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Abstract
We introduce a class of strategic games in which agents are
assigned to nodes of a topology graph and the utility of an
agent depends on both the agent’s inherent utilities for other
agents as well as her distance from these agents on the topol-
ogy graph. This model of topological distance games (TDGs)
offers an appealing combination of important aspects of sev-
eral prominent settings in coalition formation, including (ad-
ditively separable) hedonic games, social distance games, and
Schelling games. We study the existence and complexity of
stable outcomes in TDGs—for instance, while a jump stable
assignment may not exist in general, we show that the exis-
tence is guaranteed in several special cases. We also investi-
gate the dynamics induced by performing beneficial jumps.

1 Introduction
You arrive at a hotel for your organization’s annual banquet,
and some of the seats at the tables have already been taken.
You would like to sit close to your friends who work in the
same team or share similar hobbies. On the other hand, you
want to stay away from colleagues whom you had unpleas-
ant interactions with lately. Which seat should you take?
Once everyone has picked a seat, would you regret not hav-
ing chosen a different seat? Similar issues arise when assign-
ing faculty members to offices in the department building,
students to desks in a classroom, or employees to cottages at
a company retreat.

Recently, Bilò, Monaco, and Moscardelli (2022) intro-
duced the model of hedonic games with fixed-size coali-
tions, wherein the agents are to be partitioned into coalitions
whose sizes have been determined in advance, for example,
by the sizes of the tables at the banquet. They assumed addi-
tively separable utilities, meaning that the utility of an agent
for a coalition is the sum of her utilities for the individual
agents in her coalition. While their model partially captures
some of the aforementioned scenarios—for instance, each
table at the banquet can be considered as one coalition—
it neglects an important aspect common in such scenarios:
the agents are typically assigned to specific locations, and
agents prefer to be located close to their friends and far from
their enemies. In our banquet scenario, a person sitting next
to you has a higher influence on your utility than someone at
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the opposite end of the table, as you are much more likely to
engage in a conversation with the former person than the lat-
ter. Similarly, you will in all likelihood run into your office
neighbor more frequently than you encounter your colleague
at the other end of the corridor.

With these motivating examples in mind, we introduce
a class of games that we call topological distance games
(TDGs). An instance of TDG contains a topology graph,
which is an undirected graph that specifies the locations
to which the agents can be assigned. The influence that an
agent i has on another agent j is j’s inherent utility for i
scaled by a factor depending on the distance between the two
agents on the topology graph; if the two agents are not con-
nected on the graph, they have no influence on each other.
TDGs combine important aspects of several well-studied
coalition formation settings, including hedonic games, so-
cial distance games, and Schelling games—we discuss these
connections in detail in Section 1.2. We sometimes assume
that the scaling factor is the reciprocal of the distance be-
tween the two agents, but most of our results also hold for
arbitrary (strictly decreasing) distance factor functions. Fol-
lowing additively separable hedonic games (ASHGs), we
then take the utility of an agent for an assignment to be the
sum of all other agents’ influences on the agent in question.
Our formal model is described in Section 2.

1.1 Our Results
We study a fundamental notion of stability in our setting—
jump stability—which requires that no agent would rather
jump to some empty node than stay at her current node.
In Section 3, we warm up by considering the case where
agents’ utilities are symmetric, that is, for any pair of agents
i and j, i’s inherent utility for j is the same as j’s inherent
utility for i. We show that for any distance factor function,
there exists a jump stable assignment; on the other hand,
finding such an assignment is a PLS-complete problem.

In Section 4, we investigate the more general setting
where the utilities are not necessarily symmetric. We ob-
serve that a jump stable assignment may no longer exist,
even when there are only two agents. On the other hand,
if utilities are non-negative and the friendship graph1 is

1That is, the directed graph indicating (ordered) pairs of agents
i, j such that i’s inherent utility for j is positive.
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acyclic, then existence is guaranteed. We then focus on the
case where the topology graph is a cycle and every vertex in
the friendship graph has out-degree at most 1. In this case,
we characterize the friendship graphs for which the result-
ing instance admits a jump stable assignment, and present
an efficient algorithm for computing such an assignment for
those graphs. We also provide existence and non-existence
results when the topology graph is a path or an (extended)
star, and show that deciding the existence is NP-hard for the
reciprocal distance factor function, whereby the scaling fac-
tor is the reciprocal of the distance between the two agents.

Lastly, in Section 5, we explore dynamical aspects of
TDGs. If utilities are non-negative and the friendship graph
is acyclic, we show that the jump dynamics is guaranteed to
converge; however, even under these restrictions, the dynam-
ics may run for an exponential number of steps. In addition,
we establish the NP-hardness of deciding if the dynamics
can possibly converge, or if it necessarily converges.

1.2 Related Work
The model of TDGs shares certain similarities with a num-
ber of existing models, and therefore offers an appealing
combination of important aspects of several prominent set-
tings in coalition formation.

Firstly, TDGs are similar to the aforementioned hedo-
nic games with fixed-size coalitions (Bilò, Monaco, and
Moscardelli 2022) in that one could view each connected
component of the topology graph as a coalition of fixed size.
In formal terms, hedonic games with fixed-size coalitions
form a subclass of TDGs where every connected compo-
nent is a clique. The main difference between TDGs and
hedonic games in general (Aziz and Savani 2016) is that he-
donic games do not come with a topology graph, so only
the partition of the agents into coalitions matters, whereas in
TDGs the distances resulting from the assignment of agents
to the topology graph can affect the level of influence that
the agents have on one another. Note that additively separa-
ble utilities are commonly studied in hedonic games (Bogo-
molnaia and Jackson 2002; Aziz, Brandt, and Seedig 2013).
In fact, ASHGs can be viewed as a special case of TDGs
where the topology graph consists of n cliques of size n each
(n denotes the number of agents).

Secondly, Brânzei and Larson (2011) proposed the class
of social distance games, wherein there is a social network
that captures the connections among agents. The agents are
again partitioned into coalitions, but now the utility of an
agent for a coalition is the average, over all agents in the
coalition, of the reciprocals of the distance to each agent
in the coalition. Here, the distance is taken with respect to
the subgraph of the social network induced by the coalition,
and the distance of an agent to herself is not considered in
this calculation. Like in hedonic games, there is no topology
graph in social distance games. Flammini et al. (2021) intro-
duced distance hedonic games, which generalize social dis-
tance games by allowing the distance function to be arbitrary
rather than specifically the reciprocal function. Rey and Rey
(2022) considered a distance-based approach for extending
the agents’ preferences over neighbors to preferences over
coalitions in a subclass of hedonic games.

Thirdly, Massand and Simon (2019) studied graphical
one-sided markets, which assume the existence of both an
agent graph and a topology graph. Agents are placed on the
topology graph, and the utility of an agent for the placement
is the sum of the agent’s utility for her assigned node and
her utilities for her neighbors on the topology graph, where
the latter utilities are taken from the agent graph. While our
TDG model is more restrictive from the point of view that
it does not allow agents to derive utilities from nodes in the
topology graph, it is more general in that an agent’s util-
ity depends not only on neighboring agents on the topology
graph, but also on agents further away. Elkind et al. (2020)
investigated a similar model as Massand and Simon (2019)
from the truthfulness perspective, while Bodlaender et al.
(2020) considered the special case where an agent’s utility
depends on her neighbors but not on her assigned node.

Finally, a recent stream of work on Schelling games also
deals with a topology graph, and an agent’s utility depends
on the neighboring agents on the graph (Chauhan, Lenzner,
and Molitor 2018; Echzell et al. 2019; Agarwal et al. 2021;
Bullinger, Suksompong, and Voudouris 2021). However, in
that model, the agents have predetermined types and the
utility of an agent is defined as the fraction of neighboring
agents of the same type. Note that jump stability is com-
monly studied in Schelling games as well.

2 Preliminaries
Let N = [n] be the set of agents, where [k] := {1, 2, . . . , k}
for each positive integer k. Each agent i ∈ N is endowed
with an (inherent) utility function ui : N → R, which spec-
ifies the inherent utility that i has for every other agent; we
assume that ui(i) = 0 for all i. A utility function ui is

• symmetric if ui(j) = uj(i) for all i, j ∈ N , and

• binary if ui(j) ∈ {0, 1} for all i, j ∈ N .

We say that agent j is a friend of agent i if ui(j) > 0; the
friendship graph2 is a directed graph with the set of nodes N
such that there is an edge from i to j if and only if ui(j) > 0.

There is a topology graph G = (V,E), which is a simple
(not necessarily connected) undirected graph with at least
n nodes. An assignment λ : N → V is an injective mapping
that assigns each agent to a node in V , i.e., each node can be
occupied by at most one agent. For N ′ ⊆ N , let λ(N ′) :=
{λ(i) | i ∈ N ′}. A node v ∈ V is called empty with respect
to an assignment λ if v /∈ λ(N).

The distance factor function f : Z≥1 → R>0 is a strictly
decreasing function which determines the level of influence
that an agent has on another agent depending on the dis-
tance between them, where this distance is the length of the
shortest path between their assigned nodes in G. If the two
agents are assigned to different connected components of G,
then the distance factor between them is taken to be 0, mean-
ing that they have no influence on each other’s utilities. The

2Friendship graphs have been studied in several papers on he-
donic games (Igarashi et al. 2019; Kerkmann et al. 2020; Bullinger
and Kober 2021).
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reciprocal distance factor function refers to the function3

f(k) = 1/k. We abuse notation slightly by extending util-
ity functions ui to assignments. In particular, the utility of
agent i for assignment λ is

ui(λ) :=
∑

j∈N\{i}

f(dG(λ(i), λ(j))) · ui(j),

where dG(v, v
′) denotes the length of the shortest path be-

tween v and v′ in G. A topological distance game (TDG)
consists of the agents and their utility functions, the topol-
ogy graph, and the distance factor function.

Given an assignment λ, an empty node v ∈ V , and an
agent i ∈ N , denote by λi→v the assignment that results
when i jumps from her assigned node λ(i) to v. We now
define the main stability notion that we study in this paper.
Definition 2.1. Given an instance of TDG and an assign-
ment λ, a jump by agent i to an empty node v is a beneficial
jump in λ if ui(λ) < ui(λ

i→v).
The assignment λ is said to be jump stable if no agent has

a beneficial jump, that is, for each agent i ∈ N and each
empty node v ∈ V , it holds that ui(λ) ≥ ui(λ

i→v).
Since we consider jump stability, we assume without loss

of generality that |V | > n, as every assignment is trivially
jump stable if |V | = n.

All omitted proofs can be found in the full version of our
paper (Bullinger and Suksompong 2022).

3 Warm-Up: Symmetric Utilities
We begin by deriving preliminary results for the case of
symmetric utilities. First, by a standard potential function
argument (Bogomolnaia and Jackson 2002; Suksompong
2015; Bilò, Monaco, and Moscardelli 2022), we can show
the existence of a jump stable assignment in this case.
Theorem 3.1. For any distance factor function and symmet-
ric utilities, there exists a jump stable assignment.

Proof. Consider an assignment maximizing the potential
function Φ(λ) :=

∑
i∈N ui(λ); such an assignment must

exist because the number of possible assignments is finite.
Assume for contradiction that some agent i∗ prefers to jump
from her current node v to an empty node w. We have

ui∗(λ) < ui∗(λ
i∗→w), (1)

where we know that

ui∗(λ) =
∑

j∈N\{i∗}

f(dG(v, λ(j))) · ui∗(j)

and

ui∗(λ
i∗→w) =

∑
j∈N\{i∗}

f(dG(w, λ(j))) · ui∗(j).

Now, if i∗ jumps to w, the potential function changes by

Φ(λi∗→w)− Φ(λ) =
∑
i∈N

ui(λ
i∗→w)−

∑
i∈N

ui(λ)

3As discussed in Section 1.2, a similar idea involving recipro-
cals of the distance has been used in social distance games (Brânzei
and Larson 2011).

=

ui∗(λ
i∗→w) +

∑
j∈N\{i∗}

(f(dG(λ(j), w)) · uj(i
∗))


−

ui∗(λ) +
∑

j∈N\{i∗}

(f(dG(λ(j), v)) · uj(i
∗))


=

ui∗(λ
i∗→w) +

∑
j∈N\{i∗}

(f(dG(w, λ(j))) · ui∗(j))


−

ui∗(λ) +
∑

j∈N\{i∗}

(f(dG(v, λ(j))) · ui∗(j))


= 2 ·

(
ui∗(λ

i∗→w)− ui∗(λ)
)
> 0,

where we use the symmetry of the utilities for the second
equality and (1) for the inequality. This contradicts the as-
sumption that λ maximizes the potential function Φ.

Despite its guaranteed existence, a jump stable assign-
ment can be difficult to compute. Our reduction is from a
local variant of MAX CUT.

Theorem 3.2. For any distance factor function and sym-
metric utilities, finding a jump stable assignment is PLS-
complete.

4 Asymmetric Utilities
We now consider the more general setting where the agents’
inherent utilities for each other are not necessarily symmet-
ric. First, we observe that a jump stable assignment may no
longer exist, even when there are only two agents.

Proposition 4.1. Let G be a connected graph of diameter
at least 3. For any distance factor function, there exists an
instance with topology graph G and two agents such that no
jump stable allocation exists.

Proof. Let n = 2, u1(2) = 1, and u2(1) = −1, and
consider any assignment λ. If dG(λ(1), λ(2)) ≥ 2, then
agent 1 would jump to a neighboring node of agent 2. Else,
dG(λ(1), λ(2)) = 1. In this case, consider two nodes v, w ∈
V with dG(v, w) ≥ 3. It must be that dG(λ(1), v) ≥ 2 or
dG(λ(1), w) ≥ 2. If the former holds, then v ̸= λ(2), and
agent 2 has a beneficial jump to v; an analogous argument
holds in the latter case with w instead of v.

Proposition 4.1 does not hold if we lower the diameter
threshold to 2: for a star graph and any number of agents,
one can check that there is always a jump stable assignment.

As we will see later, a jump stable assignment may not ex-
ist even if utilities are non-negative and the friendship graph
is a cycle. We show next that the existence of such an as-
signment is guaranteed under non-negative utilities when the
friendship graph is acyclic; this result will also be useful for
our characterization in the case of a cycle friendship graph
(Theorem 4.3). We remark that acyclic friendship graphs can
model situations in which there is a hierarchy among the
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agents: for instance, at research conferences, younger re-
searchers may be keen to interact with certain older ones
who might help their career, but not vice versa.

Theorem 4.2. For any distance factor function, if the friend-
ship graph is acyclic and utilities are non-negative, then a
jump stable assignment exists and can be computed in poly-
nomial time.

Proof. Assume that the friendship graph is acyclic and util-
ities are non-negative. There exists a topological order π of
the agents in N (Kahn 1962), i.e., a function π : N → [n]
such that π(i) > π(j) whenever ui(j) > 0. Based on this or-
der, we provide a polynomial-time algorithm that computes
a jump stable assignment. Given a subset of agents M ⊆ N ,
a partial assignment λ : M → V , an agent i ∈ N \M , and a
node v ∈ V \λ(M), let λ[i→v] : M ∪{i} → V be the partial
assignment extended from λ by assigning agent i to v. Also,
let λ∅ : ∅ → V be the empty partial assignment.

Algorithm 1: Jump stable assignment for acyclic friendship
graph and non-negative utilities.
Input: Topology graph G = (V,E), topological order
π : N → [n]
Output: Jump stable assignment λ : N → V

V e ← V
λ0 ← λ∅
for k = 1, . . . , n do
i← π−1(k)

Select v∗ ∈ argmaxv∈V e{ui(λ
[i→v]
k−1 )}

λk ← λ
[i→v∗]
k−1

V e ← V e \ {v∗}
end for
return λ← λn

Algorithm 1 describes our procedure for computing a
jump stable assignment. In each iteration of the for-loop, we
determine the position of some agent. We place agents ac-
cording to the topological order π—this ensures that when-
ever an agent is placed, all of her friends have already been
placed, so her utility is not influenced by later agents.

Clearly, the algorithm runs in polynomial time. It remains
to show that the returned assignment λ is jump stable. Con-
sider an arbitrary agent i ∈ N ; it suffices to show that i
cannot perform a beneficial jump. Notice that all nodes that
i could potentially jump to were available at the moment
when i was assigned during the execution of Algorithm 1.
Moreover, since ui(j) = 0 for all agents j with π(j) > π(i),
we have ui(λ

i→v) = ui(λ
i→v
π(i) ) ≤ ui(λπ(i)) = ui(λ) for

any node v ∈ V \ λ(N); here, the inequality follows from
the maximization in the algorithm. Hence, agent i cannot
perform a beneficial jump.

If the topology graph is a cycle (e.g., a party table) and ev-
ery vertex in the friendship graph has out-degree at most 1,
we completely characterize the friendship graphs and topol-
ogy graphs for which the resulting instance admits a jump
stable assignment.

Theorem 4.3. Suppose that the topology graph G is a cycle,
and each agent has at most one friend and utility 0 for the
remaining agents. For any distance factor function, a jump
stable assignment exists if and only if neither of the following
cases occurs:
• The friendship graph is a 3-cycle;
• The friendship graph is a 5-cycle.

If a jump stable assignment exists, it can be computed in
polynomial time.

The proof of Theorem 4.3 is involved and follows from a
detailed analysis of stable assignments in this setup.

We have seen that, with non-negative utilities, a jump
stable assignment always exists if the friendship graph is
acyclic, but may not exist if both the friendship graph and the
topology graph are cycles. Is existence guaranteed when the
friendship graph is a cycle but the topology graph is acyclic?
If the topology graph is a path, the answer is positive as long
as each agent has at most two friends.
Theorem 4.4. For any distance factor function, if the topol-
ogy graph G is a path and each agent has at most two friends
and utility 0 for the remaining agents, then a jump stable as-
signment exists and can be computed in polynomial time.

Proof. We assign agents to nodes along the path from left
to right. First, assign an arbitrary agent to the leftmost node.
For each subsequent node, among the unassigned friends j
of the agent i occupying the previous node, assign one with
the highest ui(j); if all of i’s friends have been assigned (or
if i has no friend), then assign an arbitrary agent. Clearly,
this procedure runs in polynomial time.

We show that the final assignment λ is jump stable. Con-
sider any agent i. Since all utilities are non-negative, it suf-
fices to show that the jump to the (n + 1)th node from the
left, denoted by v, is not beneficial for i. If all of i’s friends
are to her left, this is obvious. Else, if i has one friend j to
her right, then j is directly next to i, so by jumping to the
(n+ 1)th node, i gets closer to neither j nor i’s other friend
(if i has a friend other than j). Otherwise, i has both friends
j and k to her right. Assume without loss of generality that
ui(j) ≥ ui(k) and that the algorithm assigns j next to i.
Suppose that i and k are on the di-th and dk-th nodes from
the left, respectively (so j occupies the (di + 1)th node).
Then we have

ui(λ) = f(1) · ui(j) + f(dk − di) · ui(k)

≥ f(1) · ui(k) + f(dk − di) · ui(j)

≥ f(n+ 1− dk) · ui(k) + f(n− di) · ui(j)

= ui(λ
i→v),

where the second inequality holds because dk ≤ n and f is
a decreasing function.

On the other hand, if the topology graph is a tree, ex-
istence is no longer guaranteed even when the friendship
graph is a cycle.
Theorem 4.5. For any distance factor function, a jump sta-
ble assignment may not exist even if the topology graph is
a tree, the agents have binary utilities, and the friendship
graph is a cycle.
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Figure 1: Topology graph in the proof of Theorem 4.5.

Proof. Consider an instance with N = [6] and the topology
graph G = (V,E) depicted in Figure 1. Assume that the
utilities are given by ui(i + 1) = 1 for i ∈ [6], where we
take agent indices modulo 6, and ui(j) = 0 for all other
pairs i, j ∈ N . Suppose for contradiction that there exists a
jump stable assignment λ : N → V . Let W := λ(N) ⊆ V
be the set of occupied nodes.

First, observe that W must be a connected set of nodes.
Indeed, if there is a proper subset of agents C ⊊ N that oc-
cupy a connected component of the subgraph of G induced
by W , then there exists an agent i ∈ C such that i+ 1 ̸∈ C.
Moreover, there is an empty node on the (unique) path in G
connecting λ(i) with λ(i+ 1), and therefore i has an incen-
tive to jump to this node.

The observation above implies that z ∈ W , and for ev-
ery x ∈ {a, b, c}, there exists rx ∈ {0, 1, 2, 3} such that
{x1, x2, x3} ∩W = {xi : i ∈ [rx]}. Assume without loss
of generality that ra ≥ rb ≥ rc. We perform a case analysis
based on the vector (ra, rb, rc).

• (ra, rb, rc) = (3, 2, 0). Consider the agent i = λ−1(b2).
The agent that has i as a friend must be placed at b1; oth-
erwise, she would benefit by jumping to b3. But since c1
is closer to every node except b1 than b2 is, i can benefit
by jumping to c1, a contradiction.

• (ra, rb, rc) = (3, 1, 1). The unique agent that has
λ−1(c1) as a friend must be placed at z; otherwise, she
would benefit by jumping to c2. However, the same must
hold for the unique agent that has λ−1(b1) as a friend,
which is impossible.

• (ra, rb, rc) = (2, 2, 1). Assume without loss of general-
ity that λ(1) = b2. Then, λ(6) = b1, as otherwise agent 6
would have a beneficial jump to b3. This in turn implies
λ(2) = z, because otherwise agent 1 can jump to ei-
ther a3 or c2 to improve her utility. Let s ∈ {3, 4, 5} be
such that λ(s) = a2. The same chain of arguments as for
agent 1 yields that λ(s + 1) = z, which is impossible
since λ(2) = z.

We have reached a contradiction in all cases, so λ cannot be
jump stable.

Interestingly, if the topology graph is an “extended star”
with three branches and the friendship graph is a cycle, as in
the instance used in the proof of Theorem 4.5, then a jump
stable assignment always exists whenever there are at least
16 agents. In fact, we show a more general result with an
arbitrary number of branches. To this end, we define an ex-
tended star as a tree in which only one vertex, called the
center, has degree at least 3. A branch of an extended star
is a path of maximal length such that one endpoint is the

center. The size of a branch is the number of nodes on the
branch, not counting the center of the star.

Theorem 4.6. Let k ≥ 3 be an integer, and assume that
G is an extended star with k branches. Suppose that there
are n ≥ 5k + 1 agents with non-negative utilities, and the
friendship graph is a cycle. For any distance factor function,
there exists a jump stable assignment.

Proof. Assume that the agents are ordered 1, 2, . . . , n ac-
cording to the cycle in the friendship graph. Call each branch
of size at most 4 a type-1 branch and each branch of size at
least 5 a type-2 branch. We assign the agents following their
order branch by branch, starting with type-1 branches, then
type-2 branches, and finally the center node. For each type-
1 branch, we fill the entire branch, whereas for each type-
2 branch, we assign at least 5 agents to the branch. Since
there are at least 5k+1 agents and only k branches, we have
enough agents for type-2 branches.

For each type-1 branch, we fill in the agents from the leaf
towards the center. For each type-2 branch, let r be the num-
ber of agents that we want to assign to the branch. We divide
into two cases depending on the parity of r.

• If r = 2s is even, we assign the first s agents starting
from the node closest to the center and leaving one empty
node after assigning each agent (except the s-th agent).
We then fill in the other s agents starting from the subse-
quent node and moving back towards the center.

• If r = 2s+1 is odd, we proceed similarly except that we
start with the second closest node to the center.

Finally, we assign the last agent to the center node. An exam-
ple with k = 3 branches of size 4, 6, 7 is shown in Figure 2.

Since n ≥ 5k + 1, there is at least one type-2 branch. We
now show that the resulting assignment is jump stable.

• Consider agent n assigned to the center node. If there is
a type-1 branch, agent n cannot get closer to her friend,
agent 1, because every type-1 branch is completely filled.
Otherwise, agent n is at distance at most 2 from agent 1,
and cannot get closer to agent 1 because agent 1’s branch
contains at least five agents.

• For each type-1 branch, every agent is already next to her
friend except the agent next to the center node. For this
latter agent, her friend is in either a type-1 branch—in
which case she cannot get closer because the branch is
already filled—or a type-2 branch—in which case she is
at distance at most 3 from her friend and every empty
node has distance at least 4 from this friend.

• Consider a type-2 branch with an even number of agents
2s. The s-th agent (in order of agent number) is already
next to her friend. The (2s)-th agent is at distance at
most 4 from her friend and every empty node has dis-
tance at least 4 from this friend. Every other agent on this
branch is at distance 2 from her friend, and no node ad-
jacent to this friend is empty. A similar argument applies
when the branch contains an odd number of agents.

Hence, in all cases, there is no beneficial jump.
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Figure 2: Topology graph in the proof of Theorem 4.6 when n = 16, k = 3, and the three branches have size 4, 6, and 7.

Since jump stable assignments are not guaranteed to ex-
ist in TDGs, a natural question is whether we can efficiently
decide if such an assignment exists. As it is known that de-
termining whether a Nash stable partition exists in ASHGs
is NP-hard (Sung and Dimitrov 2010), the connection be-
tween ASHGs and TDGs that we outlined in Section 1.2
implies that the jump stability question for TDGs is also NP-
hard. However, using reductions between the two classes of
games results in TDG instances where the number of con-
nected components is linear in n, the number of nodes is
quadratic in n, and the distance factor function does not play
any role (because every connected component is a clique).
We therefore show that the hardness still holds even for in-
stances that better reflect the essence of TDGs.

Theorem 4.7. For the reciprocal distance factor function, it
is NP-complete to decide whether there exists a jump stable
assignment in a given TDG. This holds even if the topology
graph G consists of a constant number of connected compo-
nents and |V | = Θ(n).

Proof sketch. For the hardness, we provide a reduction from
the NP-complete problem EXACT 3-COVER (Karp 1972).
Given an instance (R,S) of this EXACT 3-COVER, where R
is a ground set and S is a collection of 3-element subsets, we
construct a TDG instance as follows. There are three types of
agents. The first two types represent the elements of R and
the sets in S. The last type, which consists of only one agent,
is a “disturber” strictly avoided by agents representing sets
in S. The topology consists of four connected components.
One component serves to hold all agents representing R and
agents representing an exact 3-cover from S. The edges of
this component are designed in such a way that it is possible
to assign agents to all nodes of this component if and only if
the original instance is a Yes-instance. The other three com-
ponents are cliques of carefully chosen sizes which either
allow all other agents representing sets in S to flee the dis-
turber (in case of a Yes-instance), or provide sufficient space
to allow for a run-and-chase dynamics that prevents stability
(in case of a No-instance).

5 Dynamics
In this section, we investigate the dynamics induced by per-
forming beneficial jumps. Dynamics offer an interesting dis-
tributed perspective on stability and have been examined, for
instance, in hedonic games (Brandt, Bullinger, and Wilczyn-
ski 2021; Fanelli, Monaco, and Moscardelli 2021; Brandt,
Bullinger, and Tappe 2022; Boehmer, Bullinger, and Kerk-
mann 2023). We are interested in the following questions:

• Given an initial assignment, is it possible that the dynam-
ics converges, that is, there exists a sequence of beneficial
jumps that results in a jump stable assignment?

• Given an initial assignment, is it necessary that the dy-
namics converges, that is, all sequences of beneficial
jumps result in a jump stable assignment?

First, observe that dynamics are guaranteed to converge
for symmetric utilities, because the potential function in the
proof of Theorem 3.1 increases with every beneficial jump.
In this sense, the proof yields more than merely the existence
of a jump stable assignment. For asymmetric utilities, since
a jump stable assignment may not exist, convergence of the
dynamics is also no longer guaranteed. Nevertheless, if the
friendship graph is acyclic and utilities are non-negative, the
convergence is retained.
Theorem 5.1. For any distance factor function, if the friend-
ship graph is acyclic and utilities are non-negative, then the
jump dynamics is guaranteed to converge.

Proof. Consider an instance of TDG such that the friend-
ship graph is acyclic and utilities are non-negative. As in
the proof of Theorem 4.2, there exists a topological order π
of the agents in N , i.e., a function π : N → [n] such that
π(i) > π(j) whenever ui(j) > 0. We shall define a poten-
tial function based on this order.

Consider a sequence of assignments (λk)k≥1, where for
each k ≥ 1, λk+1 = λdk→vk

k for some agent dk and node vk
which is empty in λk. Associate any assignment λ with the
vector

Λ(λ) = (uπ−1(1)(λ), uπ−1(2)(λ), . . . , uπ−1(n)(λ)).

For two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), we
say that x lexicographically dominates y, denoted by x >lex

y, if there exists i ∈ {1, . . . , n} such that xj = yj for all
j ∈ {1, . . . , i− 1} and xi > yi.

We claim that for every k ≥ 1, it holds that Λ(λk+1) >lex

Λ(λk). Let k ≥ 1 and consider the deviator dk. By defini-
tion of the topological order, for each j < π(dk), we have
uπ−1(j)(dk) = 0. Hence, for every j < π(dk), it holds that
uπ−1(j)(λk+1) = uπ−1(j)(λk), because this utility is not af-
fected by dk’s jump. It follows that the first π(dk)−1 entries
of Λ(λk) and Λ(λk+1) are identical. Moreover, as dk im-
proves her utility with the beneficial jump, the π(dk)-th en-
try of λk increases, and therefore Λ(λk+1) >lex Λ(λk).

Theorem 5.1 also shows that there exists a potential func-
tion with respect to which the jump dynamics is increasing.
This implies that the problem of finding jump stable out-
comes in instances with an acyclic friendship graph and non-
negative utilities is contained in the complexity class PLS.
However, it is unlikely that this problem is PLS-complete,
because we can compute jump stable assignments for this
class of games in polynomial time (cf. Theorem 4.2). In
fact, PLS-completeness for this problem would imply that
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Figure 3: Friendship graph of the game in the proof of The-
orem 5.2.

PLS = P. Still, similarly to PLS-complete problems, the
jump dynamics, which is the natural local search dynamics
for our problem, can run in exponential time.

Theorem 5.2. For any distance factor function, the jump dy-
namics may run for an exponential number of steps, even if
the friendship graph is acyclic and utilities are non-negative.

Proof. We prove that, for each k ≥ 1, there exists an addi-
tively separable hedonic game Hk with n = 2k + 1 agents,
non-negative utilities, and an acyclic friendship graph such
that the jump dynamics runs for at least 2k steps. Recall from
Section 1.2 that ASHGs form a subclass of TDGs.

Let k ≥ 1 and define an ASHG (N, u), where N =
{aj , bj : j ∈ [k]} ∪ {a0} is a set of 2k + 1 agents and the
utilities are given as follows:

• For each j ∈ [k], uaj
(bj) = 1 and uaj

(aj−1) = 2.
• All other utilities are set to 0.

Clearly, the utilities are non-negative and the friendship
graph is acyclic. An illustration of the friendship graph is
given in Figure 3.

We show by induction on k that there exists a sequence of
beneficial jumps in Hk such that agent ak performs at least
2k jumps. For the base case k = 1, start with a partition of
the agents into singletons, and let a1 first join b1 and then a0.

Assume that we have constructed the dynamics for some
k ≥ 1. Observe that Hk+1 is an extension of Hk with
the addition of agents ak+1 and bk+1. Given the dynamics
constructed for Hk, we extend it to one for Hk+1 as fol-
lows. Agents ak+1 and bk+1 are initially in singleton coali-
tions. After every jump by agent ak in the original dynam-
ics, we insert the following jumps: ak+1 joins bk+1, then
ak+1 joins the coalition containing ak. This leads to a total
of 2 ·2k = 2k+1 jumps by ak+1. Notice that all jumps in this
extended sequence (whether by ak+1 or not) are beneficial
jumps. Indeed, original jumps are not affected by the new
agents ak+1 and bk+1, because these two agents do not in-
fluence the utilities of original agents. Moreover, whenever
ak jumps, she always leaves the coalition containing ak+1.
The only exception is ak’s first jump, when ak+1 is still in
a singleton coalition; however, even for this jump, ak does
not join ak+1. Hence, agent ak+1 has a utility of 0 after each
jump by ak, so all jumps by ak+1 are beneficial jumps.

Since we make use of the connection between ASHGs and
TDGs in Theorem 5.2, the topology graph of the constructed
game has a non-constant number of connected components.
We conjecture that exponential running time is possible even
when the number of components is constant.

Finally, we prove that the questions of whether the jump
dynamics starting from an initial assignment possibly or
necessarily converges are both computationally hard.

Theorem 5.3. For any distance factor function, deciding
whether the jump dynamics possibly converges is NP-hard,
even if utilities are restricted to be non-negative.

Proof sketch. As in the proof of Theorem 4.7, we reduce
from EXACT 3-COVER. Given an instance (R,S) of EXACT
3-COVER, we construct a TDG containing, among other
agents, three agents whose friendship graph forms a cycle.
The jump dynamics will run into a cycle due to these three
agents; the only way to prevent this is through a jump by a
special agent δ initially assigned to a connected component
containing agents representing the sets in S. The agent δ can
disrupt the cycle if and only if agents representing an ex-
act 3-cover of R jump to a connected component containing
agents representing the elements of R.

The proof for deciding whether the dynamics necessarily
converges is similar. In this case, the special agent δ initially
blocks cycling, and can initiate cycling only after the jumps
by a set of agents representing an exact 3-cover.

Theorem 5.4. For any distance factor function, deciding
whether the jump dynamics necessarily converges is coNP-
hard, even if utilities are restricted to be non-negative.

6 Discussion
In this work, we have introduced the model of topological
distance games (TDGs), which aim to capture scenarios in
which the utility of an agent depends on both her inherent
utilities for other agents and her distance from them. We
presented results on the existence, computational, and dy-
namical properties of jump stable assignments in our model.
While such assignments may not exist even under weak as-
sumptions, it turns out that existence guarantees can be ob-
tained for symmetric utilities as well as in the presence of
structured friendship relations.

Given that TDGs combine important aspects of other
models in coalition formation, including hedonic games, so-
cial distance games, and Schelling games (see Section 1.2),
our study may inspire further work from several angles. For
instance, while we have shown that a jump stable assign-
ment exists in a number of cases, one could try to obtain a
more complete characterization of the topology and friend-
ship graphs that admit such an assignment or even guaran-
tee convergence of the jump dynamics. Understanding pre-
cisely when it is possible to efficiently determine whether
a jump stable assignment exists is also an interesting di-
rection. Yet another potential avenue is to extend our re-
sults to weighted graphs, wherein the distance between two
agents is the length of the shortest path (in terms of the sum
of weights) between their assigned nodes. Finally, in addi-
tion to jump stability, other notions such as swap stability or
envy-freeness are worth exploring in TDGs as well—we pro-
vide some initial results on swap stability in the full version
of our paper (Bullinger and Suksompong 2022).
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