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Abstract
We study competition among contests in a general model that
allows for an arbitrary and heterogeneous space of contest de-
sign and symmetric contestants. The goal of the contest de-
signers is to maximize the contestants’ sum of efforts. Our
main result shows that optimal contests in the monopolistic
setting (i.e., those that maximize the sum of efforts in a model
with a single contest) form an equilibrium in the model with
competition among contests. Under a very natural assump-
tion these contests are in fact dominant, and the equilibria
that they form are unique. Moreover, equilibria with the op-
timal contests are Pareto-optimal even in cases where other
equilibria emerge. In many natural cases, they also maximize
the social welfare.

1 Introduction
Many important economic and social interactions may be
viewed as contests. The designer aims to maximize her
abstract utility (e.g. workers’ productivity, sales competi-
tions, innovative ideas for new projects, useful information
from contestants) by forming a contest, and contestants ex-
ert effort in hopes of winning a prize. The design of opti-
mal contests is by now well understood in the monopolis-
tic (single-contest) setting. In particular, in many cases, a
winner-takes-all contest is optimal in terms of maximizing
either the sum of contestants’ efforts or the single maximal
effort (e.g. (Barut and Kovenock 1998; Kalra and Shi 2001;
Moldovanu and Sela 2001; Terwiesch and Xu 2008; Chawla,
Hartline, and Sivan 2019)).

While most of the existing literature on contest design fo-
cuses on a monopolistic contest with an exogenously given
set of contestants, in reality, many times, there are multi-
ple contests on a market and these contests must compete
to attract contestants, which induces a participation vs. ef-
fort trade-off. Although the optimal contest in the single-
contest setting induces maximal effort exertion after con-
testants choose to participate in their contests, contestants
might at the same time be discouraged from choosing the
more demanding contests. To attract contestants, it seems
helpful to design lucrative and easy contests that leave a
large fraction of the total surplus to contestants. Thus, these
two aspects appear to be contradicting.
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Previous literature has already started to acknowledge this
issue with few models that formally studied it (e.g., (Azmat
and Möller 2009; Stouras, Erat, and Lichtendahl 2020; Deng
et al. 2022)). In particular, (Azmat and Möller 2009) con-
clude that, despite the competitive environment, contest de-
signers should still choose effort-maximizing contests since
the effort aspect dominates the participation aspect. How-
ever, it is not clear how robust this conclusion really is, since
these previous papers analyze models that are restricted in
two main aspects. First, they assume that all contests have
the same total prize to offer.1 Second, and perhaps even more
important, they restrict the choice of a contest and assume
that designers choose a multiple-prize contest where contes-
tants’ winning probabilities for each prize are determined by
a Tullock success function that is exogenous and identical
for all contest designers. Generalizing the model of (Azmat
and Möller 2009), our paper provides a more general frame-
work and analysis of competition among multiple contests,
showing that effort still dominates participation even allow-
ing asymmetric contest designers and general contest design
space.

1.1 Overview of Results and Techniques
At a high level, our competition model is composed of three
phases. In the first phase, contest designers choose their con-
tests (and commit to them) from a class of contests avail-
able to them which could be any arbitrary class of contests.
In the second step, after seeing the contests chosen by de-
signers, each contestant chooses (possibly in a random way)
one contest to participate in. Finally, in each contest, contes-
tants invest effort by playing a symmetric Nash equilibrium
(which previous literature has shown to exist, see details in
Section 2). Designers aim to maximize the sum of efforts ex-
erted in their own contests and contestants aim to maximize
the reward they receive minus their effort.

We identify two properties of contests and show as our
first main result that if every contest designer chooses a
contest that satisfies these two properties then we are at an
equilibrium. The first property, which we term Monoton-
ically Decreasing Utility (MDU), simply says that a con-

1Previous analysis substantially relies on this assumption. It
also formally assumes exactly two competing contests, although
this aspect may be more easily generalized.
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testant’s symmetric-equilibrium utility in the single contest
game decreases as the number of contestants increases. The
second property, which we term Maximal Rent Dissipation
(MRD), is defined with respect to the space of possible
contests Si that contest designer i has. A specific contest
Ci ∈ Si has maximal rent dissipation if, for any other con-
test C ′

i ∈ Si that could be a possible choice for designer
i, and for any number of contestants, k, the contestant’s
symmetric-equilibrium utility in the single contest Ci when
there are k contestants is not larger than the contestant’s
equilibrium utility in the single contest C ′

i when there are
k contestants. Thus, Ci minimizes the contestants’ utilities
and therefore maximizes the utility of the contest designer,
among all contests available to designer i. In this sense, Ci

is optimal for the designer in the single contest game.

Main Results Our first main result (Theorem 3.1) is that
MRD contests form an equilibrium of the contest competi-
tion game, and that, in the case where designers can choose
only MDU contests, MRD contests are weakly dominant. In
the latter case, MRD contests are the only possible contests
that emerge in equilibria (Theorem 3.3). If designers can
choose non-MDU contests, non-MRD contests may emerge
as additional equilibria (Example 3.2) on top of the equilib-
ria that MRD contests form. However, we show that even
when non-MRD contests form equilibria, choosing MRD
contests is a Pareto-optimal outcome for contest designers
(Theorem 3.7), maintaining the attractiveness of MRD con-
tests to contest designers. In summary, effort indeed dom-
inates participation in the aforementioned trade-off for the
competing designers. We additionally show that MRD con-
tests are welfare optimal in many natural cases (although
not always, see Section 5). These conclusions hold regard-
less of the number of designers, the rewards they have, and
the classes of contests they can choose from subject to the
assumptions detailed below.

Important Modeling Assumptions Our analysis relies on
the fact that, in our model, the social welfare generated by
any contest is fixed and independent of effort: as long as
k ≥ 1 contestants participate in a contest, the social wel-
fare is simply the reward offered by the designer (the efforts
cancel out in the social welfare summation because they ap-
pear in a plus sign for the designer and in a minus sign for
the contestants). This is an implication of assuming a linear
and symmetric cost of effort, and of assuming that the re-
ward has the same value for all contestants. We also assume
that the reward is fully allocated to the contestants. In par-
ticular, if only one contestant shows up, that contestant re-
ceives the full reward. The latter two assumptions are natural
in many types of contests, e.g., in R&D contests, in crowd-
sourcing websites, in rewarding athletes, musicians, actors,
for their performance, etc. The assumption that the reward
is valued the same way by all contestants may be less natu-
ral, though, in incomplete-information auction-like settings
where the reward is a non-monetary object that may be val-
ued differently by different contestants/bidders. This is a key
reason why our results may not necessarily carry over to an
incomplete-information setting.

Intuition To see why the above assumptions imply our
first main result that MRD contests are at equilibrium in our
contest competition game, consider the following intuition.
Suppose that the designer switches from some MRD contest
Ci to a non-MRD (i.e., less surplus-extracting) contest C ′

i,
to attract more contestants (we indeed prove that there are
no contests that attract less contestants than MRD contests).
Consider the contribution of one additional contestant to the
designer’s utility, i.e., consider designer i’s marginal utility
of increasing the symmetric equilibrium probability pi that
a contestant participates in contest i. Each additional con-
testant generates social welfare equal to the prize awarded
by this contest when no other contestants participate; how-
ever, in this case, the designer’s utility is zero in both Ci and
C ′

i since in this case, the contestant receives the full reward
without exerting any effort. So, when no other contestants
participate, the contestant contributes 0 to the designer’s util-
ity in both Ci and C ′

i. On the other hand, when other contes-
tants are participating, this added contestant does not con-
tribute to the social welfare and we show that the sum of
contestants’ utilities in C ′

i is higher than that in Ci, thus
strictly lowering the designer’s utility. There are two contra-
dicting effects here – C ′

i leaves more surplus to contestants
thus increasing their utility but on the other hand, attracts
more contestants hence decreasing the utility of each con-
testant – and it turns out that this is true only when the other
designers’ contests are MDU. We conclude that as long as
pi > 0, the designer has an incentive to decrease pi as much
as possible; this is achieved by an MRD contest.

Applications We apply our general framework to a com-
petition among Tullock contests with varying prize struc-
tures. As corollaries, we obtain: (1) Choosing winner-takes-
all contests, i.e., giving the entire reward to the winner,
is an equilibrium for designers who can only adjust prize
structures but not their observability of effort and/or quality,
i.e., the Tullock parameter τ is exogenous (Corollary 4.3).
(2) Choosing all-pay auctions is an equilibrium for designers
who can only adjust observability but must choose winner-
takes-all; in fact, we show that choosing any τ ≥ 2 is an
equilibrium (Corollary 4.2). (3) Choosing the winner-take-
all contest with the largest possible observability is an equi-
librium for designers that can adjust both prize structures
and observability (Corollary 4.4).

1.2 Related Literature
In the full version we review three strands of literature. One
strand considers the optimality of contests in a monopolis-
tic (single contest) setting, in terms of revenue for the de-
signer, agent participation, etc. The other two, more recent
strands, consider equilibrium outcomes when multiple con-
test (or more generally, mechanism) designers compete over
agents’ participation and effort. Our result is interesting in
the way it ties together these domains: We show that effort-
maximizing contests (those that were identified in the first
literature strand) are in an equilibrium in our general model,
that belongs to and follows the second strand. The takeaway
message to a contest designer is that in case she is inter-
ested to maximize the sum of contestants’ efforts, introduc-
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ing competition does not change her basic goal of maximiz-
ing over effort extraction, given a fixed set of contestants.

(Körpeoğlu, Korpeoglu, and Hafalir 2017) consider an in-
complete information contest model where contestants can
participate in multiple contests, and contest designers use
winner-takes-all contests while strategically choosing re-
wards to maximize the maximal submission quality minus
reward. They show that, in several cases, contest designers
benefit from contestants’ participation in multiple contests.

2 Model and Preliminaries
All missing proofs appear in the full version.

2.1 A Single-Contest Game
A contest designer designs a contest among several contes-
tants to maximize the sum of efforts exerted by the contes-
tants in return for some reward to be divided among them
according to some winning rule determined by the designer.

Formally, a contest C is composed of a reward (or a total
prize) R and contest success functions (CSF) fk : Rk

≥0 →
[0, 1]k for each number of contestants k > 0. Contestants
exert efforts (e1, . . . , ek) ∈ Rk

≥0 to compete for the reward.
Each contestant i receives a fraction fk

i (e1, . . . , ek) of the
reward, where fk

i (e1, . . . , ek) is the i-th coordinate of the
vector fk(e1, . . . , ek). We allow general functions fk

i (·) and
only require that

∑k
i=1 f

k
i (e1, . . . , ek) ≤ 1. This captures a

wide variety of contest success functions. For example, in
a single-prize (or winner-takes-all) setting, fk

i (e1, . . . , ek)
is the probability that contestant i wins the entire prize;
Section 4.2 and Footnote 6 discuss how multi-prize set-
tings are captured by our model. The utility of a contes-
tant is the reward she gets minus the effort she exerts:
fk
i (e1, . . . , ek)R−ei. Altogether, for a given number of con-

testants k, this defines a complete-information game for the
contestants. Later on, we also consider the utility of the con-
test designer which we define as the sum of efforts

∑k
i=1 ei.

A designer’s utility is 0 when k = 0.
Definition 2.1. A contest is anonymous if its contest success
functions fk : Rk

≥0 → [0, 1]k satisfy, for any k > 0, for any
(e1, . . . , ek) ∈ R≥0 and any permutation π of (1, . . . , k),

fk
(
eπ(1), . . . , eπ(k)

)
=(

fk
π(1)(e1, . . . , ek), . . . , f

k
π(k)(e1, . . . , ek)

)
.

Definition 2.2. A contest fully allocates the reward if its CSF
fk : Rk

≥0 → [0, 1]k satisfy, ∀k > 0, ∀(e1, . . . , ek) ∈ Rk
≥0,∑k

i=1 f
k
i (e1, . . . , ek) = 1.

Example 2.3. A Tullock contest (or, more accurately, a
single-prize Tullock contest) parameterized by τ ∈ [0,+∞]
has the following contest success function:

fk
i (e1, . . . , ek) =

{
eτi∑k

j=1 eτj
if ej > 0 for some j ∈ {1, . . . , k}

1
k otherwise

When τ = +∞ the contest is an “All Pay Auction (APA)”
where the contestant with the highest effort wins with cer-
tainty (to maintain anonymity, if several contestants exert

the highest effort, they all win with equal probability). A Tul-
lock contest is anonymous and it fully allocates the reward.

The Tullock contest model captures a noisy mapping of
effort to output via the randomness parameter τ . As τ in-
creases the mapping becomes less noisy (more accurate).
For example, suppose a contestant who exerts effort ei pro-
duces random output Yi = τ log ei + Zi where Zi follows
some noise distribution. Efforts are unobservable and the re-
ward is allocated to the contestant with maximal Yi. In this
setting, fk

i (e1, ..., ek) is the expected fraction of reward re-
ceived by contestant i, as a function of contestants’ unob-
served efforts. When the noise distribution is a Gumbel dis-
tribution, f becomes a Tullock function (Fu and Wu 2019).
Our model therefore captures some of the aspects underlying
the issue of unobservable efforts / a noisy mapping.
Definition 2.4. Let CR be the set of all anonymous contests
with reward R that fully allocate the reward and have a sym-
metric Nash equilibrium among k contestants ∀k > 0.

For example, (Alcalde and Dahm 2010) and (Baye,
Kovenock, and De Vries 1996) show that Tullock contests
with parameters τ ∈ [0,∞) and τ = ∞ admit a symmetric
Nash equilibrium (NE); thus, CR contains all Tullock con-
tests with reward R. Other examples of contests that admit
symmetric NE are given in, e.g., the seminal works of (Hir-
shleifer 1989; Nti 1997), a survey by (Corchón 2007), as
well as later works such as (Amegashie 2012).

We assume throughout that all contestants in the same
contest (with k players) play a symmetric NE of that con-
test. Formally, for every C ∈ CR we fix a (mixed strat-
egy) symmetric NE, i.e., e1, . . . , ei, . . . , ek are i.i.d. ran-
dom variables that follow a distribution F defined by a
mixed strategy NE. Since C is anonymous, in the sym-
metric NE all contestants get an equal expected frac-
tion of the reward and hence their expected utilities are
identical. We denote their identical expected utility by
γC(k) = Ee1,...,ek∼F [fk

i (e1, . . . , ek)R− ei]. Moreover,
since C ∈ CR fully allocates the reward, we must have
Ee1,...,ek∼F [fk

i (e1, . . . , ek)] =
1
k and hence

γC(k) =
R

k
− Eei∼F [ei]. (1)

If k = 1, the single contestant does not exert any effort,
hence γC(1) = R. We also have γC(k) ≥ 0 ∀k > 0 since
a contestant can choose to exert zero effort and guarantee
non-negative utility. Moreover, since ei ≥ 0, γC(k) ≤ R

k .
We use γC(k) to express the utility of a designer that uses a
contest C ∈ CR with k ≥ 1 contestants by rearranging (1):

Ee1,...,ek∼F

[
k∑

i=1

ei

]
= kEei∼F [ei] = R− kγC(k). (2)

We assume that the utility of a contest designer is the ex-
pected sum of efforts, even if this is non-observable. This fits
settings like workplace contests that aim to improve work-
ers’ productivity, when workers’ productivity is linear. In an
additive noise model, the expected sum of efforts is equal to
the expected sum of qualities of submissions since the ex-
pected noise is usually assumed to be zero.
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2.2 A Contest Competition Game
We study a game where multiple contest designers compete
by choosing their contest success functions. Contestants ob-
serve these contests and choose in which one to participate.

Definition 2.5. A complete-information contest competition
game is denoted by CCG(m,n, (Ri)

m
i=1, (Si)

m
i=1), where

m ≥ 2 is the number of contest designers, n ≥ 1 is the
number of contestants, Ri > 0 is the reward of contest i,
and Si ⊆ CRi

. The game has two phases:

1. Designers choose contests. Each designer i chooses a
contest Ci ∈ Si simultaneously. Contestants observe the
chosen contests (C1, . . . , Cm).

2. Contestants play a normal-form game of choosing in
which contest to participate. A pure strategy of each con-
testant in this game is to choose one contest. Importantly,
contestants may play a mixed strategy: each contestant ℓ
participates in each contest Ci (i = 1, ...,m) with some
probability pℓi,

∑m
i=1 pℓi = 1. Let the vector of proba-

bilities chosen by contestant ℓ be pℓ = (pℓ1, ..., pℓm).

After Nature assigns contestants to contests, utilities are as
follows. If k ≥ 1 contestants participate in contest Ci, each
of them gains utility γCi

(k) and designer i gains utility Ri−
kγCi(k). If k = 0, the designer’s utility is 0.

Contestants must participate in some contest, i.e., they
cannot decide not to participate. This assumption is innocu-
ous since, as remarked above, in equilibrium contestants
utilities are always non-negative. An important element of
our model is the space Si of all possible contests a designer
can strategically choose. We treat this as an abstract set of
anonymous contests that fully allocate the reward and admit
a symmetric Nash equilibrium among k contestants for any
k > 0. An important application is Tullock contests. When
a contestant decides on a level of effort to exert, she knows
the total number of contestants k that participate in the same
contest. In practice, contestants observe this number in phys-
ical contests (like sports contests) or if the designer reveals
this information. (Myerson and Wärneryd 2006) show that
contest designers have an incentive to do so because the ex-
pected aggregate effort in a contest with a commonly known
number of contestants is in general higher; (Lim and Matros
2009) show that for Tullock contests with binomial partici-
pation distribution, the designer always reveals the number
k; (Ryvkin and Drugov 2020) characterizes that this is true
in general for contests with concave marginal costs.

In the second phase, each contestant has a finite number m
of possible actions and the game is symmetric, hence there
must exist at least one symmetric mixed NE (Nash 1951).
We assume throughout that contestants play this symmet-
ric equilibrium, i.e., we only consider equilibria in which
the probability vector of every contestant is the same (p1 =
p2 = · · · = pn). The full version discusses the case where
the contestants choose an asymmetric equilibrium. As ar-
gued by (Burdett, Shi, and Wright 2001), for example, a
symmetric equilibrium requires no coordination among con-
testants and is more robust and natural than an asymmetric
equilibrium. Formally, we denote by p(C1, . . . , Cm) ∈ Rm

the probability vector chosen by the contestants at their

symmetric equilibrium when the designers choose contests
(C1, . . . , Cm) in the first phase.2

Assume that designers choose contests C =
(C1, . . . , Cm) and contestants choose symmetric participa-
tion probabilities (p1, . . . , pm) = p(C). For a contestant
who participates in Ci, the number of other contestants in
Ci follows the binomial distribution Bin(n − 1, pi). Thus,
the expected utility of a contestant participating in Ci,
denoted by β(Ci, pi), is:

β(Ci, pi) = Ek∼Bin(n−1,pi) [γCi
(k + 1)] =

n−1∑
k=0

(
n− 1

k

)
pki (1− pi)

n−1−kγCi
(k + 1).

(3)

Let Supp(C) = {i : pi(C) > 0}.
Claim 2.1 (Equilibrium condition). Suppose that designers
choose contests C = (C1, . . . , Cm) in the first phase of the
game and contestants participate in contests with probabil-
ities (p1, . . . , pm) = p(C) in equilibrium. Then,
• If i ∈ Supp(C), β(Ci, pi) ≥ β(Cj , pj) ∀j = 1, . . . ,m.
• Thus, if i, j ∈ Supp(C), then β(Ci, pi) = β(Cj , pj).

2.3 Equilibrium among Contest Designers
We use C = (Ci,C−i) = (C1, . . . , Cm) to denote the con-
tests (strategies) chosen by all designers, where C−i de-
notes the contests chosen by designers other than i. Let
ui(Ci,C−i) be the expected utility of contest designer i
given that contestants use p(Ci,C−i). Formally, by (2) the
utility of the designer of contest Ci equals Ri − kγCi

(k)
when there are k ≥ 1 contestants. Since each contes-
tant participates in Ci independently with probability pi =
pi(Ci,C−i), the total number k of contestants in Ci fol-
lows the binomial distribution Bin(n, pi), and hence the de-
signer’s expected utility equals
ui(Ci,C−i) = Ek∼Bin(n,pi) [(Ri − kγCi(k)) · 1k≥1]. (4)
Since a contest is a constant-sum game where the overall

utility of all players (i.e., the welfare) equals the total reward
Ri whenever there is at least one contestant, designer i’s ex-
pected utility ui(Ci,C−i) is equal to the expected welfare
Ri[1 − (1 − pi)

n] minus the sum of contestants’ expected
utilities obtained from contest i, npiβ(Ci, pi). Formally,
Claim 2.2.

ui(Ci,C−i) = Ri [1− (1− pi)
n]− npiβ(Ci, pi). (5)

We analyze the following solution concepts:
Definition 2.6. Given some CCG(m,n, (Ri)

m
i=1, (Si)

m
i=1),

• A contest Ci ∈ Si is (weakly) dominant if ∀C ′
1 ∈

S1, ..., C
′
m ∈ Sm, ui(Ci,C

′
−i) ≥ ui(C

′
i,C

′
−i).

• A tuple of contests (C1, . . . , Cm), where Ci ∈ Si for
all i, is a contestant-symmetric subgame-perfect equi-
librium (contestant-symmetric SPE) if ui(Ci,C−i) ≥
ui(C

′
i,C−i), ∀C ′

i ∈ Si, ∀i.
For simplicity and also for practical purposes, we do not

consider the case where designers play mixed strategies.
2All our results hold for all symmetric equilibria. In addition,

Lemma 2.8 shows that the symmetric equilibrium is unique if a
certain condition (satisfied, e.g., by all Tullock contests) holds.
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2.4 Additional Important Properties of Contests
Our results use the following three properties of contests:
Definition 2.7. A contest Ci ∈ CRi

has monotonically de-
creasing utility (MDU) if γCi

(1) ≥ γCi
(2) ≥ · · · ≥ γCi

(n).
In words, a contestant’s symmetric NE expected utility is de-
creasing as the number of contestants increases.

A contest Ci ∈ Si ⊆ CRi has maximal rent dissipation
(MRD) in Si if ∀C ′

i ∈ Si and ∀k = 1, . . . , n, γCi(k) ≤
γC′

i
(k). Let MRD(Si) ⊆ Si denote the set of all MRD con-

tests in Si. In words, MRD contests maximize the designer’s
utility regardless of the number of contestants (equivalently,
minimize contestants’ symmetric NE expected utility).

A contest Ci ∈ CRi
has full rent dissipation if γCi

(1) =
Ri and γCi

(k) = 0 for k = 2, . . . , n.
Lemma 4.1 shows that all Tullock contests satisfy MDU;

This is not unique to Tullock contests, e.g., Proposition 2 of
(Nti 1997) shows a large class of contests that satisfy MDU.

A full-rent-dissipation contest Ci satisfies both MDU and
MRD in any set Si that contains it. (Baye, Kovenock, and
De Vries 1996) show that APA has full rent dissipation. In
fact, as a corollary of (Ewerhart 2017) we observe in Sec-
tion 4.1 that every Tullock contest with τ ≥ 2 has full rent
dissipation. MDU also implies:
Lemma 2.8. For MDU contests C = (C1, . . . , Cm), the
contestants’ symmetric equilibrium p(C) is unique.

3 Main Results: Equilibria in Contest
Competition Games

Our first main result shows that choosing MRD and MDU
contests form a subgame perfect equilibrium of the CCG
game. Moreover, MRD contests are dominant if the set of
all possible contests contains only MDU contests:
Theorem 3.1.
1. Fix any CCG(m,n, (Ri)

m
i=1, (Si)

m
i=1) where each Si ⊆

CRi contains a maximal rent dissipation contest
that has monotonically decreasing utility, denoted by
Ti ∈ MRD(Si). Then, (T1, . . . , Tm) is a contestant-
symmetric SPE.

2. Moreover, if each Si contains only MDU contests, Ti is
dominant for all i.

3. Corollary of 1: For any CCG(m,n, (Ri)
m
i=1, (Si)

m
i=1)

where each Si ⊆ CRi
contains a full rent dissipation

contest (e.g., APA) denoted by Fi, (F1, . . . , Fm) is a
contestant-symmetric SPE.

Proof sketch. Fix a contest designer, i. Suppose each of the
n contestants participates in i’s contest with some probabil-
ity pi (assuming a symmetric participation equilibrium). By
Claim 2.2, i’s expected utility is

ui(Ci,C−i) = Ri [1− (1− pi)
n]− npiβ(Ci, pi), (6)

where we recall that Ri [1− (1− pi)
n] is the expected wel-

fare generated in contest Ci and β(Ci, pi) is each contes-
tant’s expected utility conditioning on participating in Ci.
Now, suppose that contest designer i switches to a contest C ′

i
that requires less effort from the contestants (namely, leav-
ing more utility to the contestants) and hence increases the

participation probability to p′i = pi +∆p. The welfare term
Ri [1− (1− pi)

n] is increased by

∆p · ∂

∂pi
Ri[1− (1− pi)

n] = n∆pRi(1− pi)
n−1. (7)

A contestant’s conditional utility in contest i is increased,
because as contestants participate in other contests Cj (j ̸=
i) with less probabilities, the utility a contestant obtains from
Cj is increased because Cj has MDU by assumption; since
contestants are indifferent between contests i and j, their
utility obtained from contest i must be increased as well.
Suppose it is increased to β(C ′

i, p
′
i) = β(Ci, pi)+∆β. Then,

the utility term npiβ(Cj , pi) is increased by

np′iβ(C
′
i, p

′
i)− npiβ(Ci, pi)

= n(pi +∆p)(β(Ci, pi) + ∆β)− npiβ(Ci, pi)

= n∆pβ(Ci, pi) + npi∆β + n∆p∆β

> n∆pβ(Ci, pi) ≥ n∆pRi(1− pi)
n−1,

where the last inequality is because a contestant obtains util-
ity Ri when no other contestants participate in Ci, which
happens with probability (1 − pi)

n−1. This increase out-
weighs the increase of the welfare term (7), so the designer’s
utility is decreased.

Theorem 3.1 gives a sufficient condition for the exis-
tence of a specific type of contestant-symmetric subgame-
perfect equilibria, namely that the Si’s contain MDU and
MRD contests. Monotonically Decreasing Utilities rule out
some design instruments, for example, caps on efforts (one
could imagine a design in which the cap is decreasing in the
number of contestants). We emphasize that, in our model,
the Si’s can contain other arbitrary types of contests, in-
cluding non-MDU contests; the point is that if the Si’s
contain MDU and MRD contests then these contests form
contestant-symmetric subgame-perfect equilibria. Neverthe-
less, by introducing caps on efforts (thus violating MDU),
the following example shows that other types of equilibria
may also exist and that MDU and MRD contests are not
dominant. See the full version for additional examples and a
more detailed discussion.

Example 3.2. Let m = 2, n = 6, R1 = R2 = 1, both
S1 and S2 consist of two contests: APA, and a contest C
that gives the reward for free when the number of contes-
tants is k = 5, 6 and runs APA otherwise. Thus, γC =
(1, 0, 0, 0, 1/5, 1/6), which is not MDU. The full version
shows that (C,C) is a contestant-symmetric SPE and that
APA is not a best-response to C (and therefore not dom-
inant). By Theorem 3.1, (APA,APA) is still a contestant-
symmetric SPE of this game. Furthermore, by Theorem 3.7,
both designers strictly prefer (APA,APA) over (C,C).

When the sets Si contain only MDU contests, the
contestant-symmetric subgame-perfect equilibria that The-
orem 3.1 describes are the only possible equilibria:

Theorem 3.3. Fix any CCG(m,n, (Ri)
m
i=1, (Si)

m
i=1) where

each Si ⊆ CRi
only contains MDU contests. Assume

MRD(Si) ̸= ∅ for each i. Pick Ti ∈ MRD(Si), and let

5612



p̃i = pi(T1, . . . , Tm) be the probability a contestant partic-
ipates in contest Ti in the equilibrium of contestants, and
let P = Supp(T ) = {i : p̃i > 0} be the set of indices of
contests in which contestants participate with positive prob-
ability when the contests are (T1, . . . , Tm). Then

1. for any contestant-symmetric SPE (C1, . . . , Cm),
pi(C1, . . . , Cm) = p̃i.

2. if |P | ≥ 2, then (C1, . . . , Cm) ∈ S1 × · · · × Sm

is a contestant-symmetric SPE if and only if Ci ∈
MRD(Si), ∀i ∈ P .3

3. if |P | = 1, let P = {i0}, then (C1, . . . , Cm) ∈ S1 ×
· · · × Sm is a contestant-symmetric SPE if and only if
γCi0

(n) = γTi0
(n).4

In the symmetric-reward case we can show that |P | = m
which makes the statement shorter:

Corollary 3.4. When R1 = · · · = Rm (symmetric rewards),
(C1, . . . , Cm) ∈ S1 × · · · × Sm is a contestant-symmetric
SPE if and only if Ci ∈ MRD(Si) for all i ∈ {1, . . . ,m}.

Thus, the case of symmetric rewards is a “clear cut” while
the general case is more involved. The following example
demonstrates the need for this distinction using a setting
with highly asymmetric rewards.

Example 3.5. Consider m ≥ 3 contests and n contestants.
Contest 1 has reward R1 = 1, and each of others has re-

ward Rj =
(

m−1
m−2

)n−1

+ 1. Each set Si contains all MDU
contests (hence contains APA). Then for any contest C1 ∈
S1, (C1, T2, . . . , Tm) where Tj = APA ∈ MRD(Sj) for
j = 2, . . . ,m is a contestant-symmetric SPE. In this equilib-
rium, p1(C1, T2, . . . , Tm) = 0, and pj(C1, T2, . . . , Tm) =

1
m−1 > 0 for any j = 2, . . . ,m.

Finally, the equilibria in Theorem 3.1 are Pareto optimal
for the contest designers:

Definition 3.6.

• For two strategy profiles Ĉ = (Ĉ1, . . . , Ĉm),C =
(C1, . . . , Cm) ∈ S1 × · · · × Sm of the contest compe-
tition game CCG(m,n, (Ri)

m
i=1, (Si)

m
i=1), we say C is

a Pareto improvement of Ĉ, if ui(C) ≥ ui(Ĉ) for all
i ∈ {1, . . . ,m} and ui(C) > ui(Ĉ) for at least one
i ∈ {1, . . . ,m}.

• A strategy profile Ĉ = (Ĉ1, . . . , Ĉm) is Pareto Optimal
(PO) if there is no Pareto improvement of it.

Theorem 3.7. The equilibria in Theorem 3.1 are PO.

3If pi(C1, ..., Cm) = 0, contest i could be anything since i’s
utility, which is 0, cannot be improved by choosing any other con-
test C′

i as (Ci,C−i) is an equilibrium. Moreover, we show in the
full version that pi(C′

i,C−i) must be 0 as well, so the choice of C′
i

does not affect the choices of contests of other designers.
4As pi0(C1, . . . , Cm) = 1, with probability 1 there are n con-

testants in contest i0, thus the contest success functions of contest
i0 for k ̸= n have no effect on the utility calculation for the con-
testants’ best response and could be anything.

4 Applications
4.1 Competition among Tullock Contests
We first apply our results to the special case where the sets Si

are arbitrary subsets of Tullock contests, i.e., the parameter
τ becomes a strategic choice (as suggested in e.g. (Michaels
1988; Nitzan 1994; Wang 2010)). Some of the previous liter-
ature views τ as an exogenous parameter representing how
accurately the designer can observe the ranking of contes-
tants’ efforts and the resulting qualities of their submissions.
Even so, it seems plausible that the designer chooses an “ig-
norance is bliss” approach where she lowers the τ value
(thus, observes efforts’ ranking less accurately) to encourage
participation. Such situations occurred in practice. For ex-
ample, according to (Wang 2010), “the International Table
Tennis Federation (ITTF) changed the points scoring system
for international matches from first to 21 to first to 11 in
2000. One reason for doing this is to reduce the accuracy
level of the matches”.

It is known that APA has full rent dissipation (Baye,
Kovenock, and De Vries 1996) and in fact, as a corollary
of (Ewerhart 2017), every Tullock contest with parameter
τ ≥ 2 has full rent dissipation. Thus, the class of Tullock
contests contains maximal rent dissipation contests (namely,
those with τ ≥ 2). Also, it is a class of contests that have
monotonically decreasing utility:

Lemma 4.1 (Corollary of (Baye, Kovenock, and De Vries
1996; Schweinzer and Segev 2012; Ewerhart 2017)). Let Cτ

be a Tullock contest with reward R and with parameter τ ∈
[0,+∞]. Then, γCτ

(k) = R( 1k − k−1
k2 τ) if k

k−1 > τ and
γCτ

(k) = 0 if k
k−1 ≤ τ . For τ = +∞, γCτ

(1) = R and
γCτ

(k) = 0 for k ≥ 2. As corollaries,

• Every Tullock contest satisfies MDU.
• Any Tullock contest with τ ≥ 2 has full rent dissipation.
• If S is the set of all Tullock contests with parameter τ

in some range whose maximum τmax is well defined and
at most 2, then the Tullock contest with τmax is the only
contest in MRD(S).

Theorem 3.1 therefore immediately implies:

Corollary 4.2.

1. Let TRi be the set of all Tullock contests with reward
Ri. Then, APA and any other Tullock contest with
τ ≥ 2 is a dominant contest for every designer in
CCG(m,n, (Ri)

m
i=1, (TRi

)mi=1).
2. If Si is the set of all Tullock contests with parame-

ter τi in some range whose maximum τmax
i is well de-

fined and at most 2. Then, the Tullock contest with
τmax
i is the only dominant contest for every designer in
CCG(m,n, (Ri)

m
i=1, (Si)

m
i=1).

4.2 Contests with Varying Prize Structures
(Clark and Riis 1998) consider a formal model of prize
structures, as follows. Given a total prize Ri, each designer
i divides it into multiple prizes R1

i , . . . , R
s
i after seeing the

number of contestants k participating in her contest, with

5613



∑s
j=1 R

j
i = Ri and s ≤ k.5 Let eℓ denote the effort a con-

testant ℓ exerts in i’s contest. Let τ > 0 be a fixed param-
eter. All contestants in i’s contest win R1

i with probability
proportional to (eℓ)

τ ; after the winner of R1
i is determined,

one of the remaining contestants is randomly chosen to win
R2

i with probability again proportional to (eℓ)
τ ; and so on.6

As long as pure-strategy symmetric effort-exerting equilib-
ria for the contestants exist, setting s = 1 and R1

i = Ri

gives more utility to the designer than any other partition of
the total reward. In our terminology, the contest with s = 1,
R1

i = Ri is an MRD contest. (It is unknown whether this
holds if pure-strategy symmetric effort-exerting equilibria
do not exist.) Clark and Riis (1998) give a sufficient con-
dition for the existence of pure-strategy symmetric effort-
exerting equilibrium: τ ≤ k/(k − 1) and s ≤ 0.63k. For
example, Si may be the class of all contests that assign a
single winner prize if there are up to 4 contestants, and three
top winner prizes if there are 5 or more contestants. So, we
obtain the following corollary:
Corollary 4.3. Fix any 0 < τ ≤ n/(n − 1). Let Si consist
of multi-prize contests Ci that satisfy: for each k ≥ 2, the
number of divided prizes is at most s ≤ 0.63k. Then, each
designer choosing the MRD contest where s = 1 and R1

i =
Ri is an equilibrium of the contest competition game.

Regardless of the prize structure, a larger τ always gives a
larger utility to a designer in the single-contest setting (Clark
and Riis 1998). This holds as long as a pure-strategy sym-
metric effort-exerting equilibrium exists. Therefore, if τ can
be varied by the designers, a more general corollary holds:
Corollary 4.4. Let Si consist of multi-prize contests Ci with
adjustable parameter τ that satisfy: for each k ≥ 2, the
number of divided prizes is at most s ≤ 0.63k, and 0 <
τ ≤ n/(n − 1). Then, each designer choosing the MRD
contest where s = 1, R1

i = Ri, and τ is the largest possible
parameter,is an equilibrium of the contest competition game.

5 Welfare Optimality
Throughout this section, let C = (C1, . . . , Cm) be a tuple
of contests. Denote the sum of designers’ expected utilities,
the sum of contestants’ expected utilities, and their sum by

WD(C) =

m∑
i=1

ui(C), WC(C) = n

m∑
i=1

piβ(Ci, pi),

WS(C) = WD(C) +WC(C)

where pi = pi(C). We show that the welfare in the equilib-
ria of Theorem 3.1 is optimal in several natural cases:
Theorem 5.1. Consider a contest competition game
CCG(m,n, (Ri)

m
i=1, (Si)

m
i=1) and fix some Ti ∈ MRD(Si)

5(Azmat and Möller 2009) consider a similar model but assume
that designers choose prize structures before knowing the number
of contestants. We allow to condition the prize structure on the re-
alized number of contestants which is more general.

6This is a valid CSF in our model as fk
ℓ (e1, ..., ek) specifies

the expected fraction of the total prize contestant ℓ wins. For the
prize structures described here, fk

ℓ (e1, ..., ek) = (π1R
1
i + · · · +

πsR
s
i )/Ri where πj is the prob. that ℓ wins the j’th prize.

that satisfies MDU. Then the equilibrium (T1, . . . , Tm) max-
imizes WS in each one of the following cases:

1. Unrestricted contest design: for all i, Si = CRi
.

2. APA is a possible contest: ∀i,APA ∈ Si. (APA can be
replaced with any other full rent dissipation contest.)

3. A symmetric CCG: R1 = · · · = Rm = R and S1 =
· · · = Sm = S ⊂ CR.

4. An MRD-symmetric CCG: R1 = · · · = Rm = R and
MRD(S1) = · · · = MRD(Sm).

(The second case generalizes the first, and the fourth case
generalizes the third since every symmetric CCG is also
MRD-symmetric.) The full version shows that these conclu-
sions do not always hold outside of the four cases above.

Although the total welfare is not always maximized at the
equilibria of Theorem 3.1, the contestants’ welfare is always
minimized at these equilibria, as the next theorem shows.7

Theorem 5.2. Fix some CCG(m,n, (Ri)
m
i=1, (Si)

m
i=1). Let

T = (T1, . . . , Tm) be one of the equilibria in Theorem 3.1,
i.e., Ti ∈ MRD(Si) and Ti satisfying MDU. Then for any
C ∈ S1 × · · · × Sm, WC(T ) ≤ WC(C).

Theorems 5.1 and 5.2 together immediately imply:

Corollary 5.3. Consider a contest competition game
CCG(m,n, (Ri)

m
i=1, (Si)

m
i=1) and fix some Ti ∈ MRD(Si)

satisfying MDU. Then the equilibrium (T1, . . . , Tm) maxi-
mizes WD in the four cases of Theorem 5.1.

Thus, for example, (APA, . . . ,APA) maximizes the de-
signers’ welfare and minimizes the contestants’ welfare in
the case of unrestricted contest design.

6 Discussion
The bottom line of our formal analysis is that under our as-
sumptions a contest designer can ignore competition and fo-
cus solely on increasing the effort of the contestants that ar-
rive to the contest. This conclusion advances the state-of-
art as, a-priori, the contest competition game can yield out-
comes that depend on the number of designers, contestants,
and equilibrium selection. Game-theoretically, our conclu-
sion is compelling as it is supported by Pareto-optimality
and even by dominant strategies.

The full version further explores which assumptions are
necessary and which can be relaxed for the above to still
hold. This gives both a prescription for designers as well as a
basis on which further research to study alternative assump-
tions can develop. E.g., the assumption of linear and sym-
metric cost of effort is discussed, where we conjecture (with
supporting evidence) that our conclusions will continue to
hold for risk-loving contestants, while the results may qual-
itatively change for risk-averse contestants.8

7Designers’ PO does not immediately imply minimal contes-
tants’ welfare since (1) the game is not constant-sum as WS(C)
depends on pi’s and (2) PO outcomes need not necessarily maxi-
mize the aggregate designers’ utility.

8In our model, each contestant chooses, possibly in a random
way, exactly one contest to participate in. When a contestant par-
ticipates in only one contest, assuming linear cost of effort is the
same as assuming risk-neutrality.

5614



Acknowledgments
This work was partially supported by the NSFC-ISF joint
research program (grant No. NSFC-ISF 61761146005).

Yotam Gafni was supported by the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant No. 740435).

References
Alcalde, J.; and Dahm, M. 2010. Rent seeking and rent dis-
sipation: a neutrality result. Journal of Public Economics,
94(1-2): 1–7.
Amegashie, J. A. 2012. A nested contest: Tullock meets the
all-pay auction. CESifo Working Paper 3976, Munich.
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