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Abstract

Civic Crowdfunding (CC) uses the “power of the crowd”
to garner contributions towards public projects. As these
projects are non-excludable, agents may prefer to “free-ride,”
resulting in the project not being funded. Researchers intro-
duce refunds for single project CC to incentivize agents to
contribute, guaranteeing the project’s funding. These funding
guarantees are applicable only when agents have an unlim-
ited budget. This paper focuses on a combinatorial setting,
where multiple projects are available for CC and agents have
a limited budget. We study specific conditions where fund-
ing can be guaranteed. Naturally, funding the optimal social
welfare subset of projects is desirable when every available
project cannot be funded due to budget restrictions. We prove
the impossibility of achieving optimal welfare at equilibrium
for any monotone refund scheme. Further, given the contri-
butions of other agents, we prove that it is NP-Hard for an
agent to determine its optimal strategy. That is, while prof-
itable deviations may exist for agents instead of funding the
optimal welfare subset, it is computationally hard for an agent
to find its optimal deviation. Consequently, we study differ-
ent heuristics agents can use to contribute to the projects in
practice. We demonstrate the heuristics’ performance as the
average-case trade-off between the welfare obtained and an
agent’s utility through simulations.

Introduction
Local communities often find it beneficial to elicit contribu-
tions from their members for public good projects. E.g., the
construction of markets, playgrounds, and libraries, among
others (London 2021). These goods provide the local com-
munity with social amenities, generating social welfare. This
process of generating funds from members towards com-
munity services is referred to as Civic Crowdfunding (CC).
CC is instrumental in changing the interaction between lo-
cal governments and communities. It empowers citizens by
allowing participation in the design and planning of pub-
lic good projects (Van Montfort, Siebers, and De Graaf
2021). Such democratization of public projects has led CC
to become an active area of research (Diederich, Goeschl,
and Waichman 2016; Goodspeed 2017; Chandra, Gujar, and
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Figure 1: Example instance of Combinatorial Civic Crowd-
funding (CC) (Spacehive 2023).

Narahari 2017; Wang et al. 2021; Yan and Chen 2021; Ca-
son, Tabarrok, and Zubrickas 2021). Moreover, introduction
of web-based CC platforms (Kickstarter 2023; Spacehive
2023) has added to its popularity.

As depicted in Figure 1, typically, multiple projects are
simultaneously available for CC. We refer to CC for multi-
ple projects as combinatorial CC. Formally, CC comprises
strategic agents who observe their valuations for the avail-
able public projects. Each project has a known target cost
and deadline. Each agent contributes to the available projects
as per its valuations and within its budget. The agent val-
uations are such that the overall sum is greater than the
project’s target cost, i.e., there is enough valuation (inter-
est) for the project’s funding. A project is funded when the
agents’ total contribution meets the target cost within the
deadline. When funded, each agent obtains a quasi-linear
utility equivalent to its valuation for the project minus its
contribution. In turn, the community generates social wel-
fare – the difference in the project’s total valuation and cost.
Free-riding. The primary challenge in CC is due to the
non-excludability of the public projects. That is, the citi-
zens can avail a project’s benefit without contributing to its
funding. Consequently, strategic agents may free-ride and
merely wait for others to fund the project. When the major-
ity decides to free-ride, the project remains unfunded despite
sufficient interest in its funding (Stroup 2000). To persuade
strategic agents to contribute, researchers propose to provide
additional incentives to them in the form of refunds.
Refunds. Zubrickas (2014) presents PPR, Provision Point
Mechanism with Refunds, which employs the first such re-
fund scheme. PPR assumes that a central planner keeps
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some refund budget aside. If the project is not funded, the
planner returns the agent’s contribution and an additional
refund proportional to the agent’s contribution. The refund
scheme incentivizes the agents to increase their contribution
to obtain a greater refund. The characteristic of the result-
ing game is that the public project is funded at equilibrium.
However, PPR and subsequent works ((Damle et al. 2021)
and references cited therein) assume that agents have an un-
limited individual budget; in reality, the agents may have a
limited budget. To this end, we aim to determine the fund-
ing guarantees for a subset of public projects that maximize
social welfare within the available budget.

Our Approach and Contributions
This paper lays the theoretical foundation for combinatorial
CC with budgeted agents. Table 1 presents the overview of
our results, described in detail next.
Budget Surplus (BS). We first study the seemingly straight-
forward case of Budget Surplus, i.e., the overall budget
across the agents is more than the projects’ total cost. For
this, it is welfare optimal to fund all the projects. Despite the
surplus budget, we show that the projects’ funding cannot be
guaranteed at equilibrium (Theorem 2 and Corollary 1).
Subset Feasibility (SF). We observe that the budget distri-
bution among the agents plays a significant role in deciding
the funding status of the projects. Conditioning on the bud-
get distribution, we introduce Subset Feasibility of a given
subset of projects. We prove that Subset Feasibility coupled
with Budget Surplus guarantees funding of every available
project at equilibrium (Theorem 3), thereby generating the
maximum possible social welfare.
Budget Deficit (BD). Trivially, in the case of Budget Deficit
– when there is no Budget Surplus – one can only fund a
subset of projects. It may be desirable that such a subset is
welfare-maximizing within the budget. We refer to the fund-
ing of the socially welfare optimal subset at equilibrium as
socially efficient equilibrium. For this case, we present the
following results.

First, we show that, in general, achieving socially efficient
equilibrium is impossible for any refund scheme (Exam-
ple 1). Next, we prove that even with the stronger assump-
tion of Subset Feasibility, it is still impossible to achieve
socially efficient equilibrium (Theorem 4). Specifically, we
prove that strategic deviations may exist for agents such that
the optimal welfare subset remains unfunded. We then show
that it is NP-Hard for an agent to find its optimal deviation,
given the contributions of all the other agents (Theorem 6
and Corollary 2). Due to Theorem 4 and hardness of opti-
mal deviation (Theorem 6), we construct five heuristics for
the agent’s contributions and empirically study their social
welfare and agent utility through simulations (Figures 4, 5).

Related Work
Several works study the effect of agents’ contribution to
public projects (Wang et al. 2021; Chen, Tao, and Yu 2021;
Soundy et al. 2021; Brandl et al. 2022). One way of mod-
elling agent contribution is using Cost Sharing Mechanisms
(CSMs) in CC (Moulin 1994). More concretely, CSMs focus

Property Socially Efficient Equilibrium
Budget Surplus ✗ (Corollary 1)
Budget Surplus + Subset Feasibility ✓ (Theorem 3)
Budget Deficit + Subset Feasibility ✗ (Theorem 4)

Table 1: Overview of our theoretical results.

on sharing the cost among the strategic agents to ensure that
an efficient set of projects are funded (Moulin 1994; Moulin
and Shenker 2001; Dobzinski et al. 2018; Dobzinski and
Ovadia 2017; Birmpas, Markakis, and Schäfer 2019). The
authors in (Wang et al. 2021; Ohseto 2000) model CSMs
for non-excludable public projects and provide agent con-
tributions that ensure specific desirable properties, e.g., in-
dividual rationality and strategy-proofness. However, these
works do not guarantee funding at equilibrium since agents
are strategic and CSMs do not offer refunds.

In another line of work, funding of public projects is
modeled as Participatory Budgeting (Aziz and Shah 2021).
Brandl et al. (2022) study a model without targets costs
and without quasi-linear utilities, applicable for making do-
nations to long-term projects. Generally, in the PB litera-
ture, the utility of an agent is determined by the number of
projects funded or the costs of the projects (e.g., (Aziz and
Ganguly 2021; Sreedurga, Bhardwaj, and Narahari 2022)),
whereas in CC, it is the difference between the agent’s valu-
ation and contribution.

For excludable public projects, Soundy et al. (2021) focus
on effort allocation by strategic agents towards the project’s
completion. Contrarily, we focus on funding guarantees of
non-excludable public projects with strategic agents.
CC with Refunds. In the seminal work, Bagnoli and Lip-
man (1989) present Provision Point Mechanism (PPM) for
single project CC, without refunds. Consequently, PPM con-
sists of several inefficient equilibria (Bagnoli and Lipman
1989; Healy 2006). Agents may also free-ride since the
projects are non-excludable (Stroup 2000). To overcome
such limitations, Zubrickas (2014) presents PPR, a novel
mechanism that offers refunds proportional to contributions.
Based on the attractive properties of PPR, other works pro-
pose different refund schemes for different agent models and
strategy space (Damle et al. 2021; Chandra, Gujar, and Nara-
hari 2016; Damle et al. 2019b,a). These works only focus on
a single project with agents having unlimited budgets.

Among recent works, Padala, Damle, and Gujar (2021)
attempt to learn equilibrium contributions when agents have
a limited budget in combinatorial CC using Reinforcement
Learning. However, the work does not provide any funding
guarantees – welfare or otherwise – for the projects.

Chen, Tao, and Yu (2021) analyze the existence of coop-
erative Nash Equilibrium for funding a single public project
using ‘external investments.’ Their work considers agents to
have binary contributions, unlike our setting, where agent
contributions are in R+. Moreover, in their utility struc-
ture, agents receive a fixed fraction of the total contribution
when the project is funded; otherwise, their contribution is
returned. That is, they do not model agent valuations.

We remark that while our work is motivated by the exist-
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ing CC literature, it remains fundamentally different. To the
best of our knowledge, we are the first to study the funding
guarantees for combinatorial CC with budgeted agents. We
also focus on an agent’s equilibrium behavior and study the
hardness of the optimal strategy for the agents.

Preliminaries
This section presents our CC model and important defini-
tions. We also summarize PPR for the single project case.

Combinatorial CC Model
Let P = {1, . . . , p} be the set of projects to be crowdfunded
with target costs T = {T1, . . . , Tp}. Let N = {1, . . . , n}
denote the set of agents interested in contributing to all
projects. We consider a limited budget for each agent γ =
(γ1, . . . , γn). Each agent i has a private valuation for the
project j, denoted by θij ≥ 0. We consider additive valua-
tions, i.e., an agent i has a value of

∑
j∈M θij for a funded

subset M ⊆ P . Let ϑj =
∑

i∈N θij denote the total valu-
ation in the system for the project j. An agent i contributes
xij ∈ R+ to project j, s.t.,

∑
j∈P xij ≤ γi. The total con-

tribution towards a project j is denoted by Cj =
∑

i∈N xij .
The project is funded if Cj ≥ Tj by the deadline, and each
agent gets the funded utility of θij − xij . If the project is
unfunded (Cj < Tj), the agents are returned their contri-
butions xij and in some mechanisms, additional refunds, as
defined later.
Welfare Optimal. Ideally, when there is limited budget, it
may be desirable to fund welfare optimal subset defined as
follows. Note that, the welfare obtained from project j if
funded is ϑj −Tj and zero otherwise (Börgers and Krahmer
2015; Chakrabarty and Swamy 2014)1.
Definition 1 (Welfare Optimal). A set of projects P ⋆ ⊆ P
is welfare optimal if it maximizes social welfare under the
available budget, i.e.,

P ⋆ ∈ arg max
M⊆P

∑
j∈M

(ϑj − Tj) s.t.
∑
j∈M

Tj ≤
∑
i∈N

γi. (1)

We make the following observations based on Definition 1.

• Finding P ⋆ requires public knowledge of ϑs, T s and the
value

∑
i∈N γi. Contrary to the PB or CSM literature, the

aggregate valuation ϑ is assumed to be public knowledge
in the CC literature (Zubrickas 2014; Chandra, Gujar, and
Narahari 2016). Similarly, we also assume that the overall
budget in the system

∑
i∈N γi is public knowledge. This

may be done by deriving the overall budget by aggregating
citizen interest (Alegre 2020; HudExchange 2023).

• Computing P ⋆ is NP-Hard as it can be trivially reduced
from the KNAPSACK problem. However, note that our
primary results focus on P ⋆’s funding guarantees at equi-
librium (and not actually computing it). Moreover, com-
puting P ⋆ may also not be a deal breaker as the number
of simultaneous projects available will not be arbitrarily
large. One may also employ FPTAS (Lawler 1977).

1All the results presented in this paper also hold if P ⋆ ∈
arg max
M⊆P

∑
j∈M ϑj s.t.

∑
j∈M Tj ≤

∑
i∈N γi.

Refund Scheme. We define the refund scheme for each
project j ∈ P as Rj(Bj , xij , Cj) : R3

+ → R+ s.t.
rij = Rj(Bj , xij , Cj) is agent i’s refund share for con-
tributing xij to project j. The overall budget for the re-
fund bonus Bj > 0 is public knowledge. Typically, if a
project is unfunded, the agents receive rij , and zero refund
otherwise. The total refunds distributed for project j can
be such that

∑
i∈N rij = Bj (e.g., (Zubrickas 2014)) or∑

i∈N rij < Bj (e.g., (Chandra, Gujar, and Narahari 2016;
Damle et al. 2021)). Throughout the paper, we assume that∑

i∈N rij = Bj ∀j.
The CC literature also assumes that R is anonymous, i.e.,

refund share is independent of agent identity. Further, con-
sider the following condition for a refund scheme, assuming
R is differentiable w.r.t. x.
Condition 1 (Contribution Monotonicity (CM) (Damle et al.
2021)). A refund scheme R(x; ·) satisfies Contribution
Monotonicity (CM) if it is strictly monotonically increasing
with respect to the contribution x, i.e., ∂R(x;·)

∂x > 0.

Agent Utilities and Important Definitions
Let MCC = ⟨P,N, γ, T, (ϑj)j∈P , (Rj)j∈P , (Bj)j∈P ⟩ de-
fine a general combinatorial CC game. In this, the overall
agent utility can be defined as.
Definition 2 (Agent Utility). Given an instance of MCC ,
with agents having valuations [θij ] and contributions [xij ],
the utility of an agent i for each project j ∈ P is given by
σij(θij , xij , rij , Cj , Tj) : R5

+ → R

σij(·) = 1Cj≥Tj
· (θij − xij)︸ ︷︷ ︸

Funded utility σF
ij

+ 1Cj<Tj
· rij︸︷︷︸

Unfunded utility σU
ij

where 1X is an indicator variable, such that 1X = 1 if X is
true and zero otherwise.

An agent i’s utility for project j is either σF
ij = θij − xij

when j is funded, and σU
ij = rij otherwise. Let Ui(·) denote

the total utility an agent i derives, i.e., Ui(·) =
∑

j∈P σij .
This incentive structure induces a game among the agents.
As the agents are strategic, each agent aims to provide con-
tributions that maximizes its utility. As such, we focus on
contributions which follow pure strategy Nash equilibrium.
Definition 3 (Pure Strategy Nash Equilibrium (PSNE)). A
contribution profile (x∗

i1, . . . , x
∗
ip)i∈N is said to be Pure

Strategy Nash equilibrium (PSNE) if, ∀i ∈ N ,∑
j∈P

σij(x
∗
ij , x

∗
−ij ; ·) ≥

∑
j∈P

σij(xij , x
∗
−ij ; ·), ∀xij .

where x∗
−ij is the contribution of all agents except agent i.

Efficacy of PSNE Contributions. PSNE is the standard
choice of solution concept in CC literature (Zubrickas 2014;
Damle et al. 2021; Chandra, Gujar, and Narahari 2016;
Damle et al. 2019b). Zubrickas (2014) shows that for an ap-
propriate refund bonus (see Eq. 3), their PSNE strategies are
the unique equilibrium of the mechanism. Moreover, Cason
and Zubrickas (2017) empirically validate the effectiveness
of these PSNE strategies using real-world experiments.
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Figure 2: Utility vs. Contribution for agent i for project j.

Given the contributions [x∗
ij ], we can compute the set of

the projects that are funded and unfunded at equilibrium. We
refer to the funding of P ⋆ at equilibrium as socially efficient
equilibrium. We next define budget surplus.
Definition 4 (Budget Surplus (BS)). Enough overall budget
to fund each project j ∈ P , i.e.,

∑
i∈N γi ≥

∑
j∈P Tj .

We refer to the scenario
∑

i∈N γi <
∑

j∈P Tj as Budget
Deficit (BD). In CC literature, it is also natural to assume
that ϑj > Tj , ∀j ∈ P (Zubrickas 2014). That is, there is
sufficient interest in each available project’s funding. Hence,
when there is surplus budget, it is optimal to fund all the
projects, i.e., P ⋆ = P .

Further, we assume that agents do not have any additional
information about the funding of the public projects. This
assumption implies that their belief towards the projects’
funding is symmetric. This is a standard assumption in CC
literature (Zubrickas 2014; Damle et al. 2021).

Single Project Civic Crowdfunding
Provision Point Mechanism with Refunds (PPR). For sin-
gle project CC, i.e., P = {1}, Zubrickas (2014) proposes
PPR which employs the following refund scheme ∀i ∈ N ,

rPPR
i1 = RPPR(xi1, B1, C1) =

(
xi1

C1

)
B1. (2)

Each agent i’s equilibrium contributions are defined such
that its funded utility is greater than or equal to its unfunded
utility, i.e., θi1 − x∗

i1 ≥ rPPR
i1 . We depict such a situation

with Figure 2. The author shows that the project is always
funded at equilibrium when ϑ1 > T1, and that it is PSNE
for each agent i to contribute x∗

i1 or the amount left to fund
the project, whichever is minimum. More formally,
Theorem 1 ((Zubrickas 2014)). In PPR, with ϑ1 > T1 and
B1 > 0, the set of PSNEs are {x∗

i1 | x∗
i1 ≤ x̄i1, ∀i;C1 =

T1} if B1 ≤ ϑ1 − T1, where x̄i1 = T1

B1+T1
θi1. Otherwise,

the set is empty.
We have x̄i1 = T1

B1+T1
θi1 as the upper-bound of the equi-

librium contribution, ∀i ∈ N . In PPR, the PSNE strategies
in Theorem 1 are the unique equilibrium of the game when,

B1 = ϑ1 − T1 =⇒
∑
i∈N

x̄i1 = T1. (3)

Funding Guarantees. For single project CC, Damle et al.
(2021) show that the project is funded at equilibrium for
any refund scheme that satisfies Condition 1. Trivially, one
may observe that the refund scheme in PPR, i.e., rPPR

i1 =(
xi1

C1

)
B1, ∀i, also satisfies Condition 1. Damle et al. (2021)

propose other refund schemes which satisfy Condition 1 and
are exponential or polynomial in x. We remark that our re-
sults hold for any refund scheme satisfying Condition 1.

Funding Guarantees for Combinatorial CC
under Budget Surplus

For CC under Budget Surplus (Def. 4) sufficient overall bud-
get exists to fund all the projects. Theorem 2 shows that de-
spite the sufficient budget, projects may not get funded as the
set of equilibrium contributions for an agent may not exist.
Unlike Theorem 1, agents may not have well-defined con-
tributions satisfying PSNE. The non-existence results due to
the uneven distribution of budget among the agents. Hence,
agents with higher budgets exploit the mechanism to obtain
higher refunds while ensuring the projects remain unfunded.

Theorem 2. Given (Rj)j∈P which satisfy Condition 1,
there are Budget Surplus (Def. 4) game instances of MCC

with Bj = ϑj − Tj , ∀j such that there is no equilibrium.
That is, the set of equilibrium contributions may be empty.

Proof. Consider P projects and N agents s.t. Def. 4 is sat-
isfied, i.e.,

∑
i∈N γi ≥

∑
j∈P Tj . We can easily construct

game instances where there exists non-empty N1 ⊂ N s.t.∑
i∈N1

γi < minj Tj . To satisfy Budget Surplus (Def. 4),
N2 = N \ N1 must have enough budget so that the agents
in N1 +N2 can fund all the projects.

Each agent i receives a funded utility σF
ij = θij − xij

for contributing xij towards project j. That is, as xij ↑ =⇒
σF
ij ↓. The agent may also receive an unfunded utility of

σU
ij = rij = Rj(xij , Bj , ·) for project j. Since Rj is mono-

tonically increasing (Condition 1), xij ↑ =⇒ σU
ij ↑. We

depict this scenario with Figure 2. Observe that σU
ij and σF

ij
intersect at the upper-bound of the equilibrium contribution,
x̄ij (Theorem 1), where σF

ij = σU
ij . For any xij > x̄ij ,

σU
ij > σF

ij . The rest of the proof (see (Damle, Padala, and
Gujar 2022)) shows that ∃i ∈ N2 s.t. x̂ij > x̄ij which in
turn is not possible at equilibrium due to discontinuous util-
ity structure at x̄ij .

Observe that if any project j is funded at equilibrium then
the equilibrium set (x∗

i1, . . . , x
∗
ip)i∈N can not be empty, con-

tradicting Theorem 2. Corollary 1 captures this observation.

Corollary 1. Given (Rj)j∈P satisfying CM (Condition 1),
there are game instances of MCC s.t. even with Budget Sur-
plus (Def. 4), no project in P may be funded at equilibrium.

With Corollary 1, we prove that Budget Surplus is not suf-
ficient to fund every project at equilibrium. To this end, we
next identify the sufficient condition to ensure the funding
of every project, under Budget Surplus.
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Subset Feasibility
With N1 and N2 in Theorem 2’s proof, we assume a spe-
cific distribution on agents’ budget. To resolve this, we intro-
duce Subset Feasibility which assumes a restriction on each
agent’s budget distribution. Informally, if each agent i has
enough budget to contribute x̄ij (see Figure 2) for j ∈ M ,
M ⊆ P , then Subset Feasibility is satisfied for M . Formally,

Definition 5 (Subset Feasibility for M (SFM )). Given an in-
stance of MCC with (Rj)j∈P satisfying Condition 1, SFM ,
M ⊆ P , is satisfied if, ∀i ∈ N we have γi ≥

∑
j∈M x̄ij .

Here, θij − x̄ij = Rj(x̄ij , Bj , ·) (refer Figure 2).

Claim 1. Given any (Rj)j∈P whose equilibrium contribu-
tions satisfy

∑
i x̄ij ≥ Tj , we have SFP =⇒ BS.

Claim 1 follows from trivial manipulation. Similarly, we
have BS ≠⇒ SFP . From Claim 1, it is welfare optimal to
fund every available project under SFP . Theorem 3 indeed
proves that under SFP each project j ∈ P gets funded at
equilibrium, thereby generating optimal social welfare.

Theorem 3. Given MCC and (Rj)j∈P satisfying CM (Con-
dition 1) such that SFP is satisfied, at equilibrium all the
projects are funded, i.e., Cj = Tj , ∀j ∈ P if Bj ≤
ϑj − Tj , ∀j ∈ P . Further, the set of PSNEs are:{
(x∗

ij)j∈P | σF
ij(x

∗
ij ; ·) ≥ σU

ij(x
∗
ij ; ·), ∀j ∈ P, ∀i ∈ N

}
.

Theorem 3 implies that, under SFP , the socially efficient
equilibrium (with P ⋆ = P ) is achieved. Intuitively, un-
der SFP combinatorial CC collapses to simultaneous single
projects; and thus, we can provide closed-form equilibrium
contributions. However, SFP is a strong assumption and, in
general, may not be satisfied. In fact, the weaker notion of
Budget Surplus itself may not always apply. Therefore, we
next study combinatorial CC with Budget Deficit.

Impossibility of Achieving Socially Efficient
Equilibrium for Combinatorial CC under

Budget Deficit
We now focus on the scenario when there is Budget Deficit,
i.e.,

∑
i∈N γi <

∑
j∈P Tj . In this scenario, only a subset of

projects can be funded. Unfortunately, identifying the subset
of projects funded at equilibrium is challenging. In CC, the
agents decide which projects to contribute to based on their
private valuations and available refund. This circular depen-
dence of the equilibrium contributions and the set of funded
projects make providing analytical guarantees challenging
on the funded set. To analyze agents’ equilibrium behavior
and funding guarantees, we fix our focus on the subset of
projects that maximize social welfare, i.e., P ⋆ (Def. 1).

In this section, we first show that funding P ⋆ ⊂ P at equi-
librium is, in general, not possible for any R(·) satisfying
Condition 1. Second, we prove that even with the stronger
assumption of Subset Feasibility of the optimal welfare set,
i.e., SFP⋆ , we may not achieve socially efficient equilibrium
due to agents’ strategic deviations. Last, we show that com-
puting an agent i′’s optimal deviation, given the contribu-
tions of the other agents N \ {i′}, is NP-Hard.

Procedure 1 Instance with P = N = {1, 2} and fixed R(·)
1: procedure GENERATEVALUES(R(·))
2: T1 ← R+

3: Choose θ11 s.t. x̄11 < T1 < θ11 based on R1(·)
4: Choose θ21 s.t. x̄21 := T1 − x̄11

5: Set T2 = x̄21, θ12 = 0 and choose θ22 s.t.
θ21 < θ22 < θ11 + θ21 − x∗

11 ▷ P ⋆ = {1}
6: Set γ1 := x̄11 and γ2 := x̄21 ▷ Satisfying SFP⋆

7: return θ’s, γ’s, and T ’s ▷ s.t. Agent 2 deviates
8: end procedure

Welfare Optimality at Equilibrium
Consider the following example instance.
Example 1. Let P = {1, 2} and N = {1, 2}. Let γ1 =
1, γ2 = 0, θ11 = 1, θ12 = 2 and θ22 = 1 with θ21 = 10.

In Example 1, the maximum funded utility agent 1 can re-
ceive from project 1 is 0 and unfunded utility r11 < θ11 = 1.
On the other hand, the agent obtains a utility of 1 when
contributing to project 2. Hence at equilibrium, project 2
gets funded, although it is welfare optimal to fund project
1. Thus, socially efficient equilibrium is not achieved.

Example 1 is one pathological case where the agent with
high valuation has zero budget, leading to sub-optimal out-
come at equilibrium. Hence, we next strengthen the assump-
tion on the budgets of the agents. Let P ⋆ be the non-trivial
welfare optimal subset and we assume that Subset Feasibil-
ity is satisfied for P ⋆, i.e., SFP⋆ . Recall that with SFP⋆ , we
assume that every agent has enough budget to contribute x̄ij

in P ⋆. Theorem 4 shows that despite this strong assumption,
achieving socially efficient equilibrium may not be possible.
Theorem 4. Given an instance of MCC , a unique non-
trivial P ⋆ ⊂ P may not be funded at equilibrium even with
Subset Feasibility for P ⋆, SFP⋆ , for any set of (Rj)j∈P sat-
isfying Condition 1.

Proof. For n = 2 and p = 2, we construct an instance s.t.
an agent has an incentive to deviate when P ⋆ is funded. Pro-
cedure 1 presents the steps to construct the instance. We first
select the target cost of the project 1, i.e. T1 ∈ R+. Given
(Rj)j∈P under Condition 1, we can always find an x̄11 for
agent 1. At x̄11, funded utility is equal to unfunded utility
(Figure 2). Trivially, x̄11 < θ11. In (Damle, Padala, and Gu-
jar 2022), we prove that the construction in Procedure 1 is
always possible for any R(·) satisfying Condition 1.

CCC with Budget Deficit: Optimal Strategy
Theorem 4 implies that P ∗ may not be funded at equilibrium
even when P ∗ satisfies Subset Feasibility. In other words,
w.l.o.g., an agent i′ may have an incentive to deviate from
any strategy that funds P ∗. Motivated by such a deviation,
we now address the question: Given the total contribution
by N \ {i′} agents towards each project j, can the agent i′
compute its optimal strategy? We answer this question by
(i) showing that such an optimal strategy may not exist if
an agent’s contribution space is continuous, i.e., x ∈ R+,
and (ii) if contributions are discretized, then computing the
optimal strategy is NP-Hard.
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max
(xi′j)j∈P

∑
j∈P

zi′j · (θi′j − xi′j) + (1− zi′j) ·R(xi′j , ·)

s.t.
∑
j∈P

xi′j ≤ γi′ // Budget Constraint

xi′j ≤ Tj − Cj−i′ , ∀j // Remaining Contribution

(xi′j − Tj + Cj−i′) · zi′j ≥ 0, ∀j
xi′j − Tj + Cj−i′ < zi′j , ∀j
zi′j ∈ {0, 1}, ∀j

 // Defining 1X

Figure 3: MIP-CC: Mixed Integer Program to calculate
Agent i′’s optimal strategy given the contributions of the re-
maining agents N \ {i′}.

MIP-CC: Mixed Integer Program for CC. We first de-
scribe the general optimization for an agent i′ to compute
its optimal strategy (i.e., contribution). For each j ∈ P , de-
note the aggregated contribution by agents in N \ {i′} as
Cj−i′ . Now, for agent i′’s optimal strategy, we need to max-
imize its utility given Tj − Cj−i′ , ∀j ∈ P and other vari-
ables such as the refund scheme Rj and bonus budget Bj .
Figure 3 presents the formal MIP, namely MIP-CC, which
follows directly from agent i′ utility (Def. 2).
MIP-CC: Optimal Strategy May Not Exist. We now show
that MIP-CC (Figure 3) may not always admit well-defined
contributions.
Example 2. Let P = {1, 2, 3} and N = {1, 2} s.t. both
agents are identical, i.e., each i ∈ N has the same value
θ for each j ∈ P and γ1 = γ2. Additionally ∀j ∈ P ,
Tj = T and Bj = ϑ − T,. Let the agents have budget s.t.
γi = x̄i1 ∀i ∈ N , where x̄i1 is the upper bound equilibrium
contribution for the single project case (see Figure 2).
Theorem 5. Given an instance of MCC and for any set of
(Rj)j∈P satisfying Condition 1, an agent i′’s optimal strat-
egy may not exist.

Proof. In (Damle, Padala, and Gujar 2022), we show that
for Example 2, given agent 1’s contribution we can create
an instance of MCC s.t. zs in MIP-CC can be either z1 =
{1, 0, 0} or z2 = {0, 0, 0}. Then, agent 2’s utility is θ − γ2
for z1 with strategy (γ2, 0, 0) and 2B+R(γ2−ϵ) for z2 with
strategy (γ2−ϵ, ϵ/2, ϵ/2), ϵ ≤ 0. As ϵ ↓, agent 2’s utility for
z2 increases. But for ϵ = 0, only z1 is possible and agent 2
receives θ − γ2 (< utility for z2). Due to this discontinuity,
an optimal ϵ (i.e., optimal strategy) does not exist.

MIP-CC-D. To overcome the above non-existence, we dis-
cretize the contribution space. An agent i can contribute κ ·δ
where κ ∈ N+ and δ the smallest unit of contribution. With
this restriction on an agent’s contribution, the search space in
MIP-CC (Figure 3) becomes finite. Consequently, agent i′’s
optimal strategy always exist. To distinguish MIP-CC with
a discrete contribution space, we refer to it as MIP-CC-D.
MIP-CC-D: Finding Optimal Strategy is NP-Hard. We
now show that solving MIP-CC for discrete contributions
(i.e., MIP-CC-D) is NP-hard.

Theorem 6. Given an instance of MCC with discrete con-
tributions and for any set of (Rj)j∈P satisfying Condition 1,
computing optimal strategy for agent i′, given the contribu-
tions of N \ {i′}, is NP-Hard.

Proof. We divide the proof into two parts (see (Damle,
Padala, and Gujar 2022)). In Part A, we design a MIP tuned
for a specific case of combinatorial CC comprising identi-
cal projects with a refund scheme satisfying

∑
j R(xj , ·) =

R(
∑

j xj , ·). We prove that the MIP is NP-Hard by reducing
it from KNAPSACK. In Part B, we show that this MIP re-
duces to MIP-CC-D. That is, any solution to MIP-CC-D can
be used to determine a solution to MIP in polynomial time,
implying that MIP-CC-D is also NP-Hard.

Corollary 2. Given an instance of MCC with discrete con-
tributions and for any set of (Rj)j∈P satisfying Condition
1, if all agents except i′, N \ {i′}, follow a specific strategy
that funds P ⋆ ⊂ P , then computing the optimal deviation
for agent i′ is NP-Hard.

Experiments
Motivation. Theorem 4 proves that the optimal subset P ⋆

may not be funded at equilibrium due to agents’ strategic de-
viations. However, computing an agent’s optimal deviation
is also NP-Hard (Corollary 2). These observations highlight
that computing closed-form equilibrium strategies in Budget
Deficit Combinatorial CC, similar to Theorem 1 and Theo-
rem 3, for agents is challenging. Given this challenge and the
hardness of strategic deviations, agents may employ heuris-
tics to increase utility (Zou, Gujar, and Parkes 2010; Lubin
and Parkes 2012). We next propose five heuristics for agents
to employ in practice and study their impact on agent utili-
ties and the welfare generated.

Heuristics and Performance Measures
Heuristics. Given the conflict between agent utilities and
P ⋆’s funding (Theorem 4), we propose the following heuris-
tics for agent i ∈ N , for each project j ∈ P , to employ in
practice and observe their utility vs. welfare trade-off.

1. Symmetric: xij = min(θij , γi/m)

2. Weighted: xij =
(

θij∑
k∈P θik

)
γi

3. Greedy-θ: Greedily contribute xij = x̄ij in descending
order of the projects sorted by θij , ∀j

4. Greedy-ϑ: Greedily contribute xij = x̄∗
ij in descending

order of the projects sorted by ϑj

Tj
, ∀j

5. OptWelfare: xij = x̄ij , ∀j ∈ P ⋆ and evenly distribute
the remaining budget across P \ P ⋆

Agents contribute the minimum amount of what is specified
by the five heuristics and the amount left to fund the project.
We consider OptWelfare as the baseline (preferred) heuristic
since it generates optimal welfare, i.e., funds P ⋆.
Performance Measures. To study the welfare vs. agent util-
ity trade-off, we consider the following performance mea-
sures: (i) Normalized Social Welfare (SWN ) – Ratio of the
welfare obtained and the welfare from P ⋆ and (ii) Normal-
ized Agent Utility (AUN ) – Ratio of the agent utility obtained
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w.r.t. to the utility when each agent has enough budget to
play its PPR contribution ∀ j ∈ P (see Theorem 1).

We compare the heuristics when α ∈ (0, 1] fraction of
the total agents deviate, i.e., choose heuristic ∈ {Symmetric,
Weighted, Greedy-θ, Greedy-ϑ}. The remaining 1−α frac-
tion of agents use the baseline OptWelfare.

Simulation Setup and Results
Setup. We simulate the combinatorial CC game with n =
100, and p = 10 and PPR refund scheme (Eq. 2).2 We sam-
ple θijs, for each i ∈ N and j ∈ P , using (i) Uniform Dis-
tribution, i.e., θij ∼ U[0, 10], and (ii) Exponential Distribu-
tion, i.e., θij ∼ Exp(λ = 1.5). Here, λ is the rate parameter.
When θ ∼ U[0, 10], we get agents whose per-project valua-
tions differ significantly. For θ ∼ Exp(λ = 1.5), the agents
have approximately similar per-project valuations.

We ensure ϑj > Tj and Bj ∈ (0, ϑj −Tj ] for each j ∈ P
and that the properties Budget Deficit and Subset Feasibility
for P ⋆ are satisfied. We run each simulation across 100k in-
stances and observe the average SWN and AUN for each of
the five heuristics. We depict our observations with Figures 4
and 5 when θij ∼ U[0, 10]. Results for θij ∼ Exp(λ = 1.5)
are available in (Damle, Padala, and Gujar 2022).
Average SWN and AUN . Figure 4 depicts the results when
θij ∼ U[0, 10]. We make three main observations. First, de-
viating from the baseline heuristic (OptWelfare) is helpful
only when few agents deviate, i.e., for smaller values of α.
Despite such a deviation, we observe that the corresponding
decrease in social welfare is marginal. On the other hand,

2The experimental trends presented remain same for different
(n, p) pairs, such as (50, 10), (500, 10), and (500, 20). The code
is available at: github.com/magnetar-iiith/CCC.

the increase in α reduces the amount of the contributions,
and the projects remain unfunded, reducing the social wel-
fare and the agent utilities. Second, deviating from OptWel-
fare always increases the average agent utility – at the cost to
the overall welfare. Third, Greedy-ϑ almost mimics OptWel-
fare, for both SWN and AUN .
AUN for Deviating vs. Non-deviating Agents. In Figure
5, we compare the average utility for the agents who devi-
ate versus those who do not. We let α = 0.2 fraction of
the agents deviate and follow the other four heuristics. From
Figure 5, we observe that upon deviating to Symmetric,
Weighted or Greedy-θ, the α = 0.2 fraction of agents ob-
tain higher AUN (red grid bars) compared to the remaining
non-deviating agents who do not deviate (green grid bars).
In contrast, Greedy-ϑ shows non-deviation to be beneficial.
Since Greedy-ϑ performs close to OptWelfare, the AUN for
deviation remains low compared to OptWelfare. Crucially,
the deviation is not majorly helpful when many agents de-
viate. When α = 0.5, we see comparable average AUN for
agents who deviate and those who do not (blue lined vs. ma-
genta lined bars, respectively). While deviating to Greedy-ϑ
remains non-beneficial.
Discussion and Future Work. From Figures 4 and 5, we see
that Greedy-ϑ performs similar to OptWelfare (which funds
P ⋆). Thus, as the number of projects p increases, to max-
imize social welfare, it may be beneficial for the agents to
adopt Greedy-ϑ instead of deriving sophisticated strategies
based on P ⋆ (since computing P ⋆ is NP-Hard).

Generally, it is challenging to determine PSNE contribu-
tions for combinatorial CC with budgeted agents. We pro-
pose four heuristics and study their welfare and agent util-
ity trade-off. Future work can explore other heuristics that
achieve better trade-offs and welfare guarantees. One can
also study strategies that perform better on average such as
Bayesian Nash Equilibrium. From the experiments, we ob-
serve that deviating from OptWelfare may increase agent
utility. Thus, one can explore strategies such as ϵ-Nash Equi-
librium, which approximates a worst-case ϵ increase in util-
ity with unilateral deviation. Approximate strategies may
also be desirable since finding optimal deviation is NP-Hard.
However, the approximation must provide a desirable trade-
off between agent utility and welfare.

Conclusion
This paper focuses on the funding guarantees of the projects
in combinatorial CC. Based on the overall budget, we cat-
egorize combinatorial CC into (i) Budget Surplus and (ii)
Budget Deficit. First, we prove that Budget Surplus is insuf-
ficient to guarantee projects’ funding at equilibrium. Intro-
ducing the stronger criteria of Subset Feasibility guarantees
the projects’ funding at equilibrium under Budget Surplus.
However, for Budget Deficit, we prove that the optimal wel-
fare subset’s funding can not be guaranteed at equilibrium
despite Subset Feasibility. Next, we show that computing an
agent’s optimal strategy (and consequently, its optimal de-
viation), given the contributions of the other agents, is NP-
Hard. Lastly, we propose specific heuristics and observe the
empirical trade-off between agent utility and social welfare.
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