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Abstract

Selecting a committee that meets diversity and proportional-
ity criteria is a challenging endeavor that has been studied
extensively in recent years. This task becomes even more
challenging when some of the selected candidates decline the
invitation to join the committee. Since the unavailability of one
candidate may impact the rest of the selection, inviting all can-
didates at the same time may lead to a suboptimal committee.
Instead, invitations should be sequential and conditional on
which candidates invited so far accepted the invitation: the so-
lution to the committee selection problem is a query policy. If
invitation queries are binding, they should be safe: one should
not query a candidate without being sure that whatever the
set of available candidates possible at that stage, her inclusion
will not jeopardize committee optimality. Assuming approval-
based inputs, we characterize the set of rules for which a safe
query exists at every stage. In order to parallelize the invita-
tion process, we investigate the computation of safe parallel
queries, and show that it is often hard. We also study the exis-
tence of safe parallel queries with respect to proportionality
axioms such as extended justified representation.

1 Introduction
In multiwinner voting the goal is to select a set of candidates
based on preferences expressed by voters. In the usual setting
there is a given set of candidates out of which a fixed-size
subset has to be chosen. This, however, does not capture
many real-life scenarios.

For instance, consider a university department hiring mul-
tiple researchers across multiple groups simultaneously. The
hiring committee will view the researchers’ applications, and
based on the preferences of the members of the hiring com-
mittee, the university selects a subset of candidates to offer a
position. However, of these suitable candidates, not all might
accept the offer, after which new candidates need to be in-
vited. When choosing these new candidates, it might play
a prominent role which candidates initially accepted their
offer and which declined. As an example, assume there are
three groups in the computer science department: algorithms
(ALG), machine learning (ML), and cryptography (CG), rep-
resenting respectively 3/8, 3/8, and 1/4 of the department; and
four candidates c1, c2, c3, c4. Candidate c1 is interesting for
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ALG and ML, candidate c2 for CG, candidate c3 for ALG,
and candidate c4 for ML. If the goal of the selection process
is to maximize some notion of representation among the dif-
ferent groups, it is plausible that the preference over subsets
of candidates is such that {c1, c2} is best, and that {c3, c4}
is better than {c2, c3} and {c2, c4}. Thus, it is optimal in the
first stage to invite c1, and then to invite c2 if c1 is available
and otherwise to invite c3. We see that whether a candidate is
available or not influences the selection of further candidates.

There are two interpretations of availability queries. We
will assume here that they are binding: once a candidate is
queried, she is irrevocably included in the selection if she is
available — think of inviting plenary speakers at a confer-
ence; it is not possible to revoke already accepted invitations.
The case of non-binding queries is discussed in Section 5.

The context we described is a multiwinner variant of the
unavailable candidate model (Lu and Boutilier 2010): voters
express their preferences over a set of potential candidates,
but only a subset of them will eventually be available; the
output then is a ranked list of candidates, according to which
candidates are queried; and the first one who is available is
selected. Our context is similar but the need to select several
candidates raises two complications: the query policy should
be conditional on offers already accepted or rejected, and
when selecting candidates to query, one should keep in mind
proportionality targets bearing on the global selection.

Our contribution. In this paper, we formalize the men-
tioned model and adapt the concept of a query policy
(Boutilier et al. 2014) to multiwinner elections. Such a policy
queries candidates for their availability, with the constraint
that a queried candidate has to be included in the selection
once they signal their availability.

We then study common approval-based committee (ABC)
rules and investigate whether these rules admit a safe query
policy, i.e., a policy that only queries candidates that are
guaranteed to be included in an optimal selection whenever
they are available, whatever the other available candidates are.
We show that under a mild technical assumption a necessary
and sufficient condition for a rule to admit a safe query policy
is “sequentiality” (to be formally defined later). This allows
us to show, in particular, that Phragmén’s sequential rule
and the Method of Equal Shares admit a safe query policy,
and that Proportional Approval Voting (PAV) and other non-
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sequential Thiele rules do not.
Further, we study the complexity of finding safe (sets of)

candidates, i.e., candidates and sets of candidates that are
always included in an optimal selection if they are available.
Whereas this problem is trivial for standard Multiwinner
Approval Voting (AV), we show that

• for all non-sequential Thiele rules other than AV, deciding
whether a safe candidate exists is coNP-hard;

• for all sequential Thiele rules other than AV (for which
a safe candidate always exists), deciding whether there
exists a safe set containing more than one candidate is
coNP-hard; and

• for all (sequential and non-sequential) Thiele rules other
than AV, deciding whether a given candidate is safe is
coNP-hard.

Finally, we turn to notions of proportionality, namely propor-
tional justified representation (PJR) and extended justified
representation (EJR). We show that for PJR, a set of k safe
candidates always exists, and such a set is selected by the
leximax-Phragmén rule. For EJR, we show that known rules
satisfying EJR do not always select k safe candidates for EJR;
however, we provide a query policy that finds a safe set of size
at least two. Omitted proofs can be found in the full version
of this paper (available at https://www.markus-brill.de/).

Related work. There is a large literature on uncertainty
and communication in voting, see the survey by Boutilier
and Rosenschein (2016). Uncertain knowledge can bear on
agents’ preferences, on the voting rule, or on the set of run-
ning candidates. Our work deals with the latter type.

The unavailable candidate model was introduced inde-
pendently by Lu and Boutilier (2010) and (with a different
motivation) by Baldiga and Green (2013). In this model, only
one candidate has to be selected; voters have ordinal pref-
erences over potential candidates that are associated with
probabilities of availability; and the aim is to build a ranked
list such that the first available candidate in the list maximizes
the probability of being the plurality winner. There have been
a number of follow-ups. Oren, Filmus, and Boutilier (2013)
assume that voters report top-k rankings instead of complete
rankings. Boutilier et al. (2014) consider conditional query
policies whose goal is to identify the winner with respect
to the actual set of running candidates; these queries are
non-binding and have costs. While Lu and Boutilier (2010)
assume voters’ utilities are binary (1 if the best available
candidate is selected, 0 otherwise), nonbinary utilities are
considered by Grivet Sébert et al. (2021). See the full version
of this paper for a structured comparison of these works, and
Section 5 for a discussion on how to further extend our work
to account for other specificities.

The dynamic selection of a set of candidates, where at each
step one must decide whether to select a candidate irrevocably
or not given approval votes, is studied by Do et al. (2022). A
major difference with the works mentioned above is that the
uncertainty is not related to candidates’ availability, but to
the order in which they appear.

Fair sortition for the selection of a representative citizen
assembly (Flanigan et al. 2021) also involves availability

queries, but they are non-binding and made offline, and then
a (randomized) selection algorithm is called. Also, propor-
tionality relates to demographic features, not to votes.

Our work is heavily related to ABC voting (Lackner and
Skowron 2022). Uncertainty in ABC voting, albeit only for
the case of uncertain preferences, has been discussed by
Barrot et al. (2013), Terzopoulou, Karpov, and Obraztsova
(2021), and Imber et al. (2022).

2 Setting
We first recall the standard approval-based committee (ABC)
voting setting, where N = [n] is a set of voters, C =
{c1, . . . , cm} is a set of candidates, A = (A1, . . . , An) is
an approval profile containing the approval set Ai ⊆ C for
each voter i ∈ N , and k ∈ [m] is the committee size.1 For
c ∈ C we let Nc = {i ∈ N : c ∈ Ai} be the approvers
of c. A committee is a subset W ⊆ C of candidates of size
|W | = k. Since the approval profile implicitly gives the sets
of voters and candidates, we omit N and C from the notation
and refer to an ABC instance by the pair (A, k).

Unavailable candidates. In our setting, some candidates
in C might be unavailable. We assume there exists an un-
derlying set of available candidates X ⊆ C. All candidates
c ∈ C \ X are unavailable. Instances and committees are
defined as in the standard setting, except that we allow rules
to output fewer than k candidates in case |X| < k.2 Thus, in
this more complex setting, a committee is a subset W ⊆ C
of candidates with |W | = min(k, |X|).

An ABC voting rule under uncertain availability is a func-
tion r that takes as input the approval profile (over all can-
didates C), the target committee size k, and the set of avail-
able candidates X and outputs one (or more) committees
W ∈ r(A, k,X) of size min(k, |X|). Every standard ABC
rule can be translated to this setting in a straightforward way,
by defining r(A, k,X) as the committee selected by r when
applied to (A|X ,min(k, |X|)). We are interested in how we
can obtain committees of only available candidates without
direct access to the set of available candidates X . For that,
we introduce the notion of safe (sets of) candidates.

Definition 1. Given an ABC instance (A, k) and a voting
rule r, a subset of candidates C ′ ⊆ C is safe if for any set
of available candidates X there is some committee W ∈
r(A, k,X) such that C ′ ∩ X ⊆ W . We say that candidate
c ∈ C is safe if {c} is safe.

That is, we consider C ′ safe if independent of which candi-
dates are available, we can complete the available candidates
among C ′ to an output of r. Note that for a set C ′ to be safe
all (available) candidates in C ′ must be safe when taken to-
gether. This is stronger than simply enforcing that C ′ consists

1For t ∈ N, we let [t] denote the set {1, . . . , t}.
2In this case, we assume that the rule will return all available

candidates. ABC rules with a variable number of winners have
been considered by Freeman, Kahng, and Pennock (2020); a crucial
difference with our setting is that they do not constrain the number
of winners at all, while we try to choose a committee whose size is
as close as possible to the target size k.
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of candidates that are each safe on their own.3 In order to
be able to talk about the safeness of policies, we extend the
definition of safeness to also incorporate situations in which
some candidates have already been selected. For this, we say
that a subset C ′ ⊆ C of candidates is safe with respect to
a sub-committee W ′ ⊆ C and a set of candidates known
to be unavailable U ⊆ C if, for any set of available candi-
dates X ⊇ W ′ with X ∩ U = ∅, there is some committee
W ∈ r(A, k,X) with W ⊇ W ′. That is, we can always ex-
tend W ′ with the available candidates from C ′ to a winning
committee. Similar to safeness for voting rules, we can also
say that a set of candidates is safe for proportionality axioms
like EJR and PJR (cf. Section 4.2) if we can extend the set to
a committee that satisfies the axiom.

Query policies. A query policy is an algorithm that takes
an approval profile and a target committee size k as input and
produces a committee by iteratively querying the availability
of candidates. In order to keep track of candidates whose
availability has already been queried, we use Q+ and Q−

to denote the set of known available candidates and known
unavailable candidates, respectively. In particular, after each
round t of the query policy, we have an information set Qt =
(Q+

t , Q
−
t ), where Q+

t ⊆ X is the set of available candidates
that have already been queried and Q−

t ⊆ C \X is the set of
unavailable candidates that have been queried. By definition,
we have Q+

0 = Q−
0 = ∅ and Q+

t ∩Q−
t = ∅ for all t ≥ 0.

In each round t ≥ 1, we let ct ∈ C denote the candi-
date that is queried for their availability by the policy. If ct
is available, we let Qt = (Q+

t−1 ∪ {ct}, Q−
t−1); otherwise,

Qt = (Q+
t−1, Q

−
t−1 ∪ {ct}). Without loss of generality, we

can assume that every candidate is queried at most once. Thus
|Q+

t ∪Q−
t | = t and the number of rounds is upper-bounded

by m = |C|. A policy can terminate only if |Q+
t | ≥ k or

|Q+
t ∪Q−

t | = |C| (and, therefore, Q+
t = X). At termination,

it outputs a committee W ⊆ Q+
t of size |W | = min(k, |X|).

We can think of a query policy as a labeled binary tree.
Given an approval profile and committee size k, we construct
a rooted binary tree of depth m corresponding to a query
policy as follows. We label the root node of the tree with
the candidate c1 that is queried first by the policy. The left
child of c1 is labeled with the candidate that is queried by the
policy if c1 is available, and the right child with the candidate
that is queried if c1 is not available. We continue this labeling
until the query policy terminates. A terminal node is labeled
with the committee selected by the policy.

Example 1. Consider the approval profile where 3 voters
approve {a, c}, 2 voters approve {a, d}, and one voter ap-
proves {b}. Say that a candidate cj “covers” a voter i if
cj ∈ Ai and consider the following query policy: At each
round, query a candidate that covers the most uncovered
voters, breaking ties in favor of candidates covering more
already covered voters, and terminating when the target com-
mittee size is reached (or there are no more candidates to
query). For the given profile and k = 2, the tree correspond-
ing to this query policy is shown in Figure 1. It first queries

3For instance, for A = ({a, b}, {c}) and k = 2, many rules
output {a, c} and {b, c}: a and b are safe, but {a, b} is not.
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Figure 1: A tree visualizing the query policy from Example 1.

candidate a (the root of the tree); if a is available, b is queried
next; otherwise, c is queried next; and so on. If, for example,
X = {a, c, d} the policy will query a, then b, and then c, and
output the committee {a, c}.

In Section 4, we study query policies that query multiple
candidates in parallel. Such policies can be represented by
trees as well: each node will have 2q children, where q is the
number of candidates that are queried.

Approval-based committee voting rules. Let us intro-
duce the ABC rules that are studied throughout the pa-
per. Thiele rules (Thiele 1895) are parameterized by a non-
increasing vector w = (w1, w2, . . . ) of non-negative real
numbers. W.l.o.g. we assume that w1 = 1. The rule w-
Thiele returns all committees W of size k maximizing the w-
Thiele score scw(W ) =

∑
i∈N

∑|Ai∩W |
j=1 wj . Well-studied

w-Thiele rules include Multiwinner Approval Voting (AV)
with wAV = (1, 1, . . . ), Chamberlin-Courant (CC) with
wCC = (1, 0, 0, . . . ), and Proportional Approval Voting
(PAV) with wPAV = (1, 1

2 ,
1
3 , . . . ). Each w-Thiele rule is

also associated with a sequential variant seq-w-Thiele. These
rules start with an empty committee W and iteratively add
a candidate c maximizing scw(W ∪ {c}) until the commit-
tee contains k candidates. We refer to seq-wCC-Thiele as
seq-CC and to seq-wPAV -Thiele as seq-PAV. Note that seq-
wAV -Thiele coincides with AV.

The Method of Equal Shares (MES) outputs all committees
that can result from the following iterative procedure. Each
voter i ∈ N is assigned an initial budget of bi = k

n . We
start with an empty committee W and add candidates one at
a time. Given budgets (bi)i∈N , we say that a candidate c is
ρ-affordable, for some ρ > 0, if

∑
i∈Nc

min(bi, ρ) = 1. In
each round, a candidate that is ρ-affordable for the minimum
ρ is added to W and the budget bi of each voter i ∈ Nc is set
to bi −min(bi, ρ). If no candidate is ρ-affordable for any ρ,
MES fills the committee to size k with arbitrary candidates.

3 Safe Policies and Implementable Rules
The above definition of a query policy does not enforce the
queries of the policy to be binding invitations to join the
committee, i.e., the set Q+

t does not have to equal the out-
put committee of the policy. Since we focus on the case
of irrevocable invitations in this paper, we are interested in
safe policies. A query policy is safe for a rule r if for each
time-step t the candidate ct is safe with regard to Qt for r.
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Definition 2. A rule is implementable if and only if there
exists a safe query policy for it.4

To build a first intuition, we consider two well-studied
voting rules, seq-PAV and PAV. We observe that the former
admits a safe query policy while the latter does not.

Proposition 1. Seq-PAV is implementable.

Proof. Consider the query policy that in each step t queries a
candidate ct ∈ C\(Q+

t−1∪Q
−
t−1) maximizing scPAV(Q

+
t−1∪

{ct}), i.e., the candidate with the highest marginal contribu-
tion to the PAV-score of the candidates known to be available.
Once |Q+

t | = min(k, |X|) (for some t) the policy outputs
Q+

t as the winning committee. In any round t, the queried can-
didate ct is safe: if ct is not available, it is safe by definition. If
ct is available, we can extend Q+

t = Q+
t−1∪{ct} to a winning

committee of seq-PAV because the score scPAV(Q
+
t ∪{ct+1})

only depends on the candidates Q+
t , which we know are

available, and ct+1. Thus, the policy is safe, and seq-PAV is
implementable.

Proposition 2. PAV is not implementable.

Proof. Let A = ({c1, c2}, {c3, c4}, {c1, c4}, {c2, c3}) and
k = 2. The committees {c1, c3} and {c2, c4} are selected by
PAV. Consider a safe query policy. If it first queries c1 and c1
is available, then it must query c3 next. If c3 is not available,
while c2 and c4 are, this leads to selecting a committee that
does not win under PAV. By symmetry, a similar argument
works if another candidate is queried first.

3.1 Characterizing Implementable Rules
The main point differentiating sequential-PAV from PAV in
the example above seems to be the “sequentiality” of the
former. In this subsection, we formalize our notion of sequen-
tiality and show that, in essence, the existence of a safe query
policy is equivalent to the rule being sequential. Intuitively, a
multiwinner rule is sequential if a winning committee can be
constructed by adding alternatives iteratively without depend-
ing on the approvals of other not yet selected candidates.

More specifically, we call a rule r sequential if at every
round of the selection process where we have already chosen
ℓ candidates c1, . . . , cℓ, there is a score function f assigning
a score to each unselected candidate such that choosing a
candidate maximizing this function among available candi-
dates leads to a winning committee according to the rule r.
That is, it is possible to build a winning committee one can-
didate at a time by always picking a candidate maximizing f .
Crucially, for a given candidate c, the value f(c) may only
depend on the target committee size, the sequence of already
chosen candidates, and the approval profile restricted to the
set of already chosen candidates together with c. Thus, it
only depends on (k,E,A|E∪{c}), where E = (c1, . . . , cℓ)
is the sequence of already chosen candidates. We slightly
abuse notation and write E for both the sequence and the
set of already chosen candidates. Let S(C) be the set of all
sequences of distinct candidates in C. Formally, a function

4Note that our notion of implementability is unrelated to the
classical usage of the term for social choice functions.

fk : C × S(C) × (2C)n → R is a marginal contribution
function, and fk satisfies locality if for all E and c /∈ E it
holds that fk(c, E,A) = fk(c, E,A|E∪{c}).
Definition 3. A rule r is sequential if for any committee size
k, there exists a marginal contribution function fk, satisfying
locality, such that for any set of available candidates X ⊆ C
it holds that {c1, . . . , ck} ∈ r(A, k,X), where for all i ≤ k
it holds ci ∈ maxc∈X\{c1,...,ci−1} fk(c, (c1, . . . , ci−1), A).

We omit the subscript k from the function fk if it is clear
from context. Intuitively, a rule is implementable if we can
find some function f assigning a value to each unchosen
candidate independently of the other unchosen candidates,
such that we can pick the candidate with the maximum score
and always get a committee in the output of the rule. An
example of a sequential rule is MES.
Proposition 3. MES is sequential.

Proof. Recall that MES includes candidates one by one into
the winning committee by, in each step, adding a candidate
that is ρ-affordable for the minimum prize ρ. This value
ρ depends on the remaining budgets of the voters at that
point of the process. For a given k we can define a function
fk(c, E,A) witnessing sequentiality for all E, c /∈ E, and A
as follows. Using the sequence of already chosen candidates
E and the approval profile A, we compute the budget of
each voter after the candidates in E were selected by MES.
Using these budgets we compute the value ρc for which
candidate c would be affordable and set fk(c, E,A) = 1

ρc
. If

a candidate c is not affordable given the computed budgets
we set fk(c, E,A) = 0. Since the computation of the budgets
only depends on A|E∪{c}, the function fk satisfies locality.
Maximizing over fk(c, E,A) is equivalent to minimizing
over the ρ values and thus MES is sequential with respect to
these functions fk.

Sequentiality is not the same as committee monotonicity
(which, for the sake of simplicity, we only define for resolute
rules here): A rule r is committee monotone if r(A, k,X) ⊂
r(A, k + 1, X) for all k.
Remark 1. Sequentiality is independent of committee mono-
tonicity. For example, MES is not committee monotonic but se-
quential.5 For an example of a committee monotone rule that
is not sequential, consider the following rule that we will refer
to as the 2-sequence rule: Consider m candidates with a fixed
order (c1, c2, . . . , cm). If more voters approve c1 than c2 the
rule will pick the first k available candidates in the sequence
(c1, c2, . . . , cm); otherwise it will pick the first k available
candidates in the reverse sequence (cm, cm−1, . . . , c1).

Finally, for our characterization, we need one more axiom
to deal with rules that behave differently based on unavailable
candidates.
Definition 4. A rule r satisfies independence of unavailable
candidates (IUC) if for all approval profiles A, sets of avail-
able candidates X , and committee sizes k it satisfies

r(A, k,X) = r(A′, k,X)

5For a counterexample to committee monotonicity, see Proposi-
tion A.2 in the book by Lackner and Skowron (2022).
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where A′ denotes any approval profile obtained from A by
adding or deleting approvals from candidates outside X .

Intuitively, a rule that satisfies IUC does not depend on the
approvals of unavailable candidates; thus, all standard ABC
rules translated to our setting satisfy this property. On the
other hand, the 2-sequence rule defined above does not satisfy
IUC. Note that in the definition of IUC, we do not delete the
candidates in the profile A′, but only change approvals they
obtained. This ensures that the profiles A and A′ rely on the
same set and number of candidates. We are now able to state
and prove the main result of this section.

Theorem 1. The following two statements hold:

(i) Every sequential rule is implementable.
(ii) Every implementable rule that satisfies IUC is sequential.

Proof. Fix an instance (A, k) with a set of candidates C
and consider any set of available candidates X ⊆ C. For
(i), consider a sequential rule r and a marginal contribution
function f , satisfying locality, witnessing the sequentiality
of r. We define a safe query policy for r iteratively. For step
t ≥ 1 assume the information set Qt = (Q+

t , Q
−
t ). In the

following, we slightly abuse notation and write Q+
t both for

the set of known available candidates and for the sequence of
these candidates, ordered by the time we queried them. We
next query a candidate ct maximizing f(ct, Q

+
t , A|Q+

t ∪{ct})

among candidates for which we do not know availability
yet, i.e., ct ∈ maxc∈C\(Q+

t ∪Q−
t ) f(c,Q

+
t , A|Q+

t ∪{ct}). Note
that even though the query policy has no access to the set of
available candidates X , due to locality, if ct maximizes the
score among all candidates in C \ (Q+

t ∪ Q−
t ) then it still

maximizes the score among X \ Q+
t . Thus, the committee

constructed by choosing — for a sufficiently large t — all
candidates in Q+

t as soon as |Q+
t | = k or C = Q+

t ∪Q−
t is

in r(A, k,X). Thus r is implementable.
For (ii), consider an implementable rule r satisfying IUC.

There exists a safe query policy for r. We consider the steps
of the query policy iteratively and also define our function f
inductively: For ℓ ∈ {0, 1, . . . , k − 1} let E = (c1, . . . , cℓ)
be the sequence of already chosen candidates by the policy.
Note that the case ℓ = 0 covers the initial step where E is the
empty sequence. By induction, we assume that f is already
defined for all prefixes of E.

For a possible candidate c ∈ C we say that c is choosable
if f(c, (c1, . . . , ct−1), A) < f(ct, (c1, . . . , ct−1), A) for all
t ∈ [ℓ], i.e., in each previous turn, c got a lower score than the
chosen candidates. If ℓ = 0, all candidates are still choosable.
Let C ′ be the set of all choosable candidates.

After E was chosen by r’s query policy, let c′1 be the can-
didate that would be queried next by the query policy. We set
the score f(c′1, E,A|E∪{c′1}) = |C ′|. Next, inductively, for
i ≥ 1, assume that the candidates c′1, . . . , c

′
i are unavailable

and let c′i+1 be the candidate queried next by r’s policy.
We set f(c′i+1, E,A|E∪{c′i+1}) = f(c′i, E,A|E∪{c′i})− 1.

We further set f(c′, E,A′) = f(c′1, E,A′|E∪{c′}) for all c′

and A′ ⊆ A. All other (not choosable) candidates will not
appear in the set over which the scores are maximized, and
therefore we can set their score to be −1.

Rule SEQ IMPL IUC CM

AV ✓ ✓ ✓ ✓
seq-PAV ✓ ✓ ✓ ✓
PAV ✗ ✗ ✓ ✗
MES ✓ ✓ ✓ ✗
2-sequence ✗ ✓ ✗ ✓
2-sequence ∪ AV ✓ ✓ ✗ ✓

Table 1: An overview of some rules’ compliance with the
axioms discussed in this section. CM stands for committee
monotonicity. The 2-sequence rule is introduced in Remark 1.

To show that r is sequential with regard to f let X be
the set of available candidates. Now again, let c1, . . . , cℓ be
the first ℓ candidates picked by f . We inductively show that
these are also the ℓ candidates that the safe query policy
would query in this instance. Now let cℓ+1 be the candi-
date who is queried as the (ℓ+ 1)-th candidate by the query
policy. Since cℓ+1 was not queried before, we know that
f(cℓ+1, (c1, . . . , ct−1), A) < f(ct, (c1, . . . , ct−1), A) for all
t ∈ [ℓ]. Further, we know that for any other c ∈ X , due to
IUC, this c ∈ X would not be queried before cℓ+1 even if
other candidates from C ′ were available. Hence, cℓ+1 would
receive a higher score than any other candidate in X; there-
fore, f and the query policy agree. Further, we need to show
that f satisfies locality. For this, we observe that for each set
of chosen candidates E the set of choosable candidates from
C is the same. Thus, the score assigned to c is always the
same based on these candidates; it follows that f satisfies
locality.

The IUC property in Part (ii) of Theorem 1 is necessary:
The 2-sequence rule defined in Remark 1, which fails IUC,
is implementable but not sequential. Moreover, sequentiality
does not imply IUC: the rule that outputs all AV commit-
tees plus the committee chosen by the 2-sequence rule is
sequential (because AV is) but fails IUC.

The following characterization result follows immediately
from Theorem 1.

Corollary 1. Let r be a rule satisfying IUC. Then, r is se-
quential if and only if it is implementable.

By Proposition 3 and Theorem 1, MES is implementable.
The same holds for all sequential Thiele rules and many
other sequential rules such as Phragmén’s sequential rule
(Phragmén 1894) and the maximin support method (Sánchez-
Fernández et al. 2021). For an overview of some rules and
their compliance with the axioms discussed in this section,
see Table 1.

3.2 Finding Safe Candidates for Thiele Rules
Theorem 1 implies that safe candidates always exist for se-
quential Thiele rules. Moreover, it is easy to find such a safe
candidate: simply take the candidate in C \ (Q+ ∪Q−) with
the highest marginal contribution w.r.t. the Thiele score. On
the other hand, we show that it is computationally intractable
to decide whether a given candidate is safe.
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Theorem 2. For any sequential and non-sequential Thiele
rule except AV, even in the first step of the query policy, it is
coNP-hard to decide whether a given candidate is safe.

For non-sequential Thiele rules it may happen that no can-
didate is safe. Moreover, we show that it is computationally
intractable to decide whether there exists a safe candidate or
not in a given instance.

Theorem 3. For any w-Thiele rule except AV, it is coNP-hard
to decide whether a safe candidate exists.

4 Parallel Queries
In many scenarios it is desirable or even necessary to speed
up the process of querying candidates. One example is invi-
tations of speakers for a conference: the timespan between
planning the conference and the actual starting date does
often not allow to ask every single invited speaker only after
the previous one has accepted or declined the offer to give a
talk. Motivated by these scenarios, we study parallel queries
where we ask multiple candidates at once, allowing us to run
the querying process in parallel. Query policies are easily
generalized to parallel queries. The difference to the defini-
tion in Section 2 is that if q candidates are queried in parallel
at a given node, then this node has 2q children corresponding
to all availability configurations of these candidates. As a
technicality, whenever we speak about having a safe set of
size q, we assume that there are at least q candidates that have
not been queried so far.

Example 2. Consider 8 voters, 4 candidates a, b, c, d, and
k = 2; 4 voters approve {a, b}, 3 voters approve {a, c}, and
one voter approves {d}. Under seq-PAV, the set {a, b} is safe:
the winning committee is {a, b} if both a and b are available,
{b, c} if X = {b, c, d}, and {a, c} if X = {a, c, d}.

On the other hand, under seq-CC, there is no safe set of
size 2. It would have to be {a, d} since this is the winning
set if all candidates are available; but if X = {b, c, d}, then
{b, c} wins and thus {a, d} is not safe (and d is not even safe
as a singleton).

4.1 Parallel Queries for Thiele Rules
It is clear that under AV, finding a maximal number of safe
candidates is easy.

Proposition 4. For AV, if k − k′ safe candidates are already
queried, querying the k′ candidates with the next highest
approval score is always safe.

The (easy) proof uses the fact that for any k′ ≤ k, if x
is among the best available k′ candidates when the set of
available candidates is X , then it remains among the best
available k′ candidates if the set of available candidates is
X ′ ⊂ X (and x ∈ X ′).

It turns out that we cannot do the same for other sequential
Thiele rules, as there might be instances where only one safe
candidate exists.

Proposition 5. For any sequential Thiele rule other than AV,
there are instances where the maximum size of a safe set is 1.

In the proof we construct an instance similar to the one in
Example 2 (but depending on the weight vector w), which

shows that for a sequential w-Thiele rule, the case where no
safe set of size at least 2 exists can occur in round q−1, where
q is the number of weights in w equal to 1. It is also easy to
see that it cannot occur earlier: if w starts with q consecutive
1’s, then the rule is equivalent to AV for the first q candidates
that get selected, and thus a safe set of size q exists if no
candidates have been queried yet. These are exactly the q
candidates with the highest approval score. Thus, it is natural
to ask whether a given instance admits more than q safe
candidates. It turns out that this problem is computationally
intractable.

Theorem 4. Given a w-Thiele rule with w1 = · · · = wq = 1
and wq+1 < 1, it is coNP-hard to decide whether q + 1 safe
candidates exist if no candidates have been queried yet.

4.2 Parallel Queries for Proportionality Axioms
Finally, we turn to investigating parallel queries for pro-
portionality axioms. For this, we introduce two commonly
used proportionality notions: Proportional Justified Repre-
sentation (PJR) and Extended Justified Representation (EJR)
(Sánchez-Fernández et al. 2017; Aziz et al. 2017).

Definition 5. Given an ABC instance (A, k), a group N ′ ⊆
N of voters is ℓ-cohesive if |N ′| ≥ ℓn

k and |
⋂

i∈N ′ Ai| ≥ ℓ.
A committee W of size k satisfies PJR if for each ℓ-cohesive
group N ′ it holds that |

⋃
i∈N ′ Ai ∩W | ≥ ℓ. A committee W

of size k satisfies EJR if for each ℓ-cohesive group N ′ there
is some voter i ∈ N ′ with |Ai ∩W | ≥ ℓ.

We are interested in whether these axioms are imple-
mentable, i.e., whether committees satisfying these axioms
can be found with a safe query protocol.6 Since MES satis-
fies EJR (and thus also PJR) (Peters and Skowron 2020), we
know from Proposition 3 and Theorem 1 that PJR and EJR
are both implementable: We can always find a safe candidate
to add such that we will end up with a committee satisfying
the axiom in the end.

We now investigate whether we can query multiple can-
didates at once. We focus our attention on the first query,
i.e., we assume that no candidate has been queried yet. We
show that there always exists a safe query consisting of k
candidates for PJR. To do this, we introduce a variant of
priceability (Peters and Skowron 2020).

Definition 6 (Priceability with individual budgets). A com-
mittee W satisfies priceability with individual budgets if and
only if there are individual budgets Bi ≥ 0 and payment
functions pi : C → [0, Bi] for every voter i ∈ N such that

C1 If pi(c) > 0 then c ∈ Ai for any c ∈ C and i ∈ N ,
C2 If pi(c) > 0 then c ∈ W for any c ∈ C and i ∈ N ,
C3

∑
c∈C pi(c) ≤ Bi for any i ∈ N ,

C4
∑

i∈N pi(c) = 1 for any c ∈ W , and
C5

∑
i∈Nc

(
Bi −

∑
c′∈W pi(c

′)
)
≤ 1 for any c /∈ W .

We call the pair (B, p) = ((Bi)i∈N , (pi)i∈N ) a price system
and say that W is supported by this price system.

6Formally, safeness for an axiom can be defined as safeness for
the voting rule that outputs all committees satisfying the axiom.
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Figure 2: Instances discussed in Examples 3 and 4. Voters correspond to integers and approve all candidates placed above them.

It is easy to see that price systems satisfying C1-C4 are
equivalent to load distributions on which Phragmén’s rules
are based (Brill et al. 2017). Hence, we can define leximax-
Phragmén as the rule which outputs all priceable committees
that are supported by a sorted vector B = (Bi)i∈N of budgets
that is lexicographically minimal.7

Example 3. Consider the instance depicted on the left in
Figure 2 and let k = 3. This instance admits several leximax-
Phragmén committees, in which every voter gets a budget of
Bi =

1
2 . This is optimal, since at least one voter must get a

budget of k
n = 1

2 . One such committee is {c1, c4, c5} with the
first two voters paying for c1, the second two for c4, and the
last two for c5. This committee is safe for PJR: independent
of which subset X of candidates is available, we can extend
{c1, c4, c5} ∩X to a committee satisfying PJR. For instance,
if c4 was unavailable, we could include c3 instead.

However, in this instance we can also see that not every
PJR committee is safe for PJR: For example, the committee
{c1, c2, c3} satisfies PJR, but if c3 was unavailable, {c1, c2}
could not be extended to a committee satisfying PJR since
the groups {3, 4} and {5, 6} form 1-cohesive groups.

As a side note, we observe that the committee {c1, c4, c5}
selected by leximax-Phragmén is not safe for leximax-
Phragmén itself. For instance, if c3 and c4 were unavailable,
the only two leximax-Phragmén committees are {c1, c6, c7}
and {c2, c6, c7}.

We can show that every committee selected by leximax-
Phragmén constitutes a safe set of candidates (of size k) for
PJR. In the proof of Theorem 5, we also show how the query
protocol can be “completed” using queries of size 1.
Theorem 5. Assume that no candidate has been queried yet.
Then, every leximax-Phragmén committee is safe for PJR.

For EJR, however, the situation turns out to be trickier.
First, we show that neither PAV nor MES always select k
candidates that are safe for EJR.
Example 4. For PAV, consider the instance depicted in the
center of Figure 2. Here, for k = 4, PAV selects (among other
committees) {c1, c4, c5, c6}. But if c1 is unavailable, both c2
and c3 need to be included in the committee to satisfy EJR
(since voters 1 and 2 are each 1-cohesive on their own).

For MES, consider the instance depicted on the right in Fig-
ure 2 and let k = 10. The committee {c1, c2, c3, c12, . . . , c18}
is selected by MES (among other committees). However, if c12
is unavailable, to satisfy EJR, we need to include a candidate
from c4, . . . , c7 and a candidate from c8, . . . , c11 to satisfy
the 4-cohesive voter groups approving these candidates.

7Since leximax-Phragmén satisfies C5 in addition to C1-C4, we
can assume that we are optimizing over C1-C5.

On the bright side, we can at least improve upon the initial
query size of 1 and show that, in the first step, there always
exists a safe set of two candidates for EJR.

Theorem 6. Assume that no candidate has been queried yet
and that k ≥ 2. Then, there exists a set of size at least two
that is safe for EJR.

Proof. Let c1 be an approval winner and c2 be an approval
“runner-up,” i.e., n2 := |Nc2 | ≥ |Nc| for all c ∈ C \{c1} and
n1 := |Nc1 | ≥ n2. We distinguish two cases.

Case 1: n2 ≥ 2n
k . Then, n1 ≥ 2n

k as well. We show
that there is a safe set of two candidates for MES, which is
therefore also safe for EJR. Under MES, c1 is bought first and
the agents in Nc2 have at least k

2n of their budget left. Thus,
c2 is still k

2n -affordable. Further, any other candidate c is at
most 1

|Nc| -affordable and thus at most k
2n -affordable. Hence,

c2 can still be bought by MES even if c1 was bought (and
especially if c1 was unavailable). Therefore, independent of
availability, the set {c1, c2} can be safely queried.

Case 2: n2 < 2n
k . Then, no 2-cohesive group exists. Thus,

EJR only needs to satisfy 1-cohesive groups and is equivalent
to PJR. The statement now follows from Theorem 5.

5 Discussion
We have initiated the study of multiwinner voting with pos-
sibly unavailable candidates. Our key assumptions were ap-
proval ballots and binding queries. Also, we do not have
availability probabilities. Moving away from these assump-
tions leads to a variety of interesting directions for future
work. We discuss three directions in turn.

It would be a natural next step to consider multiwinner
voting based on ordinal preferences and study how rules
such as single transferable vote (STV) can be adapted to deal
with possibly unavailable candidates. We maintain that our
characterization of implementable rules (Theorem 1) holds
for that setting as well, as the underlying logic of the proof is
independent of the ballot format.

If queries were non-binding, there would be a trivial query
policy: query all candidates and select the desired committee.
But the task would become nontrivial again if queries had
costs as in the paper by Boutilier et al. (2014).

In some settings, we might have probabilistic information
on the availability of candidates. For non-implementable
rules such as PAV, we might want to look for binding query
policies that maximize the expected score of the committee.

Within the setting considered in this paper, it is open
whether our guarantee for PJR (Theorem 5) can also be
achieved by a computationally tractable rule, and whether
our guarantee for EJR (Theorem 6) can be improved.
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