
Fair Division with Prioritized Agents

Xiaolin Bu1, Zihao Li2, Shengxin Liu3*, Jiaxin Song1, Biaoshuai Tao1

1 School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University
2 School of Physical and Mathematical Sciences, Nanyang Technological University

3 School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen
lin bu@sjtu.edu.cn, zihao003@e.ntu.edu.sg, sxliu@hit.edu.cn, sjtu xiaosong@sjtu.edu.cn, bstao@sjtu.edu.cn

Abstract

We consider the fair division problem of indivisible items. It
is well-known that an envy-free allocation may not exist, and
a relaxed version of envy-freeness, envy-freeness up to one
item (EF1), has been widely considered. In an EF1 alloca-
tion, an agent may envy others’ allocated shares, but only up
to one item. In many applications, we may wish to specify a
subset of prioritized agents where strict envy-freeness needs
to be guaranteed from these agents to the remaining agents,
while ensuring the whole allocation is still EF1. Prioritized
agents may be those agents who are envious in a previous
EF1 allocation, those agents who belong to underrepresented
groups, etc. Motivated by this, we propose a new fairness no-
tion named envy-freeness with prioritized agents EFPRIOR,
and study the existence and the algorithmic aspects for the
problem of computing an EFPRIOR allocation. With additive
valuations, the simple round-robin algorithm is able to com-
pute an EFPRIOR allocation. In this paper, we mainly focus
on general valuations. In particular, we present a polynomial-
time algorithm that outputs an EFPRIOR allocation with most
of the items allocated. When all the items need to be allo-
cated, we also present polynomial-time algorithms for some
well-motivated special cases.

1 Introduction
The fair division problem studies how to fairly allocate a set
of resources to a set of agents who have heterogeneous pref-
erences over the resources. Starting with Steinhaus (1948),
the fair division problem has been receiving significant at-
tention from mathematicians, economists, and computer sci-
entists in the past decades. Among different fairness inter-
pretations, envy-freeness (Foley 1967) is the most studied
fairness criterion which requires that each agent believes she
receives a share that has weakly more value than the share
allocated to each of the other agents (i.e., each agent does
not envy any other agents). Classical work in fair division
has been focused on resources that are infinitely divisible,
which is also known as cake-cutting problem (Even and Paz
1984; Brams and Taylor 1995; Chen et al. 2013; Bei et al.
2012, 2017; Tao 2022) . Envy-free allocations always exist
in the cake-cutting setting (Brams and Taylor 1995) and can
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be computed via a discrete and bounded protocol (Aziz and
Mackenzie 2016).

Recent research focuses more on allocations of indivisi-
ble items (Lipton et al. 2004; Budish 2011; Conitzer, Free-
man, and Shah 2017; Caragiannis et al. 2019; Bu et al.
2022b; Amanatidis et al. 2022; Li, Bei, and Yan 2022). Ob-
viously, violation of fairness is unavoidable in some scenar-
ios, e.g., when the number of items is less than the number
of agents (in which case some agents will receive an empty
set). This necessitates the relaxation of fairness. To relax
envy-freeness, Lipton et al. (2004) and Budish (2011) pro-
posed the notion envy-freeness up to one item (EF1) which
allows an agent i to envy another agent j, as long as there
exists an item in j’s allocated bundle whose (hypothetical)
removal eliminates the envy from i to j.1 EF1 has then been
one of the most widely-studied fairness notions for indivisi-
ble item allocation, and is guaranteed to exist (Lipton et al.
2004; Caragiannis et al. 2019).

While an allocation that gives advantages to some agents
over the others is perhaps justifiable by the inherent unfair-
ness in the allocation of indivisible items, in many applica-
tions, it is desirable that a specified set of agents with higher
priority are favored. The examples abound: it is natural to
prioritize those agents who are not favored in the past alloca-
tions (due to the intrinsic unfairness of item-allocation); for
applicants with equal qualifications, job positions are given
to those applicants in underrepresented groups first. These
motivate the proposal of new fairness solution concepts that
not only mitigates the unfairness but also ensures that those
prioritized agents are favored if unfairness is inevitable.

In the context of envy-freeness, although EF1 mitigates
the unfairness by restricting envy to “up to one item”, it
does not consider agents’ priorities. To incorporate this fea-
ture, we propose a new fairness notion called envy-freeness
with prioritized agents (EFPRIOR). Given a set of prioritized
agents, an EFPRIOR allocation requires that 1) the allocation
as a whole is EF1 and 2) strict envy-freeness from each pri-
oritized agent to each non-prioritized agent is ensured.

As an important remark, by introducing prioritized agents,
our solution concept EFPRIOR does not create unfairness.
Instead, we are seeking for allocations that prioritize a pre-

1EF1 was implicitly mentioned by Lipton et al. (2004), and ex-
plicitly formulated by Budish (2011).
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scribed set of agents subject to that unfairness has been
justified and mitigated. This differentiates our work from
those who assign weights to agents based on their impor-
tance (Chakraborty et al. 2021; Chakraborty, Segal-Halevi,
and Suksompong 2022). Our solution concept applies to the
scenarios where fairness is of paramount importance and the
“tie-breaking” matters if absolute fairness fails.

Applications of fairness with prioritized agents. Our
model aligns with all the fair division applications where
fairness is the primary desideratum, and a secondary
desideratum is used to break ties. This secondary desider-
atum can be arbitrarily specified as needed. For example,
in a typical course registration mechanism of a university,
students submit rankings to the available courses reflecting
their preferences, and the system allocates courses based on
their (heterogeneous) preferences and course vacancies. The
course allocation is primarily based on students’ preferences
and will allocate a course to a student only when all the stu-
dents ranking this course higher than her are registered. This
minimizes the envy among the students. However, when the
number of vacancies cannot sustain all the students who rank
this course high, priority is given to senior students among
those students submitting the same ranking, in order to en-
sure these senior students’ timely graduation. Here, the sec-
ondary desideratum takes the academic year into account.
As another example, when a set of entitled benefits cannot be
evenly distributed among the employees in a company, slight
advantages are normally given to those older employees for
their longer time of service, those who have larger family
expenses (e.g., having more children, being under medical
treatment), or other desirable tie-breaking factors.

Another potential application of our model is the fair di-
vision with underrepresented agents. A vast among of orga-
nizations value DEI (diversity, equity, and inclusion) and of-
fer corresponding training program to avoid discrimination
to those underrepresented groups. However, the mere pres-
ence of these “diversity structures” may fail to serve their
purpose without a concrete fairness measurement (Kaiser
et al. 2013). On the other hand, this type of measure-
ments needs to be carefully made to avoid reverse dis-
crimination: inappropriate policies may cause those “over-
represented groups” feel they have been discriminated (Fish
1993; Newkirk and Vann 2017). Our EFPRIOR notion gives
a concrete measurement and provides advantages to the un-
derrepresented groups to an extent that is also acceptable to
other groups in the sense that an overall fairness criterion
EF1 is still guaranteed. The practice of prioritizing under-
represented groups within the range of fairness has already
been adopted widely. For example, under the Equality Act
2010 in the United Kingdom, the membership in a protected
and disadvantaged group is allowed to be considered in hir-
ing and promotion, if the candidates are of equal merit. In
this case, the membership in an underrepresented group is
used as a “tie-breaker”.

On computing EFPRIOR allocations. Unfortunately,
most EF1 algorithms do not have control over which agents
are favored in the output EF1 allocation. Lipton et al. (2004)
proposed an algorithm, envy-graph procedure, that com-

putes an EF1 allocation with polynomial time. The algo-
rithm starts by assigning each agent the empty bundle, and
adds an item to an agent’s bundle in each iteration. Specifi-
cally, an envy-graph (see Sect. 2.2 for details) is constructed
where vertices represent agents and a directed edge (i, j)
represents i envies j in the current allocation. To maintain
EF1 property throughout the process, the algorithm always
chooses a source vertex in the graph and adds an item to the
bundle of the agent corresponding to this vertex. Whenever
there is a cycle in the graph, a cycle-rotation step is per-
formed where each agent’s bundle is replaced by the bundle
of the next agent in the cycle; this guarantees the existence
of the source vertices at the beginning of each iteration. In
this algorithm, a source in the envy-graph is not envious and
is thus favored, but the “cycle-rotation” step in the algorithm
changes the set of source vertices unpredictably.

Caragiannis et al. (2019) showed that the allocation with
the maximum Nash social welfare (NSW) is always EF1.
Thus, a natural algorithm for computing an EF1 allocation
is to find a NSW maximizing allocation, which is adopted by
the fair division website spliddit.org (Goldman and Procac-
cia 2015; Shah 2017). However, the uniqueness of the NSW
maximizing allocations makes it impossible to prioritize a
fixed set of agents.

Although a simple round-robin algorithm (Caragiannis
et al. 2019) can output an EF1 allocation with specified
agents prioritized, it only works if agents’ valuations are ad-
ditive (see Sect. 2.1 for details). However, in general set-
tings, the existence and the computation of an EFPRIOR al-
location remain to be open problems, which is the main con-
cern of this paper.

1.1 Our Results
As our main contribution, we propose a new fairness notion
EFPRIOR that is stronger than EF1 by additionally enforc-
ing strict envy-freeness from a prescribed set of prioritized
agents to the remaining agents. We then study the existence
and the algorithmic aspects of EFPRIOR. We note that EF-
PRIOR always exists for agents with additive valuations, and
can be computed by a round-robin algorithm (Sect. 2.1).

With general valuations, we present a polynomial-time al-
gorithm that outputs a partial EFPRIOR allocation where the
set of unallocated items has a small bounded size and small
bounded values to all agents (Theorem 10). Our techniques
are built upon the algorithm for computing an envy-freeness
up to any item (EFX) allocation proposed by Chaudhury
et al. (2021b). Other than some additional effort being made
to maintaining the strict envy-freeness from the prioritized
agents to the remaining agents, our algorithm makes use of
a novel approach to exchange the agents’ bundles with the
pool of unallocated items. This new approach makes our al-
gorithm run in polynomial time, whereas Chaudhury et al.’s
algorithm is only known to run in pseudo-polynomial time.

We also study two special cases: when all the prioritized
agents have the same valuations, and when all the non-
prioritized agents have the same valuations (Sect. 3). Under
both cases, we show the existence of EFPRIOR by presenting
polynomial time algorithms. The positive results on these
two special cases imply the tractability of EFPRIOR in the
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following three scenarios: 1) when there is only one priori-
tized agent, 2) when there is only one non-prioritized agent,
and 3) when the total number of agents is at most 3. The al-
gorithms in Sect. 3 provide some basic ideas that are used
in the algorithm for our main technical result (mentioned in
the previous paragraph) in Sect. 4.

We conclude our paper by proposing the open problem
about the existence and the computational complexity of a
(complete) EFPRIOR allocation in the general setting.

1.2 Related Work

Besides envy-freeness and EF1 as introduced before, an-
other important envy-based fairness notion is called envy-
freeness up to any item (EFX) (Caragiannis et al. 2019). In
an EFX allocation, each agent i may envy agent j but the
envy can be eliminated by removing an arbitrary item from
agent j’s bundle. Clearly, EFX is a stronger fairness notion
than EF1. The existence of EFX allocations is largely open.
We only know that EFX allocations exist in some special
cases, e.g., two agents with general valuations (Plaut and
Roughgarden 2020) and three agents with additive valua-
tions (Chaudhury, Garg, and Mehlhorn 2020). Other notable
indivisible fairness notions include proportionality up to one
item (PROP1) (Conitzer, Freeman, and Shah 2017), max-
imin share (MMS) fairness (Budish 2011), and so on. These
notions are also extended to incorporate agents’ weights
or entitlements such as weighted EF1 (Chakraborty et al.
2021), weighted PROP1 (Aziz, Moulin, and Sandomirskiy
2020) and weighted MMS (Farhadi et al. 2019).

Previous work also considers partial allocations. Cara-
giannis, Gravin, and Huang (2019) show that there exist par-
tial EFX allocations that have high Nash social welfares.
Chaudhury et al. (2021b) show that partial EFX allocations
exist if the number of unallocated goods is at most n−1. Fur-
thermore, Chaudhury et al. (2021a) prove that there always
exists a (1− ϵ)-EFX allocation with 64(n/ϵ)4/5 unallocated
goods and high Nash welfare. The bound of the size of unal-
located goods has been respectively improved to O

(
n0.67

)
for any ϵ ∈ (0, 1

2 ] by Berendsohn, Boyadzhiyska, and
Kozma (2022) and O

(
(n/ϵ)2/3

)
by Akrami et al. (2022).

For four agents, Berger et al. (2022) give a method that com-
putes an EFX allocation while leaving at most one item un-
allocated.

Another related fairness notion of EFPRIOR is called local
envy-freeness (proposed by (Beynier et al. 2019)), in which
each agent is only required to not envy her neighbors on an
underlying social network. However, two agents connected
by an edge are treated symmetrically with neither of them
being prioritized. On the other hand, strict envy-freeness is
imposed from each prioritized agent to each non-prioritized
agent in our notion EFPRIOR.

2 Preliminaries
A set M of m indivisible items is allocated to a set N of n
agents. Each agent i has a valuation function vi : {0, 1}m →
R≥0 that specifies a non-negative value to a bundle/set of

items.2 The valuation function vi is assumed to be

• normalized: vi(∅) = 0;
• monotone: vi(S) ≥ vi(T ) for any T ⊆ S ⊆M .

A (complete) allocation (A1, . . . , An) is a partition of M ,
where Ai is the set of items allocated to agent i. A partial
allocation (A1, . . . , An, B) is a partition of M into n + 1
subsets, where the extra subset B is the set of unallocated
items. In this paper, unless specified otherwise, an allocation
means a complete allocation. We will only consider partial
allocations in Sect. 4.

In a complete or partial allocation, we say that agent i
envies agent j if vi(Ai) < vi(Aj). That is, according to
agent i’s utility function, agent i believes her own bundle
Ai has less value than agent j’s bundle Aj . An allocation is
envy-free if i does not envy j for any pair of agents i and
j. An envy-free allocation may not exist in the problem of
allocating indivisible items (e.g., when m < n). A well-
known common relaxation of envy-freeness, envy-freeness
up to one item (EF1), is defined below.

Definition 1. An allocation (A1, A2, . . . , An) is said to sat-
isfy envy-freeness up to one item (EF1), if for any two agents
i and j, there exists an item g ∈ Aj such that vi(Ai) ≥
vi(Aj \ {g}).

EF1 on partial allocations can be defined analogously.
For a verbal description, in an EF1 allocation, after re-

moving some item g from agent j’s bundle, agent i will
no longer envy agent j. Given an allocation (A1, . . . , An),
we say that agent i strongly envies agent j if vi(Ai) <
vi(Aj \ {g}) for every g ∈ Aj . By our definition, an al-
location is EF1 if and only if i does not strongly envy j for
every pair (i, j) of agents.

As it is well-known that EF1 allocations always ex-
ist (Lipton et al. 2004), strong envy can always be elimi-
nated. However, as mentioned before, envy may be unavoid-
able, and in this case we would like to give priority to a spec-
ified subset P of agents such that each agent in P does not
envy each agent in Q := N \ P .

Definition 2. An allocation (A1, . . . , An) is envy-free with
respect to the set of prioritized agents P if 1) the allocation
is EF1, and 2) i does not envy j for any i ∈ P and j ∈ Q =
N \P . We say “EFPRIOR with respect to P ” to refer to this,
or simply EFPRIOR when the context is clear.

This definition also applies to partial allocations.

2.1 Additive Valuations
When agents’ valuations are additive (vi(S) =∑

g∈S vi({g})), the simple round-robin algorithm al-
ways outputs an EFPRIOR allocation if agents in P pick
items first. (See the full version of this paper for more
details about this.) However, this is not true for general
valuations. In the full version of this paper, we provide a
counterexample showing that the round-robin algorithm
fails to output an EFPRIOR allocation even when valuations
are submodular.

2We will use the words “bundle” and “set” interchangeably.
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2.2 Envy-Graph
Lipton et al. (2004) first proposed the tool of envy-graph
for finding an EF1 allocation on general valuations. In an
envy-graph, each vertex corresponds to an agent, and each
directed edge (u, v) represents that agent u envies agent v.
The envy-graph procedure to find an EF1 allocation works
as follows: it starts with an empty allocation and adjusts the
allocation so that the envy-graph is a directed acyclic graph
(DAG) before allocating the next item. When there is still an
unallocated item,
• choose an arbitrary source agent (Definition 4) of the

envy-graph (so no one envies her), and allocate an item
to her;

• reconstruct the graph according to the new allocation;
• If there exists a cycle in the envy-graph, we run the

cycle-elimination algorithm (defined in Definition 3).
The value for each agent is non-decreasing throughout
the process after which the envy-graph contains no cy-
cle.

It is easy to verify that the (partial) allocation is EF1
throughout the entire procedure. In particular, adding an
item g to a source agent i does not destroy the EF1 prop-
erty, as an agent will not envy i if g is removed from i’s
bundle. The cycle-elimination step does not destroy the EF1
property either: this step does not change the constituents of
each bundle, and each agent receives a bundle with a weakly
larger value.
Definition 3 (Cycle-Elimination). For a cycle u0 → · · · →
uk−1 → u0 on the envy-graph, each agent ui receives the
bundle from ui+1 where i ∈ {0, 1, . . . , k − 1} (indices are
modulo k). This is done iteratively until the envy-graph con-
tains no cycle.

We will also use the above cycle-elimination algorithm as
a subroutine multiple times. The cycle-elimination requires
less than n2 iterations, since each iteration removes at least
one edge (the edges in the cycle are removed) and there are
less than n2 edges. Thus, the envy-graph algorithm always
terminates since the number of unallocated items is reduced
by one after each iteration.

Lastly, we define a few notions that are used.
Definition 4. An agent is called a source agent if her corre-
sponding vertex is a source in the envy-graph.
Definition 5. An agent i is called a P -source agent if she is
a source agent in the subgraph induced by P . Moreover, i is
a P -source agent of agent j if she is a P -source agent and j
is reachable from i in the subgraph.
Definition 6. An agent i is called a Q-source agent if she is
a source agent in the envy-graph and i ∈ Q. Moreover, i is
a Q-source agent of agent j if she is a Q-source agent and j
is reachable from i in the envy-graph.

All omitted proofs can be found in the full version of our
paper (Bu et al. 2022a).

3 Identical Valuations of P or Q
This section studies two special cases of general valuations:
when agents in P have the same valuation, and when agents

Algorithm 1: Algorithm for computing EFPRIOR
allocation satisfying Theorem 7

Output: an EFPRIOR allocation.
1 Let Ai = ∅, for any i ∈ N , and B = M ;
2 while there exists an item g ∈ B do
3 if there exists one source agent i ∈ P then
4 Ai ← Ai ∪ {g};
5 else
6 Let i be one P -source agent;
7 Let j be one Q-source agent of agent i;
8 Aj ← Aj ∪ {g};
9 if agent i envies j then

10 Add the edge (i, j) to the envy-graph;
11 Eliminate the cycle j → · · · → i→ j

// there is a path from j to i by
Definition 6 and Line 7;

12 B ← B \ {g};
13 Reconstruct the envy-graph;
14 Run cycle-elimination algorithm (Definition 3);
15 return A

in Q have the same valuation. We design a polynomial-time
algorithm that computes an EFPRIOR allocation for each of
the two cases. The two algorithms in this section provide
some basic ideas for our algorithm in Sect. 4 where we con-
sider general valuations. In the next section, we will see how
to extend these ideas to general valuations and the limita-
tions of them.

Our results for the two special cases are also interesting
on their own. In the applications where P is the underrepre-
sented agents or Q is the over-represented agents, it is natu-
ral to assume people in the same group (underrepresented or
over-represented) share a similar valuation. In addition, our
results immediately apply to the three natural settings: when
P = 1, when Q = 1, and when there are 3 agents.

We first consider the case where all agents in P have iden-
tical valuations by using Algorithm 1. Lines 3-4 consider the
simple case where an item can be directly assigned to one
source agent in P , while Lines 6-11 try to assign an item to
a suitable Q-source agent and keep no envy from P to Q by
eliminating one envy cycle. Lines 12-14 update the item set
B and the envy-graph after adding one item.

Theorem 7. An EFPRIOR allocation always exists and can
be found in polynomial time when all agents in P have iden-
tical valuations.

Proof. The cycle-elimination step at Line 14 always makes
the envy-graph a DAG, which validates Line 6 and 7. It can
then be easily checked that Algorithm 1 always terminates in
polynomial time. It suffices to show the allocation returned
by Algorithm 1 is EFPRIOR. Since the empty allocation at
the beginning is a partial EFPRIOR allocation, we just need
to show the allocation is still a partial EFPRIOR allocation
after each iteration of the while-loop.

We first consider the simple case where we can find one
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source agent i ∈ P (Lines 3-4). Before allocating item g,
there is no envy to agent i and no envy from P to Q from
the definition of source agent and partial EFPRIOR alloca-
tion. Thus, after allocating g to agent i, there is no strong
envy to agent i (as the envy is eliminated if g is removed
from i’s bundle), and there is no envy from P to Q by the
monotonicity of valuation functions. This is still a partial
EFPRIOR allocation.

We then consider the case where there is no source agent
in P (Lines 6-11). We first denote i as one P -source agent
and j as one Q-source agent of i. As mentioned, since the
envy-graph is a DAG, there must exist such agents i and j.
After allocating item g to agent j, two cases may happen:

• Agent i does not envy j. Since all agents in P have
identical valuations and i is a P -source agent, we have
uk(Ak) ≥ ui(Ai) ≥ ui(Aj ∪ {g}) = uk(Aj ∪ {g}) for
each agent k ∈ P , so there is no envy from P to Q. There
is no strongly envy to agent j because there is no envy to
agent j before allocating item g.

• Agent i envies j. We will eliminate the cycle including j
and i. Since i is a P -source agent and the only agent in
P whose bundle is reallocated to an agent in Q is agent
i, there is no envy from P to Q. Because the bundle Aj

is held by one source agent before allocating g and each
agent in the cycle gets a better bundle, there is still no
strongly envy.

In both two cases above, the allocation is still a partial
EFPRIOR allocation. From the fact that there is no envy edge
from P to Q, there is no envy cycle containing agents in P
and Q at the same time, so Line 12-14 keep the envy-graph
acyclic and maintain EFPRIOR.

We then consider the case where all agents in Q have
identical valuations. The technique is similar to Algorithm 1,
where the only difference is that when there exists no source
agent in P , we find and eliminate one envy cycle more care-
fully. The proof for the following theorem is available in the
full version of this paper.
Theorem 8. An EFPRIOR allocation always exists and can
be found in polynomial time when all agents in Q have iden-
tical valuations.

From the above two theorems, we can easily get the
tractability of the following three natural special cases.
Corollary 9. An EFPRIOR allocation always exists and can
be found in polynomial time in any of the following settings:
when |P | = 1, when |Q| = 1, and when |N | ≤ 3.

4 General Valuations
In this section, we consider general valuations with no con-
straint. The main challenge of applying Algorithm 1 to the
setting here is that vertices in P may not be well-connected.
Consider the following scenario. We have a total of four
agents 1, 2, 3, 4 where P = {1, 2} and Q = {3, 4}. After a
certain iteration, we have a partial allocation where the envy-
graph only have two edges (3, 1) and (4, 2). Moreover, for
each remaining unallocated item g, it satisfies that 1) adding
g to 1 or 2 introduces strong envy, 2) adding g to 3 makes 2

Algorithm 2: Computing a partial EFPRIOR alloca-
tion

Output: a partial EFPRIOR allocation satisfying
Theorem 10.

1 Let Ai = ∅, for any i ∈ N , and B = M ;
2 while there exists an applicable rule Uℓ do
3 A,B ← Uℓ(A,B);
4 Reconstruct the envy-graph;
5 Run cycle-elimination algorithm (Definition 3);
6 return the partial EFPRIOR allocation A

envy 3, and 3) adding g to 4 makes 1 envy 4. Then, the al-
gorithm cannot continue with existing techniques in the pre-
vious section. In particular, no cycle appears if we add g to
agent 3 or 4, and the partial allocation is no longer EFPRIOR.
In the previous setting, the good connections between agents
in P ensures that we can always make a cycle appear by
carefully selecting an agent to whom an item is added.

Nevertheless, we are able to obtain a slightly weaker re-
sult for general valuations. We prove that such a partial EF-
PRIOR allocation always exists: the number of unallocated
items is less than the size of both P and Q, and no one en-
vies the unallocated bundle B. We will call the set of the
unallocated items the pool.

Theorem 10. For any P ⊆ N , a partial EFPRIOR alloca-
tion (with respect to P ) that satisfies the following properties
always exists.

• |B| < min(|P |, |Q|), and
• vi(B) ≤ vi(Ai) for all i ∈ N .

In addition, there is a polynomial-time algorithm that com-
putes such an allocation.

The algorithm shares some similarities with the one pro-
posed by Chaudhury et al. (2021b). However, there are sub-
stantial differences in the analysis of the algorithm as the
objective is changed from EFX to EFPRIOR. Moreover, our
update rule U3 that exchanges an agent’s bundle with a set
of unallocated items is more technically involved compared
to its counterpart in Chaudhury et al.’s algorithm. This addi-
tional techniques also make our algorithm run in polynomial
time, whereas Chaudhury et al.’s algorithm runs in pseudo-
polynomial time.

4.1 The Main Algorithm
The main algorithm is shown in Algorithm 2. Each iteration
of Algorithm 2 applies one of the four update rules defined
in Algorithms 3, 4 and 5. After that, the envy-graph is re-
constructed and cycles in the graph are eliminated. We will
prove that the EFPRIOR property is secured after applying
any of the four rules, and we will also prove that the cycle-
elimination step does not destroy the EFPRIOR property.

4.2 Proof of Theorem 10
In this section, we show that the output allocation of Algo-
rithm 2 satisfies all the requirements in Theorem 10.
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Algorithm 3: The Update Rules U0 and U1.
1 Function U0(allocation A, pool B):
2 Precondition: There exist an item g ∈ B and one

source agent i ∈ P ;
3 Allocate g to i: Ai ← Ai ∪ {g};
4 Update pool: B ← B \ {g};
5 Function U1(allocation A, pool B):
6 Precondition: There exist an item g ∈ B and one

source agent i ∈ Q such that allocating g to i
would not cause any agent in P to envy i;

7 Allocate g to i: Ai ← Ai ∪ {g};
8 Update pool: B ← B \ {g};

P

q0
gq0 gq1

p0

q1
b

a

p′ 1 p1

Q

p2p′ 2

Figure 1: An example envy-graph for rule U2. The solid lines
and the dotted lines respectively represent the original edges
and newly constructed edges during U2. At the first iteration,
item gq0 is allocated to agent q0, and it causes agent p′1 to
envy q0. Then we create an edge (p′1, q0), and let one P -
source agent of p′1 be p1 and one Q-source agent of p1 be
q1. Next, this loop terminates when finding one Q-source
agent of p2 is just the previous q0. Finally, these agents form
a cycle q0 → b → p2 → p′2 → q1 → p1 → p′1 → q0. We
remark that the cycle starts and ends at q0 in this example,
and the cycle may start at a “middle vertex” qi in general.

Below, we prove two properties for the update rule U2.
The first proposition follows straightforwardly from Algo-
rithm 4.

Proposition 11. For an edge (i, j) in the cycle at Line 13 of
the update rule U2 (Algorithm 4), the followings are true.

1. If i ∈ Q and j ∈ P , then j is a P -source agent.
2. If j is an agent whose bundle has been updated at Line 7,

then i ∈ P .

Proof. Both statements hold straightforwardly from the up-
date rule. See the full version for the complete proof.

The second proposition justifies the validity of the update
rule U2.

Proposition 12. The while-loop in the update rule U2 (Algo-
rithm 4) will terminate before the unallocated items running
out.

Proof. See the full version of this paper.

The following proposition shows that the EFPRIOR prop-
erty is preserved after applying any of the four update rules.

Algorithm 4: The Update Rule U2

1 Function U2(allocation A, pool B):
2 Precondition: The preconditions of both U0 and

U1 are not satisfied, and |B| ≥ min(|P |, |Q|);
3 Let p0 ∈ P be an arbitrary P -source agent;
4 Find one p0’s Q-source agent q0 ∈ Q;
5 A′ ← A, i← 0;
6 while the envy-graph contains no cycle do
7 Allocate gqi to qi: A′

qi ← Aqi ∪ {gqi};
8 Let p′i+1 ∈ P be one agent who envies A′

qi ;
9 Add the edge (p′i+1, qi) in the envy-graph;

10 Let pi+1 be one P -source agent of p′i+1;
11 Let qi+1 be one Q-source agent of pi+1;
12 i← i+ 1;
13 Let u0 → · · · → uk−1 → u0 be the cycle

consisting of the segments
“qi → · · · → pi → · · · → p′i”;

14 Aui
← A′

ui+1
for each i (indices are modulo k);

15 Update the pool B: B ←M \ (
⋃n

i=1 Ai);

Proposition 13. For a partial EFPRIOR allocation, the allo-
cation is still EFPRIOR after applying one iteration for any
of U0, U1, U2, and U3.

Proof. For the first three rules, the allocation remains EF1
as the envy-graph procedure claims (see Sect. 2.2). Hence,
we only need to prove that, for every agent in p ∈ P and
q ∈ Q, agent p does not envy agent q. When rules U0 and
U1 are applicable, it is easily checked by their preconditions.

We then analyze the rule U2. Let U = {u0, . . . , um} be
the set of vertices in the cycle at Line 13 of Algorithm 4. We
discuss the following two cases of q. Note that in both cases,
the value of agent p’s bundle would not decrease.

• q /∈ U : In this case, agent q will still receive her old
bundle. Hence, p still will not envy q.

• q ∈ U : Agent q would take the bundle from her adjacent
agent (denote this agent as r) at Line 14. We consider two
sub-cases: r ∈ P and r ∈ Q. If r ∈ P , according to the
first part of Proposition 11, r must be a P -source agent.
In this case, no agent in P envies r before the reallocation
(Line 14), so no agent in P envies q after the reallocation.
If r ∈ Q, according to the second part of Proposition 11,
r cannot be an agent whose bundle has been updated at
Line 7 as q ∈ Q. Since p does not envy r before applying
U2, p will not envy q after applying rule U2. Thus, p will
not envy q in both cases.

Now we come to rule U3. Rule U3 consists of two cases:
the envy-graph forms a cycle at Line 21, or no cycle is
formed and the unallocated items run out. In the first case,
the bundle S will get back to the pool, and the correctness
is the same as rule U2. In the second case, the allocation is
EF1 because all agents do not strongly envy S (by our con-
struction of S with iterative addition of one item) and other
items are added to the source agents such that each source
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Algorithm 5: The Update Rule U3.
1 Function U3(allocation A, pool B):
2 Precondition: The preconditions of both U0 and

U1 are not satisfied, and there exists one agent
that envies the unallocated bundle B;

3 B′ ← B,S ← ∅, i← 0, A′ ← A;
4 while no agent envies S do
5 Add an item g ∈ B′ to S;
6 B′ ← B \ {g};
7 if there exists s ∈ P that envies S then
8 Let p be one P -source agent of s;
9 Let q0 be one Q-source agent of p;

10 else
11 Let s be one agent in Q that envies S;
12 Let q0 be one Q-source agent of s;
13 while B′ ̸= ∅ do
14 Allocate gqi to qi: A′

qi ← Aqi ∪ {gqi};
15 Let p′i+1 ∈ P be one agent who envies A′

qi ;
16 Add the edge (p′i+1, qi) in the envy-graph;
17 Let pi+1 be one P -source agent of p′i+1;
18 Let qi+1 be one Q-source agent of pi+1;
19 i← i+ 1;
20 if the envy-graph contains a cycle then
21 Terminate U3 and apply U2 from Line 13;

22 Let u0 → · · · → uk be the path from qi to s;
23 Update pool: B ← Aqi ;
24 Aui ← A′

ui+1
for i ∈ [1, k − 1], Auk

← S;

agent receives at most one extra item. Next, we prove that
any agent p ∈ P will not envy agent q ∈ Q. It is worth not-
ing that all agents’ valuations to their own bundle will not
decrease. We consider the following three cases:

• If q is not on the path, her bundle stays the same and p’s
valuation will not decrease. Hence, p will not envy q.

• If q = s where s ∈ Q, p does not envy q. Otherwise, she
will take the bundle S according to Algorithm 5.

• If q ̸= s is an agent on the path, during the realloca-
tion process, she will receive a bundle from her adjacent
agent, that is, an agent in Q or a P -source agent. p does
not envy these two kinds of agents before the realloca-
tion process and, after reallocation, her valuation to her
bundle will not decrease, so she will not envy q.

Overall, the allocation is still EFPRIOR after applying any
of U0, U1, U2 and U3.

The following proposition shows that the cycle-
elimination at Line 5 of our main algorithm (Algorithm 2)
does not destroy the EFPRIOR property. The proposition fol-
lows from that each cycle cannot contain vertices from both
P and Q (since there is no edge from P to Q).

Proposition 14. For a partial EFPRIOR allocation, running
cycle-elimination on the envy-graph does not violate the EF-
PRIOR property.

Proof. Since there is no edge from P to Q, the possible cy-
cles in the envy-graph will involve vertices only in P or only
in Q. Since the cycle-elimination operation is a permutation
of the previous allocation inside P or Q and everyone on the
cycle gets a new bundle with higher valuation, the allocation
is EF1 and no new edge occurs from P to Q.

With the propositions above, it is easy to show by induc-
tion that the allocation output by our main algorithm is EF-
PRIOR.

After showing that the output allocation is EFPRIOR, the
preconditions of rule U2 and U3, we conclude that the two
requirements in Theorem 10 holds. It remains to analyze the
algorithm’s time complexity.

The time complexity of Algorithm 2 is given below.

Theorem 15. The time complexity of Algorithm 2 is
O(n2m ·max(n2,m)).

Proof. It is straightforward to compute the time complexity
for each update rule. The overall time complexity for one
while-loop iteration of Algorithm 2 is O(n2 ·max(n2,m)).
(See the full version of this paper.)

We further claim that the while-loop at Algorithm 2,
Line 2 is executed for a polynomial number of iterations.
The only case in the while loop that increases the size of
the pool is when U3 is applied and no cycle is formed. The
updated pool becomes a bundle from a previous Q-source
agent, so no one envies the pool immediately after applying
this rule. This operation may cause |B| ≥ min{|P |, |Q|},
and the while loop continues. However, during the applica-
tion of the four rules, each agent’s valuation to her bundle
does not decrease, so no one will envy the pool anymore,
and the precondition for U3 will never be satisfied. Hence,
the case may appear only once and increase the size of the
pool by at most m.

In other cases, each application of the rules will decrease
the size of the pool by at least one. Hence, the while-loop
will run for at most 2m iterations.

Hence, we may conclude that the time complexity of Al-
gorithm 2 is O(n2m ·max(n2,m)) which is a polynomial-
time algorithm.

5 Conclusion and Open Problems
In this paper, we studied fair division with prioritized agents.
In particular, we proposed a new notion EFPRIOR that is
stronger than EF1 by allowing the allocation favors a pre-
scribed subset of prioritized agents justified by some factors
secondary to fairness. For general valuations, we proposed a
polynomial-time algorithm that computes a partial EFPRIOR
allocation where the set of unallocated items has small val-
ues to all agents and a small cardinality. We believe the ex-
istence and the computational tractability of a complete EF-
PRIOR allocation is an important open problem.

Other than the settings with infinitely divisible resources
(i.e., cake-cutting) and indivisible items, the setting with
mixed divisible and indivisible items has received signifi-
cant attention recently (Bei et al. 2021a,b). Another future
direction is to extend our EFPRIOR notion to this setting.
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