should
players disclose (if any), and how should other players up-
date their beliefs based on players’ refusal to disclose some
information? A foundational result in this literature is that
of full unraveling: Under a range of conditions, when play-
ers can verifiably disclose information, they will act as if
all information has been disclosed (Milgrom 1981; Gross-
man 1981; Milgrom and Roberts 1986). This means the mere
possibility of verifiable disclosure is often enough to avoid
informational inefficiencies. However, there are cases where
unraveling fails to hold and, even when verifiable disclosure
is possible, informational inefficiencies persist and lead to
welfare losses. This can be due to uncertainty about a player’s
ability to verifiably disclose (Dye 1985; Shin 1994) or dis-
closure being costly (Grossman and Hart 1980; Jovanovic
1982). But disclosure of private information can fail even
without such uncertainty or costs (Kovenock, Morath, and
Münster 2015; Martini 2018). We will show how these kinds
of private information problems can be remedied with the
commitment technologies of our framework (but not weaker
ones, like those of Forges (2013)).

Preliminaries: Games of Incomplete
Information and Inefficiency

Definitions
Let G be a Bayesian game with n players. Each player i has a
space of types Ti, giving a joint type space T =×n

i=1 Ti. At
the start of the game, players’ types are sampled by Nature ac-
cording to the common prior q. Each player knows only their
type. Player i’s strategy is a choice of action ai ∈ Ai for each
type in Ti. Let ui(t,a) denote player i’s expected payoff in
this game when the players have types t = (t1, . . . , tn) and
follow an action profile a = (a1, . . . , an). A Bayesian Nash
equilibrium is an action profile a in which every player and
type plays a best response with respect to the prior over other
players’ types: For all players i and all types ti, ai(ti) ∈
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argmaxa′
i∈Ai

Et−i∼q(·|ti)ui(t, (a
′
i(ti),a−i(t−i))). An ϵ-

Bayesian Nash equilibrium is similar: Each player and type
expects to gain at most ϵ (instead of 0) by deviating from a.

We assume players can correlate their actions by condi-
tioning on a trustworthy randomization signal C.1 For any
correlated policy µ (a distribution over action profiles), let
ui(t,µ) = Ea∼µui(t,a). When it is helpful, we will write
µ(·|s) to clarify the subset of the type profile s ⊆ t on which
the correlated policy is conditioned. Let (aj ,µ−j) denote a
correlated policy such that player j plays aj with probability
1, and the actions of players other than j are sampled from
µ−j independently of aj . Then, the following definitions will
be key to our discussion:
Definition 1. A payoff vector x as a function of type
profiles is feasible if there is a correlated policy µ(·|t)
such that, for all players j and types tj ∈ Tj , xj(tj) =
Et−j∼q(·|tj)uj(t,µ).
Definition 2. A payoff x is interim individually
rational (INTIR) if, for each player j, there is
a correlated policy τ−j(·|t−j) used by the other
players such that, for all tj ∈ Tj , xj(tj) ≥
maxaj∈Aj

Et−j∼q(·|tj)uj(t, (aj , τ−j(·|t−j))).
The minimax policy τ−j is used by the other players to

punish player j. The threat of such punishments will support
the equilibria of our folk theorem. Players only have sufficient
information to use this correlated policy if they disclose their
types to each other. Moreover, the punishment can only work
in general if they do not disclose their types to player j,
because the definition of INTIR requires the deviating player
to be uncertain about t−j . Since the inequalities hold for all
tj ∈ Tj , the players do not need to know player j’s type to
punish them.
Definition 3. A feasible payoff x induced by µ is incentive
compatible (IC) if, for each player j and type pair tj , sj ∈ Tj ,
xj(tj) ≥ Et−j∼q(·|tj)uj((tj , t−j),µ(·|sj , t−j)).
Incentive compatibility means that, supposing players report
their part of a type profile on which their correlated policy is
conditioned, no player prefers to lie about their type.
Definition 4. Given a type profile t, a payoff x is ex post
efficient (hereafter, “efficient”) if there does not exist µ̃ such
that ui(t, µ̃) ≥ xi(ti) for all i and ui′(t, µ̃) > xi′(ti′) for
some i′.

We will also consider games with strategic information
revelation, i.e., Bayesian games where, immediately after
learning their types and before playing a, players can disclose
their private information as follows (the “disclosure phase”).
Players simultaneously each choose Θi = (Θij)j ̸=i, where
each disclosure set Θij is from some disclosure space R(ti), a
subset of T(ti) = {Θi ⊆ Ti | ti ∈ Θi}. Then, each player j
observes each Θij , thus learning that player i’s type is in
Θij , and conditions aj on (Θij)i̸=j . As is standard in the
framework of strategic information revelation, disclosure is
verifiable in the sense that each Θij must contain player i’s

1Even without a trusted third party that supplies a common
correlation signal, players could choose to all condition on the same
“natural” source of randomness.

true type; they cannot falsely “disclose” a different type. We
will place our results on conditional type disclosure in the
context of the literature on unraveling:

Definition 5. Let {Θi}ni=1 be the profile of disclosure set
lists (as functions of types) in a Bayesian Nash equilibrium σ
of a game with strategic information revelation. Then σ has
full unraveling if Θij(ti) = {ti} for all i, j, or partial un-
raveling if Θij(ti) is a strict subset of Ti for some i, j.

Inefficiency: Motivating Example
Uncertainty about others’ private information, and a lack of
ability or incentive to disclose that information, can lead to
inefficient outcomes in Bayesian Nash equilibrium (or an
appropriate refinement thereof). Here is an example we use
to illustrate how informational problems can be overcome
under our assumptions, but not under the weaker assumption
of unconditional disclosure ability.

Example 1 (War under incomplete information, adapted from
Slantchev and Tarar (2011)). Two countries i = 1, 2 are on
the verge of war over some territory. Country 1 offers a split
of the territory giving fractions s and 1− s to countries 1 and
2, respectively. If country 2 rejects this offer, they go to war.
Each player wins with some probability (detailed below), and
each pays a cost of fighting ci > 0. The winner receives a
payoff of 1, and the loser gets 0.

The countries’ military strength determines the probability
that country 2 wins the war, denoted p(θ). Country 1 doesn’t
know whether country 2’s army is weak (with type θW ) or
strong (θS), while country 1’s strength is common knowledge.
Further, country 2 has a weak point, which country 1 believes
is equally likely to be in one of two locations v ∈ {1, 2}.
Thus country 2’s type is given by t2 = {θ, v}. Country 1 can
make a sneak attack on v̂ ∈ {1, 2}, independent of whether
they go to war. Country 1 would gain z from attacking v̂ = v,
costing cA,2 for country 2. But incorrectly attacking v̂ ̸= v
would cost cA,1 > z for country 1, so country 1 would not
risk an attack given a prior of 1

2 on each of the locations. If
country 2 discloses its full type by allowing inspectors from
country 1 to assess its military strength θ, country 1 will also
learn v.

If country 1 has a sufficiently low prior that country 2
is strong, then war occurs in the unique perfect Bayesian
equilibrium when country 2 is strong. Moreover, this can
happen even if the countries can fully disclose their private
information to one another. In other words, the unraveling
of private information does not occur, because player 2 will
be made worse off if they allow player 1 to learn about their
weak point (see Appendix A.1 in the extended version of this
paper2 for a formal argument). Thus, unconditional disclosure
is not sufficient to allow efficiency in equilibrium in this
example, motivating the use of the conditional disclosure
devices defined in the next section.

Next, we formally introduce our framework for commit-
ment games with conditional information disclosure and
present our folk theorem.

2http://arxiv.org/abs/2204.03484
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Commitment Games with Conditional
Information Disclosure

Setup
Players are faced with a “base game” G, a Bayesian game
with strategic information revelation as defined in Defini-
tions. In our framework, a commitment game is a higher-level
Bayesian game in which the type distribution is the same as
that of G, and strategies are devices that define mappings
from other players’ devices to actions and disclosure in G
(conditional on one’s type). We assume {{ti}, Ti} ⊆ R(ti)
for all players i and types ti, i.e., players are at least able to
disclose their exact types or not disclose any new information.
They additionally have access to devices that can condition
(i) their actions in G and (ii) the disclosure of their private
information on other players’ devices. Upon learning their
type ti, player i chooses a commitment device di from an
abstract space of devices Di. These devices are indices that,
based on ti, induce a response function and a type disclosure
function (as detailed below). As in Kalai et al. (2010) and
Forges (2013), we will define these functions so as to allow
players to condition their decisions on each other’s decisions
without circularity.

Let C be the domain of the randomization signal C (a
random variable), and D−i =×j ̸=i Dj . First, adopting the
notation of Forges (2013), the response function is ridi(ti)

:

D−i × C → Ai. Given the other players’ devices d−i =
(dj)j ̸=i and the realized value c of C, player i’s action in G
after the disclosure phase is ridi(ti)

(d−i, c).3 Conditioning the
response on c lets players commit to correlated distributions
over actions.

Second, we introduce type disclosure functions yidi(ti)
:

D−i → {0, 1}n−1, which are not in the framework of Forges
(2013). The jth entry of yidi(ti)

(d−i) indicates whether
player i discloses their type to player j, i.e., player j learns
Θij = {ti} if this value is 1 or Θij = Ti if it is 0. (We can
restrict attention to cases where either all or no information
is disclosed, as our folk theorem shows that such a disclosure
space is sufficient to enforce each equilibrium payoff profile.)
Thus, each player i can condition their action ridi(ti)

(d−i, c)

on the others’ private information disclosed to them via
(yjdj(tj)

(d−j))j ̸=i. Further, they can choose whether to dis-
close their type to another player, via yidi(ti)

(d−i), based on
that player’s device. Thus players can decide not to disclose
private information to players whose devices are not in a
desired device profile, and instead punish them.

Then, the commitment game G(D) is the one-shot
Bayesian game in which each player i’s strategy is a de-
vice di ∈ Di, as a function of their type. After devices are
simultaneously and independently submitted (potentially as
a draw from a mixed strategy over devices), the value c is
drawn from the randomization signal C, and players play
the induced action profile (ridi(ti)

(d−i, c))
n
i=1 in G. Thus the

3A player who chooses to “not commit” submits a device that is
not a function of the other players’ devices. In this case, the other
devices can only condition on this non-commitment choice, not on
the particular action this player chooses.

ex post payoff of player i in G(D) from a device profile
d = (di)

n
i=1 is ui(t, (r

i
di(ti)

(d−i, c))
n
i=1).

Folk Theorem
Our folk theorem consists of two results: First, any feasible
and INTIR payoff can be achieved in equilibrium (Theo-
rem 1). As a special case of interest, then, any efficient payoff
can be attained in equilibrium. Second, all equilibrium pay-
offs in G(D) are feasible and INTIR (Proposition 1). The
proof of Proposition 1 is straightforward (see Appendix C).

Theorem 1. Let G(D) be any commitment game. For type
profile t, let µ be a correlated policy inducing a feasible and
INTIR payoff profile (ui(t,µ))

n
i=1. Let τ̂ be a punishment

policy that is arbitrary except, if j is the only player with
d′j ̸= dj , let τ̂ be the minimax policy τ−j against player j.
Conditional on the signal c, let µc(t) be the deterministic
action profile, called the target action profile, given by µ(·|t),
and let τ̂ c be the deterministic action profile given by τ̂ . For
all players i and types ti, let di be such that:

ridi(ti)
(d′

−i, c) =

{
µc
i (t), if d′

−i = d−i

τ̂ ci , otherwise,

yidi(ti)
(d′

−i)j =

{
1, if d′j = dj
0, otherwise.

Then, the device profile d is a Bayesian Nash equilibrium of
G(D).

Proof. We first need to check that the response and type dis-
closure functions only condition on information available to
the players. If all players use d, then by construction of yidi(ti)

they all disclose their types to each other, and so are able to
play µ(·|t) conditioned on their type profile (regardless of
whether the induced payoff is IC). If at least one player uses
some other device, the players who do use d still share their
types with each other, thus they can play τ̂ .

Suppose player j deviates from d. That is, player j’s strat-
egy in G(D) is d′j ̸= dj . Note that the outputs of player j’s
response and type disclosure functions induced by d′j may in
general be the same as those returned by dj . We will show
that τ̂ c punishes deviations from the target action profile re-
gardless of these outputs, as long as there is a deviation in
functions r′j or y′j . Let a′j = rjd′

j(tj)
(d−j , c). Then:

Et−j∼q(·|tj)(uj(t, (a
′
j , τ̂ ))|d′j ,d−j)

= Et−j∼q(·|tj)uj(t, (a
′
j , τ−j(·|t−j)))

≤ Et−j∼q(·|tj)uj(t,µ) (by INTIR)

= Et−j∼q(·|tj)(uj(t,µ)|dj ,d−j).

This last expression is the ex interim payoff of the proposed
commitment dj given that the other players use d−j , there-
fore d is a Bayesian Nash Equilibrium.

Proposition 1. Let G(D) be any commitment game. If a
device profile d is a Bayesian Nash equilibrium of G(D),
then the induced payoff x is feasible and INTIR.
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Our assumptions do not imply the equilibrium payoffs are
IC (unlike Forges (2013)). Suppose a player i’s payoff would
increase if the players conditioned the correlated policy on a
different type (i.e., not IC). This does not imply that a profit
is possible by deviating from the equilibrium, because in our
setting the other players’ actions are conditioned on the type
disclosed by i. In particular, as in our proposed device profile,
they may choose to play their part of the target action profile
only if all other players’ devices disclose their (true) types.

The assumptions that give rise to this class of commitment
games with conditional information disclosure are stronger
than the ability to unconditionally disclose private informa-
tion. Recalling the unraveling results from Related Work,
unconditional disclosure ability is sometimes sufficient for
the full disclosure of private information, or for disclosure
of the information that prohibits incentive compatibility, and
thus the possibility of efficiency in equilibrium. But this is
not always true, whereas efficiency is always attainable in
equilibrium under our assumptions. In Appendix A, we first
show that full unraveling fails in our motivating example
when country 2 has a weak point. Then, we discuss con-
ditions under which the ability to partially disclose private
information is sufficient for efficiency, and examples where
these conditions don’t hold.

Implementation of Conditional Type Disclosure
via Robust Program Equilibrium

Having shown that all efficient payoff profiles are achievable
in equilibrium using conditional commitment and disclosure
devices, we next consider how players can practically (and
more robustly) implement these abstract devices. In particular,
can players achieve efficient equilibria without using the
exact device profile in Theorem 1, which can only cooperate
with itself? We now develop an implementation showing that
this is possible, after providing some background.

Oesterheld (2019) considers two computer programs
playing a game. Each program can simulate the other in
order to choose an action in the game. He constructs a
program equilibrium — a pair of programs that form an
equilibrium of this game — using “instantaneous tit-for-tat”
strategies. In the Prisoner’s Dilemma, the pseudocode for
these programs (called “ϵGroundedFairBot”) is: “With
small probability ϵ: Cooperate; Else: do
what my counterpart does when playing
against me.” These programs cooperate with each other
and punish defection. Note that these programs are recursive,
but guaranteed to terminate because of the ϵ probability that
a program outputs Cooperate unconditionally.

We use this idea to implement conditional commitment
and disclosure devices. For us, “disclosing private infor-
mation and playing according to the target action pro-
file” is analogous to cooperation in the construction of
ϵGroundedFairBot. Thus, instead of a particular device
profile in which a device cooperates if and only if all other
devices are in that profile, we consider programs that coop-
erate if and only if all other programs output cooperation
against each other. We will first describe the appropriate class
of programs for program games under private information.

Then we develop our program, ϵGroundedFairSIRBot
(where “SIR” stands for “strategic information revelation”),
and show that it forms a δ-Bayesian Nash equilibrium of a
program game. Pseudocode for ϵGroundedFairSIRBot
is given in Algorithm 1.

As in Setup, there is a base game G, and players choose
strategies that implement actions in G conditional on each
other’s strategies. In a program game, programs fill the role
of devices in a commitment game. Player i’s strategy in the
program game is a choice pi from the program space Pi,
a set of computable functions from×n

j=1 Pj × C × {0, 1}
to Ai ∪ {0, 1}n−1. A program returns either an action or
a type disclosure vector (just as a device induces response
and type disclosure functions, which return actions and dis-
closure vectors, respectively). Each program takes as input
the players’ program profile, the signal c, and a boolean that
equals 1 if the program’s output is an action, and 0 otherwise.
For brevity, we write pri for a call to a program with the
boolean set to 1, otherwise pyi . Letting p = (pm)nm=1 be the
players’ program profile, player i’s action in G is a call to
their program pi(p, c, 1). (We refer to these initial program
calls as the base calls to distinguish them from calls made by
other programs.) Then, the ex post payoff of player i in the
program game is ui(t, (pj(p, c, 1))

n
j=1).

Like Oesterheld (2019), we will use programs that un-
conditionally terminate with some small probability. To gen-
eralize this idea to a setting with private information and
more than two players, we now introduce some additional
elements of the program game and our program. First, in
addition to C in the base game, there is a randomization
signal CP on which programs can condition their outputs.
By using CP to correlate decisions to unconditionally ter-
minate, our program profile will be able to terminate with
probability 1, despite the exponentially increasing number
of recursive program calls. In particular, CP reads the call
stack of the players’ program profile. At each depth level L
of recursion reached in the call stack, a variable UL is in-
dependently sampled from Unif[0, 1]. Each program call at
level L can read off the values of UL and UL+1 from CP .
The index L itself is not revealed, however, because pro-
grams that “know” they are being simulated could defect in
the base calls, while cooperating in simulations to deceive
the other programs. Second, let ϵGroundedFairSIRBotr

and ϵGroundedFairSIRBoty be calls to the program
ϵGroundedFairSIRBot with output action = 1
and output action = 0, respectively. To ensure that
our programs terminate in play with a deviating program,
ϵGroundedFairSIRBotr will call truncated versions of
its counterparts’ disclosure programs: For pi ∈ Pi, let [pi]
denote pi with immediate termination upon calling another
program.

Figure 1 visually summarizes a program game between
ϵGroundedFairSIRBot and some other program. Like
a device in the profile in Theorem 1, which checks if the
other devices are part of a profile that disclose their types and
play their parts of the target action profile (“cooperate”), our
program checks if the other programs disclose and cooperate
with it. With high probability, ϵGroundedFairSIRBotr

checks if all other players’ programs disclose their types
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Algorithm 1: ϵGroundedFairSIRBot

Require: Program profile p, randomization signal value c,
boolean output action

1: if output action = 1 then
2: if UL+1 ≥ ϵ then
3: for k ̸= i do ▷ Check if each player discloses
4: yk ← pk(p, c, 0)

5: if yk = 1 for all k ̸= i then
6: if UL < ϵ then ▷ Unconditionally cooperate
7: return µc

i (t)

8: for k ̸= i do ▷ Check if others cooperate
9: ak ← pk(p, c, 1)

10: if ak = µc
k(t) for all k ̸= i then

11: return µc
i (t)

12: return τ̂ ci ▷ Punish given known (ym)m ̸=i

13: for k ̸= i do ▷ Check truncated pyk
14: yk ← [pk](p, c, 0)

15: if yk = 1 for all k ̸= i then ▷ Full type known
16: return µc

i (t)

17: return τ̂ ci
18: else
19: yi ← 0
20: if UL < ϵ then ▷ Unconditionally disclose
21: return 1
22: for k ̸= i do
23: yk ← pk(p, c, 0)
24: ak ← pk(p, c, 1)

25: if yk = 1 and ak = µc
k(t) for all k ̸= i then

26: return 1
27: for k ̸= i do
28: if yk

i = 1 and (ak = τ̂ ck or UL+1 < ϵ) then
29: yi

k ← 1

30: return yi

(lines 2-5 of Algorithm 1). If so, either with a small probabil-
ity it unconditionally cooperates (lines 6-7), or it cooperates
only when all other programs cooperate (lines 8-11). Other-
wise, it punishes (line 12). If, with low probability, the next
call to ϵGroundedFairSIRBotr will unconditionally co-
operate, then the current call cooperates if and only if the
other truncated programs disclose (lines 13-17).

In turn, ϵGroundedFairSIRBoty discloses its type un-
conditionally with probability ϵ (lines 20-21). Otherwise, it
discloses to a given player j under two conditions (lines 25
and 28). First, player j must disclose to the user. Second, they
must play an action consistent with the desired equilibrium,
i.e., cooperate when all players disclose their types, or punish
otherwise.

Unconditionally disclosing one’s type and playing the tar-
get action avoids an infinite regress. Crucially, these uncondi-
tional cooperation outputs are correlated via CP . Therefore,
in a profile of copies of this program, either all copies un-
conditionally cooperate together, or none of them do so. Us-
ing this property, we can show (see proof of Theorem 2
in Appendix D) that a profile where all players use this

pr,1i

yj = 1?

U1 ≥ ϵ and U2 ≥ ϵ?

aj = µc
j(t)?

pr,2j py,2j

pr,3i py,3i pr,3i py,3i

U3 ≥ ϵ?

yj = 1 and
(aj = µc

j(t)
or aj = τ̂ c

j

or U4 < ϵ)?

µc
i (t) τ̂ ci

µc
i (t)

τ̂ ci

1

1 0 pr,4j py,4j

yes no

yes no

yes no

yes no

yes no

Figure 1: Flowchart for a 2-player program game between
player i using ϵGroundedFairSIRBot, and player j us-
ing an arbitrary program. An edge to a white node indicates
a call to the program in that node; to a gray node indicates a
check of the condition in that node; and to a node without a
border indicates the output of the most recent parent white
node. Wavy edges depict a call to the program in the parent
node, with its child nodes omitted for space. Superscripts
indicate the level of recursion.

program outputs the target action profile with certainty. If
one player deviates, first, ϵGroundedFairSIRBotr im-
mediately punishes if that player does not disclose. If the
deviating player does disclose, with some small probabil-
ity the other players unconditionally cooperate (lines 13-
16), making this strategy slightly exploitable, but otherwise
the deviator is punished. Even if a deviation is punished,
ϵGroundedFairSIRBoty may unconditionally disclose.
In our approach, this margin of exploitability is the price
of implementing conditional commitment and disclosure
with programs that cooperate based on counterparts’ out-
puts, rather than a strict matching of devices, without an
infinite loop. Further, since a player is only able to uncondi-
tionally cooperate under incomplete information if they know
all players’ types, ϵGroundedFairSIRBotr needs to pre-
maturely terminate calls to programs that don’t immediately
unconditionally cooperate, but which may otherwise cause
infinite recursion (line 14). This comes at the expense of ro-
bustness: ϵGroundedFairSIRBot punishes some players
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who may have otherwise cooperated, with low probability.

Theorem 2. Consider the program game induced by a base
game G and the program spaces {Pi}ni=1. Assume all strate-
gies returned by these programs are computable. For a type
profile t, let µ(·|t) induce a feasible and INTIR payoff profile
(ui(t,µ))

n
i=1. Let τ̂ be the minimax policy if one player j

deviates, and arbitrary otherwise.
Let u be the maximum payoff achievable by any player

in G, and δ = u((1− ϵ)−2 − 1). Then the program profile p
given by Algorithm 1 (with output action = 1) for play-
ers i = 1, . . . , n is a δ-Bayesian Nash equilibrium. That is, if
players i ̸= j play this profile, and player j plays a program
p′j ∈ Pj that terminates with probability 1 given that any
programs it calls terminate with probability 1, then:

Et−j∼q(·|tj)(uj(t,µ)|p′j ,p−j)

≤ δ + Et−j∼q(·|tj)(uj(t,µ)|pj ,p−j).

PROOF SKETCH. We need to check (1) that the program
profile p terminates (a) with or (b) without a deviation, (2)
that everyone plays the target action profile when no one devi-
ates, and (3) that with high probability a deviation is punished.
First, suppose no one deviates. If UL < ϵ for two levels of
recursion in a row, the calls to pyi and pri all unconditionally
disclose (line 21) and output the target action (line 16), re-
spectively. Because these unconditional cooperative outputs
are correlated through CP , the probability that UL < ϵ at
each pair of subsequent levels in the call stack is a nonzero
constant. Thus it is guaranteed to occur eventually and cause
termination in finite time, satisfying (1b). Moreover, each
call to pyi or pri in previous levels of the stack sees that the
next level cooperates, and thus cooperates as well, ensuring
that the base calls all output the target action profile. This
shows (2).

If, however, one player deviates, we use the same
guarantee of a run of subsequent UL < ϵ events to guarantee
termination. First, all calls to non-deviating programs
terminate, because any call to ϵGroundedFairSIRBotr

conditional on UL+1 < ϵ forces termination (line 14)
of calls to other players’ disclosure programs. Thus
the deviating programs also terminate, since they call
terminating non-deviating programs. This establishes
(1a). Finally, in the high-probability event that the first
two levels of calls to p do not unconditionally cooperate,
ϵGroundedFairSIRBotr punishes the deviator as long
as they do not disclose their type and play their target action.
The punishing players will know each other’s types, since a
call to ϵGroundedFairSIRBoty is guaranteed by line 28
to disclose to anyone who also punishes or unconditionally
cooperates in the next level. Condition (3) follows. □

We now discuss two practical considerations for this pro-
gram equilibrium implementation. First, one obstacle to this
implementation is demonstrating to one’s counterpart that
one’s behavior is actually governed by the source code that
has been shared. In our program game with private informa-
tion, there is the additional problem that, as soon as one’s
source code is shared, one’s counterpart may be able to read
off one’s private information (without disclosing their own).

Addressing this in practice might involve modular architec-
tures, where players could expose the code governing their
strategy without exposing the code for their private informa-
tion. Alternatively, consider AI agents that can place copies
of themselves in a secure box, where the copies can inspect
each other’s full code but cannot take any actions outside the
box. These copies read each other’s commitment devices off
of their source code, and report the action and type outputs of
these devices to the original agents. If any copy within the box
attempts to transmit information that another agent’s device
refused to disclose, the box deletes its contents. This protocol
does not require a mediator or arbitrator; the agents and their
copies make all the relevant strategic decisions, with the box
only serving as a security mechanism. Applications of secure
multi-party computation to machine learning (Knott et al.
2021), or privacy-preserving smart contracts (Kosba et al.
2016) — with the original agents treated as the “public” from
whom code shared among the copies is kept private — might
facilitate the implementation of our proposed commitment
devices.

Second, it is an open question how to implement
ϵGroundedFairSIRBot in machine learning. We believe
that this algorithm can be implemented with neural networks,
by substituting in learned strategies for the hard-coded parts
of the ϵGroundedFairSIRBot algorithm that output de-
cisions (lines 7, 11, 16). Indeed, Hutter (2021) takes this
approach to applying multi-agent reinforcement learning to
programs in the class of ϵGroundedFairBot, of which
ϵGroundedFairSIRBot is a generalization.

Discussion
We have defined a new class of commitment games that
allow disclosure of private information conditioned on other
players’ commitments. Our folk theorem shows that in these
games, efficient payoffs are always attainable in equilibrium,
which is not true in general without conditional disclosure
devices. Finally, we have provided an implementation of this
framework via robust program equilibrium, which can be
used by computer programs that read each other’s source
code.

While conceptually simple, satisfying these assumptions
in practice requires a strong degree of mutual transparency
and conditional commitment ability, which is not possessed
by contemporary human institutions or AI systems. Thus, our
framework represents an idealized standard for bargaining
in the absence of a trusted third party, suggesting research
priorities for the field of Cooperative AI (Dafoe et al. 2020).
The motivation for work on this standard is that AI agents
with increasing economic capabilities, which would exem-
plify game-theoretic rationality to a stronger degree than
humans, may be deployed in contexts where they make strate-
gic decisions on behalf of human principals (Geist and Lohn
2018). Given the potential for game-theoretically rational
behavior to cause cooperation failures (Myerson and Satterth-
waite 1983; Fearon 1995), it is important that such agents
are developed in ways that ensure they are able to cooperate
effectively.

Commitment devices of this form would be particularly
useful in cases where centralized institutions (Dafoe et al.
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(2020), Section 4.4) for enforcing or incentivizing cooper-
ation fail, or have not been constructed due to collective
action problems. This is because our devices do not require a
trusted third party, aside from correlation signals. A potential
obstacle to the use of these commitment devices is lack of
coordination in development of AI systems. This may lead
to incompatibilities in commitment device implementation,
such that one agent cannot confidently verify that another’s
device meets its conditions for trustworthiness and hence
type disclosure. Given that commitments may be implicit in
complex parametrizations of neural networks, it is not clear
that independently trained agents will be able to understand
each other’s commitments without deliberate coordination be-
tween developers. Our program equilibrium approach allows
for the relaxation of the coordination requirements needed to
implement conditional information disclosure and commit-
ment. Coordination on target action profiles for commitment
devices or flexibility in selection of such profiles, in inter-
actions with multiple efficient and arguably “fair” profiles
(Stastny et al. 2021), will also be important for avoiding
cooperation failures due to equilibrium selection problems.
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