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Abstract

Hedonic games model cooperative games where agents desire
to form coalitions, and only care about the composition of the
coalitions of which they are members. Focusing on various
classes of dichotomous hedonic games, where each agent ei-
ther approves or disapproves a given coalition, we propose the
random extension, where players have an independent partic-
ipation probability. We initiate the research on the computa-
tional complexity of computing the probability that coalitions
and partitions are optimal or stable. While some cases admit
efficient algorithms (e.g., agents approve only few coalitions),
they become computationally hard (#P-hard) in their com-
plementary scenario. We then investigate the distribution of
coalitions in perfect partitions and their performance in ma-
jority games, where an agent approves coalitions in which
the agent is friends with the majority of its members. When
friendships independently form with a constant probability,
we prove that the number of coalitions of size 3 converges in
distribution to a Poisson random variable.

Introduction
In several real-life scenarios arising from economics, poli-
tics, and sociology, we notice the phenomenon of coalition
formation, where each person, termed as agent, forms coali-
tions with others to get some benefit, experiencing a utility
that depends on the particular set of agents she joins. A pop-
ular game-theoretic approach to the study of coalition for-
mation problems is Hedonic games (Dreze and Greenberg
1980), whose outcome is a partition of the agents into coali-
tions, over which the agents have preferences. One of their
main properties is non-externality: an agent minds only her
own coalition, regardless of how the others aggregate. Yet,
the number of coalitions an agent can be part of is expo-
nential in the number of agents, and therefore it is desirable
to consider expressive, but succinctly representable classes
of hedonic games. One common approach is to restrict the
players’ possible preferences. As such, our work focuses on
dichotomous preferences, where each agent either approves
or disapproves of a given coalition (Aziz et al. 2016).

Two major underlying assumptions in hedonic games lit-
erature are that all agents are assured to participate in the
game, and the nature of their collaborations and preferences
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over those are certain. However, both often fail to hold for
real-world problems. Generally, participation in the game
does not depend only on strategic choices, but also on ex-
ternal factors. For instance, in a sports tournament, players
may not arrive to the game before its inception due to a last
minute injury, weather conditions or traffic jams.

In this paper, we thus lay the theoretical foundations for
studying the interplay between dichotomous hedonic games
(DHGs) and the complexity of probabilistic inference. Mo-
tivated by probabilistic inference in voting games (Bachrach
et al. 2011; Imber and Kimelfeld 2021), we propose ran-
dom DHGs (RDHGs), where each player has an indepen-
dent participation probability. For various classes of DHGs,
we explore the computational complexity of computing the
probability that coalitions and partitions are either optimal,
perfect or stable. We first examine coalitions and partitions
that maximize the number of approving players within them.
Then, we regard partitions which are either stable or per-
fect (where every agent is in an approved coalition). We
present cases that admit poly-time algorithms for some of
these problems: when agents approve at most one coali-
tion; when agents approve at most one coalition size; when
agents are placed on a line and only approve intervals. Yet,
the above problems become computationally hard (#P-hard)
when the setting becomes non-linear. Accordingly, we show
cases where deciding whether the probability of optimality
is nonzero can be computed in poly-time, and computing
the probability of nonoptimality can be done up to a multi-
plicative approximation. Though DHGs are one of the very
few sub-classes of hedonic games that admit poly-time so-
lutions (Peters 2016), our results put this property of DHGs
in question when it comes to a probabilistic setting.

Our model corresponds to counting variants of a new
type of manipulation in hedonic games: constructive con-
trol by adding players. Analogous to election control prob-
lems (Bartholdi et al. 1992), its goal is ensuring that a spec-
ified outcome satisfies a certain solution concept by adding
players. Unlike Sybil attacks (Vallée et al. 2014), players are
sincere and participate probabilistically. When players ap-
prove polynomially many coalitions, we supply a reduction
from control problems in elections with a polynomial and
binary positional scoring rule. We are thus provided with
a novel correlation between hedonic games and elections,
from which we deduce some of our complexity results. The

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

5573



Class Polynomial #P-Hard NP-Complete

1-Lists C ⊆ N is WOC ; π is WOΠ WOΠ; SCS π is WOΠ > 0; SCS> 0
k-Lists C ⊆ N is WOC > 0; π is WOΠ > 0 C ⊆ N is WOC ; WOΠ; SCS WOΠ> 0; π is WOΠ > 0; SCS> 0
AHGs π is PF; π is NS PF; NS; SCS PF> 0; NS> 0; SCS> 0
CIs C ⊆ N is WOC ; π is WOΠ; π is PF
RGs PF> 0; NS> 0

Table 1: Overview of complexity results for various dichotomous preferences. We consider existence of welfare-optimal coali-
tions or partitions (WOC and WOΠ, resp.), and perfect (PF), Nash-stable (NS) and strict-core-stable (SCS) partitions. Results in
boldface apply to both probabilistic inference and the induced control problem, underlined ones only apply to the control prob-
lem and the remaining only apply to probabilistic inference. Considering the ”Preliminaries” section, the counting problems
(Problem 1) relate to probability computation, whereas decision problems (Problem 3) correspond to verifying its zeroness.

main complexity results are summarized in Table 1.
We then move our attention to majority games, where

agents form a graph and approve sets in which they are con-
nected to the majority of other vertices. We classify the dis-
tribution of coalitions comprising perfect partitions and the
social welfare incurred by them. We also explore this distri-
bution in dynamic settings, where edges in the graph ran-
domly and independently appear, via Erdös-Rényi graphs
(Erdös and Rényi 1959). Regarding the standard measure
of disutility caused by selfish behavior, Price of Anarchy
(Koutsoupias and Papadimitriou 1999; Elkind, Fanelli, and
Flammini 2016), we supply upper and lower bounds on the
worst-case ratio between the (expected) social welfare of a
partition maximizing it and that of a perfect one.

Related Work
The study of hedonic games was initiated by Dreze and
Greenberg (1980), and later expanded to the study of char-
acterizing various solutions concepts (concerning stability,
perfection, and optimality), as well as many classes of he-
donic games (See (Aziz, Savani, and Moulin 2016; Woeg-
inger 2013) for surveys on the topic). As mentioned ear-
lier, hedonic games with dichotomous preferences are one
natural, succinctly representable class proposed by Aziz et
al. (2016), who treat the exponential space requirement by
representing agents’ preferences by propositional formulas,
and thus term such games as Boolean hedonic games. Peters
(2016) thoroughly studied the complexity of finding optimal
and stable partitions for various classes of DHGs.

Prior work on identifying solution concepts in hedonic
games under uncertainty assumes the existence of user pref-
erence data over some coalition, which is then used to con-
struct probably approximately stable outcomes (termed as
PAC stability). (Sliwinski and Zick 2017; Igarashi, Sliwin-
ski, and Zick 2019) aim at learning players’ preferences
from data and obtain a PAC approximation of the origi-
nal hedonic game, and then finding a partition that PAC-
stabilizes the approximate hedonic game. In contrast, Jha
and Zick (2020) focus on directly learning a variety of eco-
nomic solution concepts from data. We remark that this line
of research relies on (Balcan, Procaccia, and Zick 2015),
who focus on transferable utility (TU) cooperative games.

Built upon the notorious network reliability prob-
lem (Provan and Ball 1983), the reliability extension of TU

cooperative games are proposed by (Bachrach et al. 2011;
Bachrach, Kash, and Shah 2012), encapsulating the effects
of independent agent failures. They show how to approxi-
mate the Shapley value in such games using sampling, and
how to accurately compute the core in games with few agent
types. They further show that applying the reliability exten-
sion may stabilize the game. (Bachrach and Shah 2013) ex-
tend this model to weighted voting games, and propose al-
gorithms for computing the value of a coalition, finding sta-
ble payoff allocations, and estimating the power of agents.
These studies are strictly contrasted to our own work, since
hedonic games are with non-transferable utility.

Focusing on symmetric friend-oriented hedonic games,
where players have strong favour towards their friends,
Igarashi et al. (2019) explore how stability can be main-
tained even after any set of at most k players leave their
coalitions. They establish a robustness concept, which is
close to the notion of fault tolerance in the theory of dis-
tributed systems (Fedoruk and Deters 2002). Although their
work is most similar to ours, our work differs considerably.
First, to the best of our knowledge, no attempt has been
ever made to connect hedonic games and probabilistic in-
ference. We thus aim at making the first step towards bridg-
ing this gap. Further, we also consider uncertainty of agents’
friendships, instead of just their participation. Finally, we ex-
tend their model to a general probabilistic setting, whereas
they concern participation in a uniform and deterministic
sense. This extension is inspired by (Imber and Kimelfeld
2021; Wojtas and Faliszewski 2012), who concern the prob-
lem of computing the probability of winning in an election
where voter attendance is uncertain. In both papers, this task
reduces to counting variants of election control problems
(Bartholdi et al. 1992), whose goal is ensuring that a pre-
ferred candidate is the winner by controlling the set of ei-
ther voters or candidates. Particularly, we observe that simi-
lar control schemes arise in our own framework.

Preliminaries
For an integer n > 0, let [n] := {1, . . . , n}. A hedonic game
(HG) G = ⟨N, (⪰i)i∈N ⟩ is given by a finite set N = [n] of
n agents, with a complete and transitive preference relation
⪰i over Ni = {C ⊆ N : i ∈ C} for each agent i ∈ N .
For each agent i ∈ N , we let ≻i and ∼i be the strict and
indifference parts of ⪰i (resp.). The outcome of a hedonic
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game G is a partition π of N into disjoint coalitions. Let
π(i) be the coalition C ∈ π such that i ∈ C. In a dichoto-
mous hedonic game (DHG), agents only approve or disap-
prove coalitions, i.e., for each agent i ∈ N there exists a
utility function vi : Ni → {0, 1} such that π(i) ⪰i π

′(i) iff
vi(π(i)) ≥ vi(π

′(i)). We use the convention that vi(C) = 0
whenever i /∈ C for some C ⊆ N .

Inspired by recent work on voting games (Imber and
Kimelfeld 2021), we study a new variant of DHGs, referred
to as Random DHGs (RDHGs), where each agent has a
fixed and independent participation probability for being
randomly drawn from N and, hence, of having the opportu-
nity for forming coalitions with the other participants. Some-
times, the participation probability of an agent is unknown,
and we thus briefly discuss in Appendix A how it can be es-
timated (Omitted and full proofs are available in (Cohen
and Agmon 2023)). Formally, let (pi)i∈N ∈ [0, 1]n be the
probabilities. Let I ⊆ [n] be a random variable, where each
i ∈ N is in I with probability pi and different indices are
independent. The probability of I being a subset U ⊆ [n] is
Pr[I = U ] =

∏
i∈U pi

∏
i∈[n]\U (1 − pi). The RDHG in-

duced by a DHG G is thus G′ = ⟨N ′, (⪰i)i∈I⟩, where the
random set of players that participate in the game is N ′ = I .
Agents won’t change their true preferences over coalitions
depending on the realization of the participants. Thus, agents
(sincerely) value a coalition as if all its members were partic-
ipating even if it is possible that they are not. That is, letting
vi : Ni → {0, 1} be agent i’s utility function in G, her utility
function v′i : Ni → {0, 1} in G′ satisfies v′i(C) = vi(C ∩ I)
for C ∈ Ni. We note that v′i may differ from vi as there may
be a coalition approved by agent i in G that is disapproved
in the induced RDHG due to the participants’ realizations.

Given a partition or a coalition under our randomized set-
ting, we redefine herein different measures of optimality and
stability. Specifically, we largely follow the solution con-
cepts investigated by (Peters 2016). Given a partition π, a
set C of coalitions and a subset of players S ⊆ N , the social
welfare of a coalition C ∈ C in the game restricted to the
players S is SWS(C) =

∑
i∈C∩S vi(C). C ∈ C is welfare-

optimal w.r.t. C (WOC) iff C ∈ argmaxC̃∈C SWS(C̃). The
social welfare of π is SWS(π) =

∑
C∈π SWS(C). π is

welfare-optimal (WO) iff π ∈ argmaxπ̃ SWS(π̃). A parti-
tion π is perfect (PF) if every agent is in an approved coali-
tion in π. For stability, a partition π is core-stable if there
is no non-empty coalition C ⊆ N with C ≻i π(i) for all
i ∈ C, and is strict-core-stable (SCS) if there is no non-
empty coalition C ⊆ N with C ⪰i π(i) for all i ∈ C
and C ≻i π(i) for some i ∈ C. In both, a group of agents
may deviate. If we restrict our attention to the possibility of
just a single agent deviating, we obtain the notion of Nash-
stability (NS). That is, π(i) ⪰i π(j) ∪ {i} for all i, j and π
is individually rational (IR), i.e., π(i) ⪰i {i} ∀i.

For a RDHG G′, sets C and Π of polynomially many coali-
tions and partitions (resp.), i.e., |C| and |Π| are O(poly(n)),
a coalition C ⊆ N and a partition π of N , we define the
following events under G′ (while setting S = I in SWS):
WOC

G′(C) denotes that C ∈ C is WOC ; WOΠ
G′(π) denotes

that π ∈ Π is WOΠ; WOG′ denotes that there is a WO par-

tition; WOC
G′(C) denotes that C is not WOC ; NSG′(π) de-

notes that π is NS; NSG′ denotes that there is an NS parti-
tion; PFG′(π) denotes that π is perfect; PFG′ denotes that
there is a perfect partition; SCSG′ denotes that there is a
strict-core-stable partition. When C and Π are omitted, we
refer to all possible coalitions and partitions (resp.). Note
that the events’ dependence on a specific game G′ quantifies
the random set of players I ⊆ [n] as defined for G′.

Control Schemes. Throughout the paper, our control
schemes are inspired by prior studies on winners in elec-
tions (Bartholdi et al. 1992; Hemaspaandra, Hemaspaandra,
and Rothe 2007; Wojtas and Faliszewski 2012). Specifically,
we focus on constructive control by adding players, where
the goal is ensuring that a specified outcome satisfies a cer-
tain solution concept. Such a scheme can be employed by
a central authority, which attempts to manipulate a DHG’s
outcome. Unlike prior studies on strategyproofness in hedo-
nic games (Flammini et al. 2021), all players remain sincere
in their preferences. Note that the following problems are
not restricted to a specific class of DHGs.
Problem 1. We are given a DHG G, a set of elements (ei-
ther coalitions or partitions) C, a set of players M that al-
ready participate, a set Q of non-participating players, an
element C ∈ C and a solution concept β (e.g., welfare-
optimality, perfection, Nash-stability). In our model, when a
random set of players is drawn, there is no restriction on the
number of players. Thus, in constructive control by adding
an unbounded number of players (β-#CCAUP) the goal is
counting the number of sets Q′ ⊆ Q such that C satisfies
the solution concept β w.r.t. the set of players M∪Q′.
Problem 2. β-#∃CCAUP: given C, M, Q and β, the goal
is counting the number of all subsets Q′ ⊆ Q s.t. there exists
some C ∈ C that satisfies β w.r.t. the set of players M∪Q′.
Problem 3. (Decision Variants) Let β-#P be one of the
counting problems in Problems 1–2. In the decision prob-
lem β-P corresponding to β-#P , instead of asking for a
particular quantity w.r.t. to a solution concept β we ask if
that quantity is greater than zero.
Problem 4. For each problem P in Problems 1-3, in the
problem P-m we bound the number of selected players by a
nonegative integer m ∈ N.

We recall that the class of counting variants of NP-
problems is called #P and the class of functions computable
in polynomial time is called FP. We also note the following:
Corollary 1. Let C be a set of disjoint coalitions. Since dif-
ferent players are independent, the random social welfares
of any pair of disjoint coalitions are independent, and thus
different coalitions in C are independent.

Reductions from CCAUP to RDHGs
Throughout our work, hardness results are derived from the
following reductions from Problems 1–4 to RDHGs.
Lemma 1. There is a reduction from β-#CCAUP for coali-
tions to computing the probability that a coalition satisfies β.
Thus, #P-completeness of β-#CCAUP implies #P-hardness
of computing the mentioned probability.
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Proof. Adapting the approach in Subsection 3.2 of (Imber
and Kimelfeld 2021), let G, C, M, Q and C ∈ C be an in-
stance of β-#CCAUP, where C contains polynomially many
disjoint coalitions. The players in M participate with prob-
ability 1, whereas those in Q participate with probability
1/2. Let |Q| := m and α(M,Q) be the number of sub-
sets Q′ ⊆ Q s.t. C satisfies β w.r.t. M ∪ Q′. Corollary 1
yields that the probability that a coalition satisfies β equals
to 2−mα(M,Q), which concludes the proof.

Lemma 2. There is a reduction from β-∃CCAUP for par-
titions to deciding the zeroness of the probability that there
exists a partition satisfying β. Thus, NP-completeness of β-
∃CCAUP implies NP-hardness of the later.

Proof. Let G, C, M, Q be an instance of ∃CCAUP for
partitions. The players in M participate with probability 1
and those in Q participate with probability 1/2. Clearly, the
CCAUP instance admits a solution iff the probability that the
constructed RDHG G′ admits a β partition is positive.

Thus, we hereafter focus on β-#CCAUP and β-∃CCAUP
for the sake of analyzing the complexity of probabilistic in-
ference under RDHGs.

Hedonic Games with poly(n)-Lists
Peters (2016) refers to a context where agents only approve
polynomially many coalitions, and thus their preferences can
be represented by merely listing all approved coalitions. In
an even more restricted variant, the k-lists representation is
considered, where each agent submits a list of at most a con-
stant number of k ∈ N approved coalitions. In this section,
we therefore explore the complexity of probabilistically in-
ferring optimality in k-lists. We first investigate the com-
plexity of computing the probabilities concerning welfare-
optimal coalitions/partitions. Provided that it is #P-hard for
k-lists with k ≥ 2 (Theorem 3), we discuss their approx-
imability. Finally, we prove that deciding the zeroness of the
probability that there exists a SCS partition is NPC even for
1-lists (Theorem 6). Note that a hardness result for 1-lists
also applies to k-lists with k ≥ 2 (or even poly(n)-lists).

Probability of Welfare-Optimality
For 1-lists, we prove that the probability that a coalition is
welfare-optimal w.r.t. either a set C or a set Π of polynomi-
ally many coalitions and partitions (resp.), and #CCAUP for
welfare-optimal coalitions are poly-time computable.

Theorem 1. Computing Pr[WOC
G′(C)], Pr[WOΠ

G′(π)], as
well as solving #CCAUP(-m) (Problems 1, 4) for welfare-
optimal coalitions, can all be done in poly-time for 1-lists.

Proof. (Sketch) Note that Pr[WOC
G′(C)] =∑n

j=0 Pr[WOC
G′(C) ∩ SWI(C) = j] =∑n

j=0 Pr
[
SWI(C) = j ∩ [∩C ̸=C′∈CSWI(C

′) ≤ j]
]
. If C

contains only disjoint coalitions (i.e., C ∩ C ′ = ∅ for any
pair C ̸= C ′ in C), then Corollary 1 can be invoked. Hence,
this assumption drastically simplifies the proof, as discussed
in Appendix B. Yet, we herein consider the more general
case where this assumption is not necessarily satisfied.

Algorithm 1: Computing L(n, {qm}m∈[M ])

1: L(0, {0}m∈[M ]) = 0
2: L(0, {qm}m∈[M ]) = 1 (qm ̸= 0 ∀m ∈ [M ])
3: for j = 1 to n do
4: if ∃m̃ ∈ [M ] s.t. vj(Cm̃) = 1 then
5: L(j, {qm}m∈[M ]) = pjL(j − 1, {qm}m̃ ̸=m∈[M ] ∪

{qm̃ − 1}) + (1− pj)L(j − 1, {qm}m∈[M ])
6: else
7: L(j, {qm}m∈[M ]) = L(j − 1, {qm}m∈[M ])
8: end if
9: end for

10: return L(n, {qm}m∈[M ])

Thus, we depict how Pr
[
SWI(C) = q ∩

[∩C ̸=C′∈CSWI(C
′) ≤ q]

]
can be computed in poly-time

for any integer 0 ≤ q ≤ n and coalition C ∈ C. We denote
C := {C1, . . . , CM}, where M = O(poly(n)) by our as-
sumption. For integers j ∈ [n], 0 ≤ qm ≤ n (m ∈ [M ]), let
L(j, {qm}m∈[M ]) = Pr

[
∩m∈[M ]

∑
i∈I∩[j] vi(Cm) = qm

]
(Recall that vi(Cm) = 0 if i /∈ Cm). In Appendix C, we
observe that it can be computed in poly-time via the dy-
namic program in Algorithm 1. Note that L(n, {qm}m∈[M ])
is the desired probability. By summing these values, we can
thus readily compute Pr[WOC

G′(C)] as described above.
Computing Pr[WOΠ

G′(π)] is via similar arguments, and
thus deferred to Appendix D. Solving either #CCAUP-m or
#CCAUP for welfare-optimal coalitions is by slightly mod-
ifying the proof of Theorem 6 in (Wojtas and Faliszewski
2012), which is thereby illustrated in Appendix E.

In contrast to Theorem 1, computing Pr[WOC
G′(C)] is

generally intractable for k-lists with k ≥ 2. Initially, we sup-
ply a generic reduction from winner elections to poly(n)-
lists (See Appendix F.1 for a brief on voting games).

Theorem 2. There exists a poly-time reduction from each
control problem in elections with a polynomial and binary
positional scoring rule to its parallel control problem in
poly(n)-lists under welfare-optimal coalitions.

Proof. (Sketch) The proof is for control by adding play-
ers only. When deleting players, the proof similarly fol-
lows via the same reduction. Let r be a scoring rule, C be
a set of candidates, M := {Mi1 , . . . ,Mih1

} and Q :=

{Qj1 , . . . , Qjh2
} be a voting profile of the registered and

unregistered voters (resp.), and c ∈ C be a preferred can-
didate. If Ti is voter vi’s ranking, then s(Ti, c, r) is the
score that the voter i contributes to a candidate c under r.
We construct a DHG in poly(n)-lists form as follows. Let
M̃ := M∪ C and Q̃ := Q be the sets of participating and
non-participating players (resp.). For each candidate d ∈ C,
we construct a coalition Ud containing d and all voters viℓ1
and vjℓ2 (ℓ1 ∈ [h1], ℓ2 ∈ [h2]), which approve d. Formally,
Ud = M̃d∪Q̃d∪{d} with M̃d = {viℓ1 : s(Mℓ1 , c, r) = 1}
and Q̃d = {vjℓ2 : s(Qℓ2 , c, r) = 1}. Each candidate d sub-
mits an empty list and each voter vi in the constructed he-

5576



donic game approves all coalitions Ud for which vi ∈ Ud.
Since vi ∈ Ud if and only if vi approved the candidate
d, then each player in the constructed hedonic game ap-
proves poly(n) many coalitions as r is a polynomial scor-
ing rule. Thus, the reduction is well-defined. Finally, let
C̃ = {Ud}md=1 be the set of all possible coalitions and con-
sider Uc as the preferred coalition. In Appendix F.2, we
prove that every subset of voters Q′ ⊆ Q s.t. c is a win-
ner of M◦Q′ under r corresponds one-to-one to a subset of
players Q̃′ ⊆ Q̃ s.t. Uc is welfare-optimal w.r.t. M̃∪Q̃′.

Theorem 2 thus enables us to transfer prior results on con-
trolling elections to hedonic games. Theorem 3 illustrates its
application to welfare-optimal coalitions. An alternate proof
for k-lists (k ≥ 2) appears in Appendix G.

Theorem 3. In both k-lists (k ≥ 2) and poly(n)-lists,
if C contains polynomially many disjoint coalitions, then
#CCAUP for welfare-optimal coalitions and computing
Pr[WOC

G′(C)] are #P-hard.

Proof. For a fixed k ≥ 2, Theorem 2 provides a reduction to
#CCAUP for welfare-optimal coalitions from constructive
control by adding an unlimited number of voters (#CCUAV)
under k-approval, which is #P-hard due to Theorem 3.2 in
(Imber and Kimelfeld 2021). For poly(n)-lists, Theorem 2
provides a reduction to #CCAUP for welfare-optimal coali-
tions from #CCUAV under approval voting, which is #P-
hard due to Theorem 13 in (Wojtas and Faliszewski 2012).
By Lemma 1, computing Pr[WOC

G′(C)] is #P-hard.

Despite Theorem 3, it appears that verifying
Pr[WOC

G′(C)]’s zeroness can be done in poly-time:

Theorem 4. In k-lists (k ≥ 2) and poly(n)-lists, then
CCAUP for welfare-optimal coalitions (partitions) and de-
ciding Pr[WOC

G′(C)] > 0 (Pr[WOΠ
G′(π)] > 0) are in FP.

Proof. Let G, C, M, Q and C ∈ C be an instance of CCAUP.
Let Q⋆ ⊆ Q be the set of all players which approve the
coalition C. Let Q′ ⊆ Q s.t. C is welfare-optimal w.r.t.
M ∪ Q′. Then, C is welfare-optimal w.r.t. M ∪ Q⋆, and
thus verifying this property is sufficient for deciding whether
Pr[WOC

G′(C)] > 0. Indeed, for each i ∈ Q⋆ \ Q′, adding
i to M ∪ Q′ increases the social welfare of C by 1, and
the social welfare of any other coalition increases by at
most 1. Thus, C is welfare-optimal w.r.t M ∪ Q′′, where
Q′′ := Q′ ∪Q⋆. Since the players in Q′′ \Q⋆ disapprove C
and the social welfare of the other coalitions cannot increase,
C remains welfare-optimal even after removing them from
M ∪ Q′′. Hence, C is welfare-optimal w.r.t M ∪ Q⋆. The
proof for Pr[WOΠ

G′(π)] > 0 is by similar arguments.

Remark 1. If we set C = {C ′ ⊆ N : ∃i ∈ I s.t. vi(C) =
1} and note that |C| ≤ kn, the results for computing
Pr[WOC

G′(C)] also apply to computing Pr[WOG′(C)].

Though Theorems 1 and 4 provided positive results, when
attending to welfare-optimal partitions among all possible
ones we achieve the following negative result for 1-lists.

Theorem 5. In 1-lists, #∃CCAUP for welfare-optimal par-
titions w.r.t. Π is #P- and #W[1]-hard. Further, deciding
Pr[WOG′ ] > 0 and ∃CCAUP for welfare-optimal parti-
tions are NPC and W[1]-hard.

Proof. (Sketch) Adapting the reduction in Theorem 5 of (Pe-
ters 2016), we show a reduction to #∃CCAUP for welfare-
optimal partitions of partitions from #INDEPENDENT-SET
(#IS), known to be #P-complete in general (Provan and Ball
1983). Given a graph G = (V,E) and a target size k, we
choose M = E and Q = V as the participating and the
non-participating players (resp.). Each edge player e ∈ E
submits an empty list: she does not approve any coalition. A
vertex player v ∈ V approves Av := {v}∪{e ∈ E : v ∈ e},
i.e., v approves being together with the edges incident to it.
In Appendix H, we prove that each independent set of size ≥
k corresponds one-to-one to a subset of players Q′ ⊆ Q and
a partition π such that SWN ′(π) ≥ k w.r.t. N ′ = M∪Q′,
thus providing us with a poly-time reduction. Our construc-
tion also supplies a reduction from INDEPENDENT-SET to
CCAUP. By Lemma 2, deciding Pr[WOG′ ] > 0 is #P-hard.
Since #IS and IS are #W[1]- and W[1]-hard (Downey and
Fellows 1995; Curticapean et al. 2019), respectively, the re-
duction also provides us with W[1]-hardness results where
the parameter is the number of approving agents.

Approximate Probability of Welfare-Suboptimality
Similar to (Imber and Kimelfeld 2021), an additive
Fully Polynomial-time Randomized Approximation Scheme
(FPRAS) (Karger 1995) for Pr[WOC

G′(C)] can be obtained
by a simple Monte Carlo estimation (by sampling and taking
the ratio of the times in which C is welfare-optimal), when-
ever we can test in polynomial time whether C is welfare-
optimal for a sample. Yet, a multiplicative FPRAS provides
a stronger guarantee since it allows for approximating divi-
sions of probabilities, which is required for estimating con-
ditional probabilities. Thus, in Appendix I we depict the
modifications of (Imber and Kimelfeld 2021)’s FPRAS for
the probability of losing in an election so as to devise a
FPRAS for the probability Pr[WOC

G′(C)].

Remark 2. (Disapproval k-Lists) Similar to k-lists, agents
could only disapprove at most k coalitions. Thus, we note
that disapproval k-lists also satisfy the above theorems.

Probability of Strict-Core-Stability
For strict-core-stability, we provide a negative result.

Theorem 6. For strict-core-stability, #∃CCAUP is #P-hard
in 1-lists. Further, ∃CCAUP and deciding Pr[SCSG′ ] > 0
are NP-complete for 1-lists.

Proof. The proof is similar to that of Theorem 5, except that:
(1) the reduction is from KERNEL (Szwarcfiter and Chaty
1994), the problem of counting kernels of a digraph (an inde-
pendent set reachable from every outside node by an edge);
and (2) each arc agent e = (u, v) approves Au. Due to space
constraints, we omit the details.
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Anonymous Hedonic Games
In an anonymous hedonic game (AHG) (Ballester 2004),
agents’ preferences ⪰i are determined by an underlying or-
dering ⊵i over the possible coalition sizes [n], with S ⪰i T
iff |S|⊵i |T |. The following theorem analyzes the complex-
ity of #∃CCAUP and ∃CCAUP for Nash-stable, strict-core-
stable and perfect partitions, as well as the verifying the ze-
roness of Pr[NSG′ ], Pr[SCSG′ ] and Pr[PFG′ ].
Theorem 7. For Nash-stability, strict-core-stability and
perfection, #∃CCAUP is #P-hard in AHGs. Further,
∃CCAUP, deciding Pr[NSG′ ], P r[SCSG′ ], P r[PFG′ ] > 0,
are all NP-complete in AHGs.

Proof. (Sketch) In Appendix J, we show a reduction from
X3C to NS-∃CCAUP that adapts the reduction from X3C
presented in Theorem 9 of (Peters 2016). By Lemma 2, de-
ciding Pr[NSG′ ] > 0 is #P-hard. The proof for perfect-
∃CCAUP similarly adapts the reduction presented in The-
orem 18 of (Woeginger 2013), and is thus differed to Ap-
pendix J along with the proof for deciding Pr[PFG′ ] > 0.
The same reduction can be used for SCS.

Boehmer and Elkind (2020) show that finding a Nash-
stable partition can be done in poly-time if each agent ap-
proves at most one coalition size. Despite the negative result
in Theorem 7, we prove that such a condition further en-
ables us to compute both Pr[NSG′(π)] and Pr[PFG′(π)]
in polynomial-time for AHGs.
Theorem 8. If each agent i ∈ N solely approves coalitions
in N+

i = {C ∈ Ni : |C| = si} for some si ∈ N, then
Pr[NSG′(π)] and Pr[PFG′(π)] are poly-time computable.

Proof. (Sketch) Note that Pr[PFG′(π)] = Pr[∩i∈N |π(i)∩
I| = si]. If |π(i)| < si for some i ∈ N , then
Pr[PFG′(π)] = 0. Thus, we hereafter assume that |π(i)| ≥
si. Let 1i be the indicator for the event that agent i partici-
pates in the game. For integers t ≤ n and 0 ≤ qi ≤ n (i ∈
[n]), let L(t, {qi}i∈[n]) = Pr[∩i∈N

∑
j∈π(i)∩I∩[t] 1j =

qi]. In Appendix K, we show that it can be computed in
poly-time via the dynamic program in Algorithm 2, and
so does the probability that π is perfect. For computing
Pr[NSG′(π)], if there is no agent i with si = 1, then
the grand coalition is NS. Thus, we hereafter assume that
there exists at least one such agent. For each j ∈ [n], let
Nj = {i ∈ N : si = j}, and let ℓ = max{i|Nj =
∅∀j ∈ [i]}. Boehmer and Elkind (2020) prove that for
each j ∈ [ℓ] all agents in Nj need to be in coalitions of
size j in every NS outcome. Noting that Pr[NSG′(π)] =
Pr[∩j∈[ℓ]∩i∈Nj

|π(i)∩ I| = j], the proof thus follows from
arguments similar to the previous one.

Candidate Intervals
Assuming the agent set can be placed in the natural ordering,
each agent i only approves candidate intervals (CIs) [a, b]
of agents (with i ∈ [a, b]). Such a restriction was termed by
Elkind and Lackner (2015), and applied to DHGs by (Peters
2016). Opposed to the negative result for k-lists with k ≥ 2
(Theorems 3 and 5), we prove that:

Algorithm 2: Computing Pr[PFG′(π)]

1: L(0, {0}i∈[n]) = 0, L(0, {qi}) = 1 (qi ̸= 0 ∀i ∈ [n])
2: for t = 0 to n do
3: if ∃i ∈ [n] s.t. π(t) = π(i) then
4: L(t, {qi}i∈[n]) = ptL(t − 1, {qi − 1}i∈π(t) ∪

{qj}j∈[n]\π(t)) + (1− pt)L(t− 1, {qi}i∈[n])
5: else
6: L(t, {qi}i∈[n]) = L(t− 1, {qi}i∈[n])
7: end if
8: end for
9: return Pr[PFG′(π)] = L(n, {si}i∈[n])

Theorem 9. Pr[WOC
G′(C)], Pr[WOΠ

G′(π)] and
Pr[PFG′(π)] are computable in poly-time for CIs.

Proof. For an integer 0 ≤ j ≤ n, let SW⋆(j) and SWI(j)
be the maximum social welfare and the maximum coali-
tional social welfare over all coalitions (resp.) obtainable in
the subgame restricted to the random agent set I ∩ [j]. Each
agent approves all originally approved coalitions S such that
S ⊆ I ∩ [j]∪{0}. Note that SW⋆(0) = 0. Let #[t, j] be the
number of agents that approve the interval [t, j] in the sub-
game. Similar to Theorem 10 in (Peters 2016), we infer that
SW⋆(j) = maxt∈[j]{SW⋆(j−1)+#[t, j]}, which can thus
be computed in polynomial time via dynamic programming.
Noting that Pr[WOΠ

G′(π)] = Pr[SWI(π) = SW⋆(n)] and
that Pr[SWI(π) = q] can be computed via dynamic pro-
gramming (by arguments similar to the proof of Theorem
1, which are thus deferred to Appendix L), we infer that
Pr[WOΠ

G′(π)] is in FP for CIs. By substituting SW⋆(j)

with SWI(j), we obtain that Pr[WOC
G′(C)] is also in FP

for CIs. Since a partition π is perfect iff SW⋆(π) = n, the
proof for Pr[PFG′(π)] readily follows.

Roommate Games
In this section, we consider a restriction of hedonic games
where agents only approve coalitions of size at most 2
(Gärdenfors 1975). The bipartite case of roommate games
(RGs) is referred to as marriage games (Gale and Shapley
1962). See (Gusfield and Irving 1989) for a survey on both
types of games. Finding perfect partitions is easy by Theo-
rem 7 in (Aziz, Brandt, and Harrenstein 2013). Moreover, a
core stable matching can be computed efficiently for mar-
riage games (Gale and Shapley 1962). However, we obtain
negative results for both concepts in non-dichotomous mar-
riage games and other classes of hedonic games.

Theorem 10. In marriage games, Perfect/Nash-stable-
∃CCAUP(-m) and deciding Pr[NSG′ ], P r[PFG′ ] > 0 are
NPC. The same applies to roommates, Representation by In-
dividually Rational Lists of Coalitions (RIRLC) (Ballester
2004), additively separable hedonic games (Olsen 2009), B-
hedonic games and W-hedonic games (Aziz et al. (2012)).

Proof. (Sketch) In Appendix M, we show a reduction from
MinMaxMatch, the problem of finding a maximal matching
with size ≤ m, which is known to be NP-complete even for
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subdivision graphs (Horton and Kilakos 1993). The proof
constitutes an adaptation of Theorem 1 in (Aziz 2013). The
same reduction can be used for perfection. By Corollary 1
in (Aziz 2013), we further deduce the result for the other
classes of hedonic games.

Perfect Partitions in Majority Games
Thus far, we analyzed the probability that either coalitions
or partitions satisfy a solution concept. In contrast, we herein
explore their average performance in majority games (Pe-
ters 2016). This class can be seen as a dichotomization of
fractional hedonic games (Aziz et al. 2019). Formally, let
G = (N,E) be an undirected graph, where each agent cor-
responds to a vertex and an edge between two agents depicts
a (mutual) friendship between them. Let GI = (I, EI) be
the random subgraph of G induced by I . Letting dIi (C) be
agent i’s degree in the subgraph of GI induced by a coalition
C, agent i approves C if dIi (C) ≥ |C|

2 , i.e., if i is connected
to at least |C|

2 of the vertices in C. First, we characterize the
distribution of both the coalitions and social welfare of per-
fect partitions (Theorems 11-12), on which we elaborate in
Appendices N–O. Then, we discuss the performance of per-
fect outcomes by providing upper and lower bounds on their
Price of Anarchy (Koutsoupias and Papadimitriou 1999).

By Theorem 14 in (Peters 2016), without loss of general-
ity, a perfect partition consists of edges and triangles. Thus,
we let M I

n and T I
n be the random variables which represent

the number of edges and triangles in GI (resp.). Let T be the
set of all triplets (i, j, k) (i < j < k) that form a triangle
in G. Accordingly, the following theorem fully character-
izes the social welfare of a perfect partition π, as well as the
coalitions comprising π, for various values of (pi)i∈N .

Theorem 11. For each i ∈ N and n ∈ N, let pi(n) =
qi(n)
n for some qi : N → R, qmax(n) = maxi∈N qi(n) and

qmin(n) = mini∈N qi(n). Given a perfect partition π, we
infer: (1) A perfect partition comprises of singletons w.h.p.
(with high probability): If qmax(n) → 0 as n → ∞, then
T I
n = 0, M I

n = 0 and SWI(π) = 0; (2) Triangles and edges
reside in perfect partitions a.s. (almost surely): If |T| = 1
and n

qmin(n) → 1 as n → ∞, then T I
n ≥ 1 a.s. Otherwise,

if |T| ≥ 2 and qmin(n) → ∞ as n → ∞, then T I
n ≥ 1

and M I
n ≥ 1 a.s.; (3) If qmax(n)

qmin(n) → 1 as n → ∞, then
qmin(n)

n ≤ E[|I|] ≤ qmax(n), thus yielding that |I| ≥ 1 (i.e.,
at least one agent remains) a.s.; (4) If qi(n) ≡ ci for ci > 0
∀i, then E[SWI(π)] ≤ c2max, where qmax(n) ≡ cmax.

Further, we can model agents’ uncertainty about their mu-
tual friendships. Formally, let (pij)i,j∈N ∈ [0, 1]n×n with
pij = pji for every i, j ∈ N . Let E ⊆ N ×N be a random
variable, where (i, j) ∈ E with probability pij and different
pairs of indices are independent, thus yielding a Erdös-Rényi
random graph G̃ = (N, E) (Erdös and Rényi 1959) whose
set of edges is E . The majority game on the resulting random
graph satisfies 1-3 in Theorem 11 with minor adjustments
(See Appendix O.1), yet gives rise to an additional property
which extends property 4 (proved in Appendix O.2):

Theorem 12. Let pij(n) = c/n for some constant c > 0.
Let π be a perfect partition. Then, T I

n converges in distri-
bution to a Poisson random variable with parameter c3/6,
E[M I

n] = (n− 1)c/2 and E[SW(π)] ≤ (n− 1)c.
Let PI be the set of all perfect partitions for a random

set of players I and let π⋆ be an welfare-optimal partition.
Inspired by the Price of Anarchy (Koutsoupias and Papadim-
itriou 1999), we put forth the Price of Perfection (PP) of a
RDHG G′, defined as the worst-case ratio between the social
welfare of π⋆ and that of a perfect partition, i.e., PP(G′) =

maxπ∈PI

SWI(π
⋆)

SWI(π)
. Similarly, we define the Expected Price

of Perfection (EPP) by EPP(G′) = maxπ∈PI

E[SWI(π
⋆)]

E[SWI(π)]
.

Using Theorem 11, we devise upper and lower bounds on
both variants of the price of perfection, where Corollary 2 is
clearly a direct outcome of (3)-(4) in Theorem 11.
Lemma 3. Under the assumptions of Theorem 11 and: (1) in
Theorem 11, PP(G′) = EPP(G′) = 0 w.h.p.; (2) in Theorem
11, PP(G′) ≤ |I|/2 a.s.; (3)-(4) in Theorem 11, EPP(G′) ≤
qmax(n) = cmax/2.

Proof. For (1), the claim clearly stems since M I
n = 0 w.h.p.

For (2), π⋆ clearly satisfies SWI(π
⋆) ≤ |I|. If we were

to consider each connected component of G separately, we
may assume that G is connected and does not consists of
any isolated vertices. Hence, if there exists a perfect parti-
tion in G, then a perfect partition consisting of edges and
triangles exists (Theorem 14 in (Peters 2016)). However, GI

might contain isolated vertices, even if G does not. Since
M I

n ≥ 1 a.s., we infer that SWI(π) ≥ 2 at the very least,
thus yielding that PP(G′) ≤ |I|/2. For (3), we observe that
E[SWI(π

⋆)] ≤ E[|I|] ≤ qmax(n). Combined with the
proof for (2), we conclude that EPP(G′) ≤ qmax(n).

Corollary 2. Under the assumptions of (3)-(4) in Theorem
11, if SW(π⋆) ≥ 1, then EPP(G′) ≥ 1/c2max. Alternately, if
SWI(π

⋆) = |I|, we infer that EPP(G′) ≥ cmin

nc2max
.

Proof. The first lower bound is a direct outcome of (4) in
Theorem 11. For the second part, from (3) in Theorem 11 we
infer that qmin(n)

n ≤ E[SWI(π
⋆)] ≤ qmax(n). Combined

with (4) in Theorem 11, we conclude the desired bounds.

Conclusions and Future Work
Our work contributes significantly to the study of hedonic
games, as the first one to explore the complexity of proba-
bilistically inferring solution concepts in uncertain domains.
The main complexity results are summarized in Table 1. Our
study opens the way for many future works, including the in-
vestigation of other classes of hedonic games and other solu-
tion concepts. Further, our probabilistic setting arises several
intriguing questions, among those: For an outcome satisfy-
ing a solution concept β, what is the maximum number of
players whose withdrawal from the game still preserves β
in the outcome induced by the remaining players? Another
direction is robustness (Igarashi et al. 2019): A probabilistic
withdrawal of players upon an outcome satisfying a solution
concept β (e.g., stability) should preserve β.
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