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Abstract

Developing a dynamical model for learning in games has at-
tracted much recent interest. In stochastic games, agents need
to make decisions in multiple states, and transitions between
states, in turn, influence the dynamics of strategies. While
previous works typically focus either on 2-agent stochastic
games or on normal form games under an infinite-agent set-
ting, we aim at formally modelling the learning dynamics
in stochastic games under the infinite-agent setting. With a
novel use of pair-approximation method, we develop a for-
mal model for myopic Q-learning in stochastic games with
symmetric state transition. We verify the descriptive power
of our model (a partial differential equation) across various
games through comparisons with agent-based simulation re-
sults. Based on our proposed model, we can gain qualitative
and quantitative insights into the influence of transition prob-
abilities on the dynamics of strategies. In particular, we illus-
trate that a careful design of transition probabilities can help
players overcome the social dilemmas and promote coopera-
tion, even if agents are myopic learners.

Introduction
Recent years have witnessed a significant gain in the capa-
bility of multi-agent reinforcement learning (MARL). How-
ever, the theory underlying MARL is still far from being
well understood. One line of emergent research is to exam-
ine the evolutionary dynamics of learning in games (Bloem-
bergen et al. 2015; Boone and Piliouras 2019; Cheung 2018;
Leonardos, Piliouras, and Spendlove 2021). As Tuyls and
Parsons (2007) voice, the development of theory in this di-
rection is crucial because it will not only yield a better theo-
retical understanding of existing algorithms, but potentially
facilitate the design of new methods, leading to practical al-
gorithmic advancements.

In their seminal work, Tuyls et al. (2003) propose the
selection-mutation model to formalize the dynamics of Q-
learning (Watkins and Dayan 1992) with Boltzmann explo-
ration in 2-player normal-form games. This model reveals
a surprising connection between multi-agent Q-learning and
the well-known replicator dynamics of evolutionary game
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theory (EGT); thus, it has inspired many works in the litera-
ture. Along this line of research, Panozzo et al. (2014) gen-
eralize this model for Q-learning that operates on extensive
form games. Hennes et al. (2009) introduce a state-coupled
variant of this model, extending it to 2-player stochastic
games. However, these early works typically focus on two-
agent interaction scenarios.

More recently, there have also been some works reported
on modelling the Q-learning dynamics beyond the two-agent
setting. Hu et al. (2019) leverages mean field theory and
derives a model for the evolution of an infinite well-mixed
population where Q-learning agents are randomly paired up
to play 2-player normal form games. Using a similar mean
field-theoretic approach, Leung et al. (2022) generalize the
model to capture the stochastic effects of local and incom-
plete information; Chu et al. (2022) propose a variant of the
model for Q-learning on regular graphs where each edge
represents a 2-player normal form game between two ver-
tices (agents).

In this paper, we aim to formally model the learning dy-
namics in stochastic games under the infinite-agent setting.
Specifically, we consider the population structure to be a
complete graph, where each myopic Q-learner occupies a
node and each edge, connecting two agents, is associated
with a stochastic game with symmetric state transitions. At
a given time step, each agent takes an action to play against
all of its neighbours along every edge that the agent is con-
nected with. Then, depending on the joint actions of two
connected agents, the state of the stochastic game transits.
Although infinite-agent settings and stochastic games each
have independently been studied, the learning dynamics in
stochastic games with infinitely many agents have not been
explored before. More importantly, this is a common and
realistic setting in the MARL literature, as modern MARL
algorithms often feature state transitions and a large number
of agents (Ganapathi Subramanian et al. 2020; Yang et al.
2018; Long et al. 2020).

A typical approach to formalizing the evolution of an in-
finite well-mixed population is based on mean field theory,
which approximates the effects of other agents on a focal
agent with a mean field. This approach, however, is incom-
patible with our considered setting. Modelling the dynam-
ics in stochastic games poses a new challenge—how should
we reflect the correlation between strategic interactions and
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environmental state transitions? For a focal agent, the state
transition depends on the joint actions of itself and its oppo-
nent. On the other hand, at a given time step, as each agent
plays the same action against different opponents in differ-
ent states, its action choice, aiming to maximize the expected
payoffs over different states, is affected by the state distribu-
tion. Putting these coupling effects together breaks a typical
assumption of the mean field approximation which requires
the effects of opponents on agents to be somewhat homoge-
neous.

To address this challenge, we find that the key is to
track the co-evolution of the state distribution and oppo-
nent strategies, and that such information can be derived
from agents’ Q-values. We propose a novel use of the
pair-approximation method that is well-known in statisti-
cal physics (Hauert and Szabó 2005). Intuitively, instead of
considering the frequency of strategies as in mean field the-
ory, the pair-approximation tracks the frequencies of strat-
egy pairs. Thus, compared with the mean-field approxima-
tion, the pair-approximation method better captures the het-
erogeneous effects that arise from local interactions. In this
work, we define a pair to be a tuple ⟨Qi, s,Qj⟩, where s is
a state and Qi and Qj denote the Q-values of two agents i
and j. We develop a partial differential equation to model
the evolution of the probability distribution of these pairs on
the state-Q-values space. From the probability distribution
of these pairs, the state distribution, the opponent strategies,
and consequently the population state at a given time step
can be derived.

To illustrate our model, we consider different game con-
figurations in our experiments and numerically solve the
developed partial differential equation in those games. We
show that across different games, initial conditions, transi-
tion rules, and algorithm parameters, our model always pro-
vides an accurate description of the Q-learning dynamics.
More interestingly, our model shows that the state transition
promotes the emergence of cooperation in social dilemma
games by facilitating myopic Q-learning agents to learn the
strategies which yield them higher long-term rewards. For
example, compared with a repeated prisoner’s dilemma (PD)
game, agents are more willing to cooperate in a two-state
game with the transition between a PD game and a stag hunt
(SH) game. In other words, the dependence of states on pair-
wise interactions can greatly enhance cooperation even if
agents are myopic.

Our results clearly suggest that even if agents apply my-
opic Q-learning, the effects of state transition are non-trivial.
This provides theoretical evidence for the critical role of
games with state transition under the infinite-agent setting,
complementing previous results of learning in stochastic
games under the 2-player setting (Deng et al. 2021). To aid
investigations on such effects, our model can provide in-
sights that are unable to obtain using previous models (Deng
et al. 2021; Hennes, Tuyls, and Rauterberg 2009; Hu et al.
2022). Therefore, our model is an important theoretical con-
tribution towards a better understanding of multi-agent Q-
learning.

Preliminaries
In this paper, we consider an infinite well-mixed multi-
agent system (MAS), where all agents are paired up to play
stochastic games and learn their strategies through myopic
Q-learning. We begin this section by providing a brief in-
troduction to stochastic games. Subsequently, we present a
learning framework for Q-learners playing stochastic games
in a well-mixed population.

Stochastic Games
The key concept of stochastic games is that the current state
and the joint action of agents not only determine the re-
wards agents can obtain in the current round, but also the
state agents will stay in the next round. We follow the for-
mal definition of stochastic games in (Hennes, Tuyls, and
Rauterberg 2009) and change some notations for better il-
lustration. A stochastic game with n agents and k states is
defined by a tuple < N ,S,A, z, r, π1, . . . , πn >. In each
state s ∈ S = {s1, . . . , sk}, each agent i ∈ N = {1, . . . , n}
has an action set Ai(s) and strategy πi(s). The payoff func-
tion r(s, a) :

∏n
i=1 Ai(s) → Rn maps the joint action

a = (a1, . . . , an) in state s to a reward for each agent.
The transition function z(s, a) :

∏n
i=1 Ai(s) → ∆k−1 de-

termines how the state transition occurs under current state
s and joint action a, where ∆k−1 is the (k − 1)-simplex
and zs′(s, a)denotes the transition probability from state s
to state s′ under joint action a.

We take a two-agent two-state two-action stochastic game
as an example for further explanation. We consider that each
state corresponds to a symmetric matrix game, thus differ-
ent agents have identical action sets in a given state s, i.e.,
A1(s) = A2(s) = A(s). A(s) is the set of available ac-
tions for agents in s, and the action sets that agents have in
different states can be different, that is A(s1) = {a1, a2},
A(s2) = {b1, b2}. A general form of a two-agent two-state
two-action symmetric stochastic game can be given as fol-
lows:

Ms1 =

(
ra1a1

ra1a2

ra2a1
ra2a2

)
,Ms2 =

(
rb1b1 rb1b2
rb2b1 rb2b2

)
,

Ts1→s2 =

(
zs2(s1, a1, a1) zs2(s1, a1, a2)
zs2(s1, a2, a1) zs2(s1, a2, a2)

)
,

Ts1→s1 = I2 −Ts1→s2 ,

Ts2→s1 =

(
zs1(s2, b1, b1) zs1(s2, b1, b2)
zs1(s2, b2, b1) zs1(s2, b2, b2)

)
,

Ts2→s2 = I2 −Ts2→s1 ,

where Ms1 and Ms2 are the payoff matrices of a row agent
in state s1 and s2, respectively. Ts1→s2 and Ts1→s1 cap-
ture the transition probabilities in state s1 given different
joint actions, zs2(s1, ai, aj) denotes the transition probabil-
ity from s1 to s2 under the joint action a = (ai, aj), where
i, j ∈ {1, 2}. Likewise, Ts2→s1 and Ts2→s2 capture the
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transition probabilities in state s2, where zs1(s2, bi, bj) de-
notes the transition probability from s2 to s1 under the joint
action a = (bi, bj). I2 is a second-order matrix where all the
elements equal 1.

Note that here we assume that the state transition is sym-
metric, which means the influence of the agent behaviors
on the environment depends only on the actions, not on the
identities of agents. Formally, the transition probabilities sat-
isfy zs2(s1, ai, aj) = zs2(s1, aj , ai) and zs1(s2, bi, bj) =
zs1(s2, bj , bi).

Q-learning for Multi-Agent Stochastic Games
We consider a well-mixed MAS containing n agents with
n tends to infinity, the structure of the well-mixed system
can be described by a complete graph. Each agent occupies
a vertice on the graph, and each pair of agents is connected
by an edge. Note that each edge represents the state the two
agents stay in.

At each time step t, all agents simultaneously choose their
own actions according to their strategies. Then, each agent
participates in pairwise interactions with all other agents.
The game played in each interaction is determined by the
state in which the agent and its opponent stay. Each agent up-
dates its strategy after receiving the immediate reward which
is averaged over its n−1 interactions. At the end of this time
step, for each pair of agents, the state transition occurs ac-
cording to the transition rule. The transition rule implies the
coupling between game plays and state transitions in the en-
vironment. At time t, a pair of agents play strategies, and
then the state transits in the environment, determining the
game agents play at time t+ 1.

Note that an agent adopts the same action to play all the
games with its opponents, which is decided at the begin-
ning of a given time step. Using the same action along every
edge is a typical assumption for learning on graphs (e.g.,
graphical polymatrix games (Cheung 2018)). Typical real-
world examples include information sharing on social me-
dia, the movement of an arbitrary drone in an unmanned
aerial vehicle swarm, and the uncontrolled intersections and
lane change problems for self-driving vehicles. In these sce-
narios, the state transition is an “edge” property, and once an
agent plays an action, this action will immediately affect all
its opponents.

As the agent has to take the same action to play multiple
different games rather than respond specifically to each type
of game, in this paper, we assume the agents are myopic Q-
learners, and do not have knowledge about game transition.
The immediate reward is the only signal they can get. There-
fore, each myopic agent maintains a vector of Q-values for
each action, and the action sets for all states are considered
identical. At time t, for any agent i in the population, if i
takes action aj ∈ A = {a1, . . . , am} from m available ac-
tions to interact with all other agents, and receives a reward
rit(aj) averaged over the n− 1 interactions, then the j-th el-
ement in its Q-value vector Qi

t = [Qi
t(a1), . . . , Q

i
t(am)]⊤ is

updated as follows, while other elements remain unchanged.

Qi
t+1(aj) = Qi

t(aj) + α[rit(aj)−Qi
t(aj)], (1)

where α is the learning rate. We consider the probability of
action selection for each agent is generated by the Boltz-
mann exploration scheme. As a result, for any agent i, it
has a mixed-strategy xi

t = [xi
t(a1), . . . , x

i
t(am)]⊤, where

∀aj ∈ A, xi
t(aj) is the probability that agent i takes action

aj at time t. The value of xi
t(aj) is given by:

xi
t(aj) =

eτQ
i
t(aj)∑

∀a∈A eτQ
i
t(a)

, (2)

where τ is the Boltzmann exploration temperature. The
value of τ determines the trade-off between exploration
and exploitation. If τ = 0, agents will take actions ran-
domly which means complete exploration. If τ → ∞, agents
choose the action corresponding to the maximum Q-value.

The Dynamics Model of Multi-Agent
Stochastic Games

In this section, we present the theoretical model of Q-
learning dynamics in multi-agent stochastic games. First,
we focus on an individual agent and model the dynamics
of its Q-value vector. Next, we compare the commonly used
mean-field approach with our pair-approximation method.
Finally, we aim to accurately capture the population dynam-
ics by modeling the evolution of the distribution of pairs.

Dynamics of Q-values for an Agent
When playing a pairwise stochastic game, the reward an
agent can receive from playing against another agent de-
pends not only on their joint action but also on their state.
Consequently, the reward of a row agent, taking action ai
against its opponent with action aj in state s, is calculated
as:

r(ai | s, aj) = e⊤i Msej , (3)

where Ms is the payoff matrix of game played in state s,
ei is the unit column vector with size m (the i-th element
equals 1 and the other m− 1 elements equal 0).

Under our considered scenario, at time t, for an arbitrary
agent i, given the actions of all its opponents and the corre-
sponding games with each opponent, its immediate reward
of taking action aj is given by:

rit(aj |
{
siht

}
h∈{1,...,n−1} , {avh}h∈{1,...,n−1})

=
1

n− 1

n−1∑
h=1

e⊤j Msiht
evh,

(4)

where Msiht
is the payoff matrix in state siht , siht is the state

where agent i and its h-th opponent stay at time t, and agent
i’s h-th opponent takes the vh-th action avh.

Agents start to update their strategies after receiving im-
mediate rewards. For Q-learners, only the Q-value of the
taken action can be reinforced, so if agent i takes the j-th
action aj , only the j-th element of its Q-value vector will
be updated according to Equation (1), while other elements
remain unchanged. Consequently, for an individual agent i
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who chooses the j-th action aj at time t, the velocity of
change of the j-th element of its Q-value vector is given as:

vj(Q
i
t, aj) :=Qi

t+1(aj)−Qi
t(aj)

=α[E[rit(aj)]−Qi
t(aj)],

(5)

where E[rit(aj)] is i’s expected reward by taking action aj .
According to Equation (4), this expected reward depends on
i’s state distribution and opponent strategies in each state.
We use a vector v(Qi

t, aj) to denote the velocity of change
of i’s Q-value vector when it takes action aj .

Mean-Field Approximation vs Pair-Approximation
Hu et al. (2019) leverage a mean field theoretic approach to
approximate the effects of other agents on a single agent as
the number of opponents goes to infinity. For an arbitrary
agent i, the payoff that it receives from playing repeated
games with all other agents is approximated by the payoff
of playing against the mean strategy x̄t:

E[rit(aj)] = e⊤j Mx̄t. (6)

While this approach has yielded significant insights into
learning in repeated normal form games under the infinite-
agent setting, it is incompatible with stochastic games.

In stochastic games, the strategic interactions and envi-
ronmental changes jointly drive the evolution of agent be-
haviors. Thus, how a focal agent is influenced by all of its
opponents also depends on the relationship between the fo-
cal agent and each of its opponents. However, such state dis-
tributions and even the opponent strategies in each state for
different agents can be heterogeneous. Specifically, differ-
ent actions of a focal agent will lead to different distribu-
tions of joint actions in all its interactions, thus resulting in
different state distributions after the state transition. The ex-
istence of heterogeneity also explains why agents taking the
same action may get different rewards under our considered
scenario. To summarize, environmental variability leads to
the effects on different agents being heterogeneous, this is
contrary to the assumption of the mean-field approximation
that the effects on different agents are homogeneous.

Describing the interplay between agent behaviors and the
environment is the key point in modelling learning dynamics
in stochastic games. Under our setting, all interactions in the
population are conducted in a pairwise way. If the evolution
of each pair of interactions can be described, the dynamics
of the whole population can also be captured.

In EGT, the pair-approximation method from statistical
physics is used to obtain the spatial dynamics. This method
tracks the frequencies of strategy pairs rather than only con-
sidering the frequency of strategies. Inspired by this method,
if we focus on a pair of agents and their state, the influence
of the joint behavior on the state and the influence of the
state on the two agents can be characterized. Here, we pro-
pose a pair-approximation method by defining the concept
of pair as a tuple consisting of the Q-value vectors of two
connected agents [Q1

t ,Q
2
t ] and their state s. Thus, a pair in

the system can be denoted by ⟨Q1
t , s,Q

2
t ⟩, where the super-

scripts 1 and 2 represent the focal agent and its opponent, re-
spectively. In fact, for Q-learners, the heterogeneity of their

Q-values also implies the heterogeneity of their state dis-
tributions and that of the opponent strategies in each state.
By this pair-approximation method, we can get other neces-
sary information about the agent based on its Q-values, thus
the expected reward in Equation (5) actually depends on the
agent’s Q-values.

Theoretical Analysis of Q-Learning Dynamics in a
Multi-Agent System with Game Transition
After giving the definition of pair, the system state can
be defined as the probability distribution of pairs, and
p(Q1

t , s,Q
2
t , t) is the proportion of pair ⟨Q1

t , s,Q
2
t ⟩ in the

population at time t. As the interactions between agents pro-
ceed, the probability distribution of the pairs will evolve. By
working with the temporal evolution of the system state, we
can predict the learning dynamics of agents and describe
how the environmental state (i.e., the distribution of states
in the population) evolves. Next, we focus on how to track
the evolution of p(Q1

t , s,Q
2
t , t).

Based on the Bayes rule, we have:

∂p
(
Q1

t , s,Q
2
t , t

)
∂t

=
∂[p (s, t) p

(
Q1

t ,Q
2
t , t | s

)
]

∂t

= p (s, t)
∂p

(
Q1

t ,Q
2
t , t | s

)
∂t

+ p
(
Q1

t ,Q
2
t , t | s

) dp (s, t)
dt

.

(7)
The change of a single pair involves the change of two

Q-value vectors and the transition of state. As Equation (7)
expresses, in order to track the evolution of the system state,
we have to describe how the conditional probability distri-
bution of Q-value vector pairs in each state space evolves,
and describe the evolution of the environmental state.

At first, we focus on the evolution of the environmental
state of the system. The proportion of any state s in the pop-
ulation at time t is denoted by p(s, t), and it is obtained by:

p(s, t) =

∫
. . .

∫
p(Q1

t , s,Q
2
t , t)A1A2, (8)

where we define dQ1
t (a1) . . . dQ

1
t (am) (resp.dQ2

t (a1) . . .
dQ2

t (am)) as A1 (resp.A2).
As the changes of states in each pair cumulatively result

in a change in the whole system, at time t+ 1, we have:

p(s, t+ 1)

=
∑

∀s′∈S

∫
. . .

∫
p(Q1

t , s
′,Q2

t , t)Pr(s | Q1
t , s

′,Q2
t )A1A2

=
∑

∀s′∈S

∫
. . .

∫
p(Q1

t , s
′,Q2

t , t)
∑

∀ai∈A

∑
∀aj∈A

xi(Q
1
t )

× xj(Q
2
t )zs(s

′, ai, aj)A1A2,
(9)

where Pr(s | Q1
t , s

′,Q2
t ) is the probability of transition

from state s′ to s for the pair ⟨Q1
t , s

′,Q2
t ⟩. xi(Q

1
t ) is the

probability that the focal agent selects action ai when its Q-
value vector is Q1

t , xj(Q
2
t ) is the probability that the focal

agent’s opponent selects action aj when its Q-value vector
is Q2

t , xi(Q
1
t ) and xj(Q

2
t ) can be obtained by Equation (2).
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We derive a continuous-time differential equation for the
evolution of p(s, t) according to the method in (Tuyls, Ver-
beeck, and Lenaerts 2003):

dp (s, t)

dt

=
∑

∀s′∈S

∫
. . .

∫
p(Q1

t , s
′,Q2

t , t)
∑

∀ai∈A

∑
∀aj∈A

xi(Q
1
t )

× xj(Q
2
t )zs(s

′, ai, aj)A1A2

−
∫

. . .

∫
p(Q1

t , s,Q
2
t , t)A1A2.

(10)
Then, we focus on deriving how the conditional probabil-

ity distribution of Q-value vector pairs in a given state space
s evolves. Due to the existence of the state transition mech-
anism, deriving the equation that can describe the evolution
of this conditional distribution is complicated. Nevertheless,
under our considered scenario, after the decision-making of
agents, the strategy updating and the state transition are two
independent processes. The state transitions caused by the
current interactions only affect the learning of agents at the
next time step. Therefore, we first assume that interactions
between agents at time t do not lead to any state transitions.
In this way, we can derive the velocity of change of the den-
sity of agent pairs having their Q-values equal P = [Q1

t ,Q
2
t ]

in state space s, under the condition that the state does not
transit at time t (i.e., ∂ps(P,t)

∂t ). Then we consider how the
change of state leads to the transition of agent pairs among
different state spaces, and further deduce the state distribu-
tions of different Q-value vector pairs. Finally, we can derive
the equation that can capture the evolution of p(P, t | s).

We follow the method in (Wang et al. 2022) to derive
the velocity of change of p(P, t | s) at time t based on
the assumption that there is no state transition. As we use
∂p(P,t|s)

∂t and ∂ps(P,t)
∂t to represent the velocity of change

of p(P, t | s) at time t with state transition and without
transition, respectively, we rewrite p(P, t | s) as ps(P, t)
here. From a spatial perspective, the state space s is a 2m-
dimensional euclidean space, where m is the size of the ac-
tion set, and the agent pairs in state s occupy a position in
this space according to their Q-values. The change of the
density of agent pairs at any position P in the space from t
to t+∆t is caused by the process that agent pairs leave the
position P, and incoming agent pairs reach P from other
positions. We denote all the positions where agent pairs may
exchange with P as {P′}. During the time interval ∆t, all
agents can only update their Q-value vectors once, the evo-
lution of ps(P, t) can be represented by the master equation:

∂ps (P, t)

∂t
= lim

∆t→0

1

∆t
(ps(P, t+∆t)− ps(P, t))

=

∫
T (P,P′, t | s)ps(P′, t)− T (P′,P, t | s)ps(P, t)dP′,

(11)
where T (P,P′, t | s) is the transition rate from position
P′ to P in the state space s at time t, and likewise for
T (P′,P, t | s). Note that the position set {P′} is the same
for agent pairs in different state spaces but with the same

Q-values P. Because each agent interacts with an infinite
number of opponents, and according to Equation (5), the
change in an agent’s Q-values depends on its action and
Q-values. That is, for a pair of agents, the change in their
Q-values is independent of their state. Specifically, when
the focal agent takes action ai and its opponent takes ac-
tion aj at time t, if we denote the change of Q-values P
of this pair of agents as v(P, ai, aj , t), ∀s ∈ S , we have
v(P, ai, aj , t | s) = v(P, ai, aj , t). Therefore, ∀s ∈ S , we
have T (P,P′, t | s) = T (P,P′, t), and T (P′,P, t | s) =
T (P′,P, t).

Then, by deriving T (P,P′, t) and T (P′,P, t) to further
deduce the master equation, we have:

∂ps (P, t)

∂t

=−
∑

∀ai∈A

vi(Q
1
t , ai)

∂[p (P, t | s)xi(Q
1
t )]

∂Q1
t (ai)

−
∑

∀aj∈A

vj(Q
2
t , aj)

∂[p (P, t | s)xj(Q
2
t )]

∂Q2
t (aj)

.

(12)

More details about the derivation of Equation (12) are pre-
sented in our supplementary material1.

Finally, we track the evolution of p(P, t | s) by consider-
ing the occurrence of state transition on the basis of obtain-
ing the evolution of Q-value distribution in the population.
Without state transition, in state space s, the change of the
proportion of agent pairs having their Q-values equal P from
time t to t + ∆t is ∂ps(P,t)

∂t ∆t, but due to the transition of
state, only a certain proportion of agent pairs will stay in
state space s, while other agent pairs will move into other
different state spaces. Thus, we have:
∂p (P, t | s)

∂t
= lim

∆t→0

1

∆t
(p(P, t+∆t | s)− p(P, t | s))

=
1

p(s, t)
(
∑

∀s′∈S

p(s′, t)
∂ps

′
(P, t)

∂t

∑
∀ai∈A

∑
∀aj∈A

xi(Q
1
t )

× xj(Q
2
t )zs(s

′, ai, aj)− p(P, t | s)dp (s, t)
dt

).

(13)
Finally, the Q-learning dynamics of multi-agent stochastic

games can be modelled accurately by the Equation (2), (5),
(7), (8), (10), (12) and (13).

Based on the system state, we can get more information
on agent behaviors. The proportion of agents having their
Q-values equal Q1

t is given below:

p(Q1
t , t) =

∑
∀s∈S

∫
. . .

∫
p(Q1

t , s,Q
2
t , t)A2. (14)

The proportion of agents having their Q-value of action ai
equal Q1

t (ai) is given below:

p(Q1
t (ai), t) =

∑
∀s∈S

∫
. . .

∫
p(Q1

t , s,Q
2
t , t)

dQ1
t (a1) . . . dQ

1
t (ai−1)dQ

1
t (ai+1) . . . dQ

1
t (am)A2.

(15)

1https://github.com/Zheng-YZ/AAAI2023SM
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The expected Q-value of action ai can be obtained by:

E[Qt(ai)] =

∫
Q1

t (ai)p(Q
1
t (ai), t)dQ

1
t (ai). (16)

Then, the expected strategy for selecting action ai is:

E[xt(ai)] =

∫
. . .

∫
p(Q1

t , t)
eτQ

1
t (ai)∑

∀a∈A eτQ
1
t (a)

A1. (17)

Experiments
In this section, we conduct experiments to validate our the-
oretic model and further reveal the interesting phenomena
caused by state transitions.

Different Initial Conditions
We consider two different initial conditions, homogeneous
and heterogeneous. For the homogeneous case, the initial Q-
values of all available actions are set to 0 for all agents, and
each pair of agents is in state s1 at the beginning. For the het-
erogeneous case, the initial Q-values of agents follow differ-
ent Beta distributions, and the initial states between agents
are determined at random.

Experiments are conducted on a two-state two-action
stochastic game where agents play a SH game in state s1
and play a PD game in state s2. The action sets and payoff
matrices of the SH game and PD game are given as follows:

A(SH) = A(PD) = {cooperate C, defect D} ,

MSH =

(
rCC rCD
rDC rDD

)
=

(
1 0
r r

)
,

MPD =

(
rCC rCD
rDC rDD

)
=

(
1 −r
b 0

)
.

We set r = 0.1 for the SH game, and b = 1.2, r = 0.1
for the PD game. Transitions between the two states occur
according to the following rule: for a pair of agents, if their
current state is s1, only their mutual defection can lead to
a transition from s1 to s2, and if they stay in s2 at present,
only mutual cooperation can help them return to s1.

For the agent-based simulations, we set the population
size n = 1000, the learning rate α = 0.4, and the tem-
perature τ = 2 (Unless otherwise specified, the parameters
are set in the same way for subsequent experiments). We run
500 simulations for each setting to smooth out the random-
ness. As shown in Figure 1, the dots represent the results
derived from our dynamics model, the solid lines represent
the mean of the results of agent-based simulations, and the
shaded areas represent the standard deviation of simulation
results (The results of subsequent experiments are presented
in the same manner). Under different initial conditions, our
model always provides accurate descriptions of the evolu-
tion of agent behaviors and that of the environmental state.

Deterministic and Probabilistic Transitions
For the above experiments, the state transition between two
paired agents is driven by their joint action and current state,
this is a general form of transition. Now, we investigate an-
other case where the state transition between agents depends
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(a) Homogeneous initial condition
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Figure 1: Evolution of agent behaviors and that of the envi-
ronmental state under different initial conditions. In (b), we
set Q0(a1) ∼ Beta(20, 80, -0.1, 1.2), Q0(a2) ∼ Beta(80, 20,
-0.1, 1.2), the first two parameters of the Beta distribution
control the shape of the probability density function, and the
latter two parameters prescribe the support to be [rmin, rmax],
where rmin and rmax are the minimum and maximum payoff
of the stochastic game, respectively.

only on their joint action, that is the state-independent tran-
sition. Furthermore, using this state-independent transition,
we further validate the applicability of our model to the de-
terministic and probabilistic transition rules.

We consider another scenario where each pair of agents
play a two-state PD game, and the two different states s1 and
s2 correspond to two different PD games PD1 (b = 1.5, r =
0) and PD2 (b = 1.2, r = 0), respectively. The probabilistic
transition rule is given by:

Ts1→s2 =

(
0.1 0.6
0.6 0.7

)
,Ts2→s1 =

(
0.9 0.4
0.4 0.3

)
.

The deterministic transition rule is given by:

Ts1→s2 =

(
0 1
1 1

)
,Ts2→s1 =

(
1 0
0 0

)
.

We present the results in Figure 2, for different transition
rules, the quantitative agreement between the results of our
model and the simulation results is also notable. Moreover,
for better illustration, the dynamics of the average strategies
under the probabilistic (rule1) and deterministic (rule2) tran-
sitions are compared in Figure 3 (a). From Figure 3 (a) and
Figure 2, it can be found that the transition probability can
greatly affect the environmental state of the population. The
deterministic transition can lead to a noticeable increase in
the proportion of s2 where agents have less temptation to
defect, thus the cooperation level is higher than the case of
probabilistic transition. Without loss of generality, we con-
sider deterministic transition for subsequent experiments.
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(a) Probabilistic transition
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(b) Deterministic transition

Figure 2: Evolution of agent behaviors and that of the envi-
ronmental state under different transition rules.

Stochastic Games vs Normal Form Games
In order to provide deeper insight into the agent behaviors
under the ever-changing environment, we compare the re-
sults in Figure 1 (a) and Figure 2 with the case where agents
play the repeated normal form games.

In Figure 3 (a), if the transition can occur between PD1
and PD2, regardless of whether the transition is probabilistic
or deterministic, the probability that agents choose to be co-
operators is higher than the case where agents play the nor-
mal form game PD1, but is lower than the case where agents
play PD2 without transition. Similarly, for the stochastic
game with transition between PD game and SH game, Fig-
ure 3 (b) shows that the transition mechanism significantly
reinforces the positive behaviors of agents. More broadly,
this suggests that game transitions, either naturally occur-
ring or designed, help to resolve social dilemmas, such as
climate change and public resource management in real life.

Application to Different Population Sizes and
Learning Parameters
More importantly, to better illustrate the application of our
approach, we conduct more experiments under the cases of
varying population sizes and learning parameters. We exper-
iment on the above two-state game with transition between
SH and PD, some of the results are presented in Figure 4,
while others can be found in our supplementary material.
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(a) A two-state PD game
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Figure 3: The effects of the introduction of game transition
and the transition probability on agent behaviors.
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Figure 4: The performance of our method in predicting the
dynamics of average Q-values under different settings.

Regarding the population size, although technically our
approach requires an infinitely large population, empirically
we observe that our theoretical predictions work well in
small, finite populations. In Figure 4, we note that for small
population sizes (e.g., n = 10), the result of a single sim-
ulation run can fluctuate significantly, yielding a substantial
variance in the simulation results. But this is somewhat ex-
pectable, as the population is so small that the empirical dis-
tribution of Q-values in a single simulation run would in-
evitably deviate from the probability distribution predicted
by our theory. We also varied the learning rate α and the ex-
ploration temperature τ , for these two cases, we set n = 500.
Under these settings, our theoretical predictions always well
agree with the simulation results.

We expand experiments on more complex scenarios in-
cluding a two-state three-action game and a two-action
three-state game. Additionally, we show our method works
better than the mean-field approach through experiments.
These results can be found in our supplementary material.

Conclusion
In this paper, we model the dynamics of multi-agent
Q-learning in stochastic games. The proposed pair-
approximation method accurately captures the influence of
environmental variability on agents. The numerical experi-
ments corroborate the descriptive power of our model and
evidence the important role of state transitions in the emer-
gence of cooperation from social dilemmas. In future work,
we will extend our method to asymmetric state transitions,
other graph structures, as well as other learning algorithms.
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