
Rank Aggregation Using Scoring Rules

Niclas Boehmer1, Robert Bredereck2, Dominik Peters3

1 Algorithmics and Computational Complexity, Technische Universität Berlin
2 Institut für Informatik, TU Clausthal

3 CNRS, LAMSADE, Université Paris Dauphine–PSL
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Abstract

To aggregate rankings into a social ranking, one can use scor-
ing systems such as Plurality, Veto, and Borda. We distinguish
three types of methods: ranking by score, ranking by repeat-
edly choosing a winner that we delete and rank at the top, and
ranking by repeatedly choosing a loser that we delete and rank
at the bottom. The latter method captures the frequently stud-
ied voting rules Single Transferable Vote (aka Instant Runoff
Voting), Coombs, and Baldwin. In an experimental analysis,
we show that the three types of methods produce different
rankings in practice. We also provide evidence that sequen-
tially selecting winners is most suitable to detect the “true”
ranking of candidates. For different rules in our classes, we
then study the (parameterized) computational complexity of
deciding in which positions a given candidate can appear in
the chosen ranking. As part of our analysis, we also consider
the WINNER DETERMINATION problem for STV, Coombs,
and Baldwin and determine their complexity when there are
few voters or candidates.

1 Introduction
Rank aggregation, the task of aggregating several rankings
into a single ranking, sits at the foundation of social choice as
introduced by Arrow (1951). Besides preference aggregation,
it has numerous important applications, for example in the
context of meta-search engines (Dwork et al. 2001), of juries
ranking competitors in sports tournaments (Truchon 1998),
and multi-criteria decision analysis.

One of the best-known methods for aggregating rankings
is Kemeny’s (1959) method: A Kemeny ranking is a rank-
ing that minimizes the average swap distance (Kendall-tau
distance) to the input rankings. It is axiomatically attrac-
tive (Young and Levenglick 1978; Can and Storcken 2013;
Bossert and Sprumont 2014) and has an interpretation as a
maximum likelihood estimator (Young 1995) making it well-
suited to epistemic social choice that assumes a ground truth.

However, Kemeny’s method is hard to compute (Bartholdi,
Tovey, and Trick 1989; Hemaspaandra, Spakowski, and Vogel
2005) which makes the method problematic to use, especially
when there are many candidates to rank (for example, when
ranking all applicants to a university). Even if computing the
ranking is possible, it is coNP-hard to verify if a ranking is
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indeed a Kemeny ranking (Fitzsimmons and Hemaspaandra
2021). Thus, third parties cannot easily audit, interpret, or
understand the outcome, making systems based on Kemeny’s
method potentially unaccountable. This limits its applicabil-
ity in democratic contexts.

These two drawbacks motivate the search for computa-
tionally simpler and more transparent methods for aggregat-
ing rankings. There is a significant literature on polynomial-
time approximation algorithms for Kemeny’s method (Cop-
persmith, Fleischer, and Rudra 2006; Kenyon-Mathieu and
Schudy 2007; Ailon, Charikar, and Newman 2008; van
Zuylen and Williamson 2009), but these algorithms are typi-
cally not attractive beyond their approximation guarantee. In
particular, they would typically not fare well in an axiomatic
analysis, and are unlikely to be understood by and appealing
to the general public (many are based on derandomization).

Instead, we turn to one of the fundamental tools of social
choice: positional scoring rules. These rules transform voter
rankings into scores for the candidates. For example, under
the Plurality scoring rule, every voter gives 1 point to their
top-ranked candidate. Under the Veto (or anti-plurality) scor-
ing rule, voters give −1 point to their last-ranked candidate
and zero points to all others. Under the Borda scoring rule, ev-
ery voter gives m points to their top-ranked candidate, m− 1
points to their second-ranked candidate, and so on, giving 1
point to their last-ranked candidate. We study three ways of
using scoring rules to aggregate rankings:

• Score: We rank the candidates in order of their score,
higher-scoring candidates being ranked higher.
• Sequential-Winner: We take the candidate c with the high-

est score and rank it top in the aggregate ranking. We then
delete c from the input profile, re-calculate the scores, and
put the new candidate with the highest score in the second
position, and so on.
• Sequential-Loser: We take the candidate c with the lowest

score and rank it last. We then delete c, re-calculate the
scores, and put the new candidate with the lowest score in
the second-to-last position, and so on.

Ranking by score is the obvious way of using scoring rules
for rankings, and so it has been studied in the social choice
literature (Smith 1973; Levenglick 1977). These rules are
frequently used in practice. Examples include the European
Song Contest, the “ARTU” aggregation of university rank-
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ings (using Borda), ranking countries by number of Olympic
gold medals (plurality), and in a certain sense also partici-
patory budgeting (k-approval, with a postprocessing step to
turn the ranking into a knapsack). Sequential-Loser captures
as special cases the previously studied rules Single Trans-
ferable Vote (also known as Instant Runoff Voting, among
other names, which is used for political elections in Aus-
tralia, Ireland, and some jurisdictions in the US), Coomb’s
method, and Baldwin’s method. These are typically used as
voting rules that elect a single candidate, but they can also
be understood as rank aggregation methods. On the other
hand, despite being quite natural, Sequential-Winner meth-
ods appear not to have been formally studied in the literature
(to our knowledge). These rules mirror sequential decision
making in real-world situations. For example, an academic
department could vote on whom to make a job offer, and
in case of rejections, repeatedly re-vote. Then the order in
which offers go out would map to, for example, Sequential-
Plurality-Winner. Another example are political parties who
have to decide on a party list for a parliament election. In
many cases (for example in Germany), these are voted on by
party members, voting first for the first list place, then for the
second, etc., using Plurality-like rules each time.

1.1 Our Contributions
Axiomatic Properties (Section 4) Based on the existing
literature, we begin by describing some axiomatic properties
of the methods in our three families. For example, we check
which of the methods are Condorcet or majority consistent,
and which are resistant to cloning. We also consider indepen-
dence properties and state some characterization results.

Simulations (Section 5) To understand how and whether
the three families of methods practically differ from each
other, and how they relate to Kemeny’s method, we perform
extensive simulations based on synthetic data (sampled using
the Mallows and Euclidean models). We find that, for Plural-
ity and Borda, ranking by score and Sequential-Loser usually
produce very similar results, whereas Sequential-Winner of-
fers a new perspective (that is typically closer to Kemeny’s
method). Moreover, Sequential-Loser rules seem to be partic-
ularly well suited to identify the best candidates (justifying
their usage as single-winner voting rules), while Sequential-
Winner rules are best at avoiding low quality candidates.

Computational Complexity (Section 6) The rules in all
three of our families are easy to compute in the sense that their
description implies a straightforward algorithm for obtaining
an output ranking. However, for the sequential rules there is
a subtlety: During the execution of the rule, ties can occur.
It matters how these are broken, because candidates could
end up in significantly different positions. For high-stakes
decisions and in democratic contexts, it would be important
to know which output rankings are possible.

Thus, we study the computational problem of deciding
whether a given candidate can end up in a given position.
This and related problems have been studied in the literature
under the name of parallel universe tie-breaking, including
theoretical and experimental studies for some of the rules
in our families (Conitzer, Rognlie, and Xia 2009; Brill and

Fischer 2012; Mattei, Narodytska, and Walsh 2014; Freeman,
Brill, and Conitzer 2015; Wang et al. 2019). We extend the
results of that literature and find NP-hardness for all the se-
quential methods that we study. We show that the problem
becomes tractable if the number of candidates is small. In con-
trast, for several methods we find that the problem remains
hard even if the number of input rankings is small. Curiously,
for few input rankings, methods based on Plurality, Borda, or
Veto each induce a different parameterized complexity class.

Omitted proofs, additional results, and more details and ex-
periments can be found in the full version on arXiv (Boehmer,
Bredereck, and Peters 2022). The code of our experiments is
available at github.com/n-boehmer/Rank-Aggregation.

2 Preliminaries
For k ∈ N, write [k] = {1, . . . , k}.

LetC = {c1, . . . , cm} be a set ofm candidates. A ranking
� of C is a linear order (irreflexive, total, transitive) of C.
We write L(C) for the set of all rankings of C.

A (ranking) profile P = (�1, . . . ,�n) is a list of rankings.
We sometimes say that the rankings are voters.

For a subset C ′ ⊆ C of candidates and ranking� ∈ L(C),
we write�|C′ for the ranking obtained by restricting� to the
set C ′. For a profile P , we write P |C′ for the profile obtained
by restricting each of its rankings to C ′.

A social preference function1 f is a function that assigns
to every ranking profile P a non-empty set f(P ) ⊆ L(C)
of rankings. Here, f(P ) may be a singleton but there can be
more than one output ranking in case of ties. For a ranking�,
we say that f selects � on P if � ∈ f(P ).

For a ranking � ∈ L(C) and a candidate c ∈ C, let
pos(�, c) = |{d ∈ C : d � c}|+1 be the position of c in �.
For example, if pos(�, c) = 1 then c is the most-preferred
candidate in �. We write cand(�, r) ∈ C for the candidate
ranked in position r ∈ [m] in � ∈ L(C).

For a ranking � ∈ L(C), let rev(�) denote its reverse
ranking, so cand(�, r) = cand(rev(�),m − r + 1) for
each r ∈ [m]. For a profile P = (�1, . . . ,�n), we write
rev(P ) = (rev(�1), . . . , rev(�n)).

For an integer m ∈ N, a scoring vector s(m) =
(s1, . . . , sm) ∈ Rm is a list of m numbers. A scoring sys-
tem is a family of scoring vectors (s(m))m∈N one for each
possible number m of candidates. We assume that we have
access to a polynomial-time algorithm that can compute s(m)

given m. For brevity, we sometimes write s for (s(m))m∈N.
We will focus on three scoring systems:

• Plurality with s(m) = (1, 0, . . . , 0) for each m ∈ N,
• Veto with s(m) = (0, . . . , 0,−1) for each m ∈ N,
• Borda with s(m) = (m,m− 1, . . . , 1) for each m ∈ N.

Given a profile P overm candidates, the s-score of candidate
c is scores(P, c) =

∑
i∈[n] s

(m)
pos(�i,c)

. We say that a candi-
date is an s-winner if it has maximum s-score, and an s-loser
if it has minimum s-score. For a scoring system s we denote

1This terminology is due to Young and Levenglick (1978). The
term social welfare function from Arrow (1951) usually refers to
resolute functions that may only output a single ranking.
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by s∗ the scoring system where we reverse each scoring vec-
tor and multiply all its entries by−1, i.e., for eachm ∈ N and
i ∈ [m], we have (s∗)

(m)
i = −s(m)

m−i+1. Note that (s∗)∗ = s
for every s, that Plurality∗ = Veto, that Veto∗ = Plurality,
and that Borda∗ is the same as Borda, up to a shift.

For two rankings �1 and �2, their swap distance (or
Kendall-tau distance) κ(�1,�2) is the number of pairs of
candidates on whose ordering the two rankings disagree, i.e.,
κ(�1,�2) = |{(c, d) ∈ C ×C : c �1 d and d �2 c}|. Note
that the maximum swap distance between two rankings over
m candidates is

(
m
2

)
. Given a profile P , Kemeny’s rule selects

those rankings which minimize the average swap distance to
the rankings in P , i.e., argmin�∈L(C)

∑
i∈N κ(�,�i). We

refer to the selected rankings as Kemeny rankings.

3 Scoring-Based Rank Aggregation
We now formally define the three families of scoring-based
social preference functions that we study.
Definition 3.1 (s-Score). Let s be a scoring system. For the
social preference function s-Score on profile P , we have� ∈
s-Score(P ) if and only if for all c, d ∈ C with scores(P, c) >
scores(P.d), we have c � d.
Definition 3.2 (Sequential-s-Winner; Seq.-s-Winner). Let
s be a scoring system. The social preference function
Seq.-s-Winner is defined recursively as follows: For a profile
P , we have � ∈ Seq.-s-Winner(P ) if and only if
• the top choice c = cand(�, 1) is an s-winner in P ,
• if |C| > 1, then �|C\{c} ∈ Seq.-s-Winner(P |C\{c}).

Definition 3.3 (Sequential-s-Loser; Seq.-s-Loser). Let s
be a scoring system. The social preference function
Seq.-s-Loser is defined recursively as follows: For a profile
P , we have � ∈ Seq.-s-Loser(P ) if and only if
• the bottom choice c = cand(�, |C|) is an s-loser in P ,
• if |C| > 1, then �|C\{c} ∈ Seq.-s-Loser(P |C\{c}).

Example 3.4. Let P be the following ranking profile:
3× a � b � c, 2× b � c � a, 2× c � b � a.

Then for the three methods based on Plurality, we have:
• Plurality-Score(P ) = {a � b � c, a � c � b},
• Seq.-Plurality-Winner(P ) = {a � b � c}, and
• Seq.-Plurality-Loser(P ) = {b � a � c, c � a � b}.

We sometimes view Seq.-s-Winner (or Seq.-s-Loser) rules
as round-based voting rules, where in each round an s-winner
(or an s-loser) is deleted from the profile and added in the
highest (or lowest) position of the ranking that has not yet
been filled. If there are multiple s-winners (or s-losers) in one
round, each selection gives rise to different output rankings.
Seq.-Plurality-Loser is also known as STV, Seq.-Veto-Loser
as Coombs, and Seq.-Borda-Loser as Baldwin.

Sequential-Winner and Sequential-Loser rules are formally
related: A candidate is an s-winner in a profile P if and only if
it is an s∗-loser in the reverse profile rev(P ). Thus, we have:
Lemma 3.5. Let s be a scoring system. Then for each rank-
ing profile P and for every ranking � ∈ L(C), we have:

� ∈ Sequential-s-Winner(P )
⇐⇒ rev(�) ∈ Sequential-s∗-Loser(rev(P )).

For example, this lemma establishes a close connection be-
tween Seq.-Veto-Winner and Seq.-Plurality-Loser, as a rank-
ing � is selected under Seq.-Veto-Winner on profile P if
and only if rev(�) is selected under Seq.-Plurality-Loser on
profile rev(P ). This equivalence will prove useful in our
axiomatic analysis and in our complexity results.

4 Axiomatic Properties

In this section, we will briefly and informally discuss some
axiomatic properties and characterizations of the methods in
our three families. A more formal treatment appears in the
full version. See Table 1 for an overview.

A desirable property of a ranking aggregation rule is that
if one candidate is deleted from the profile, then the rela-
tive rankings of the other candidates does not change (in-
dependence of irrelevant alternatives, IIA). Arrow’s (1951)
impossibility theorem shows that this property cannot be
satisfied by unanimous non-dictatorial rules. Young (1988)
proves that Kemeny’s method satisfies a weaker version that
he calls local IIA: removing the candidate that appears in the
first or last position in the Kemeny ranking does not change
the ranking of the other candidates. Splitting this property
into its two parts, we can easily see from their definitions
that Seq.-s-Winner satisfies independence at the top, and
Seq.-s-Loser satisfies independence at the bottom.

Another influential axiom is known as consistency or rein-
forcement. A rule f satisfies reinforcement if whenever some
ranking � is chosen in two profiles, i.e., � ∈ f(P ) ∩ f(P ′),
then it is also chosen if we combine the profiles into one,
and in fact f(P + P ′) = f(P ) ∩ f(P ′). All the methods
in this paper satisfy reinforcement. Notably, Young (1988)
shows that Kemeny is the only anonymous, neutral, and unan-
imous rule satisfying reinforcement and local IIA. Focusing
on Seq.-s-Loser, Freeman, Brill, and Conitzer (2014) define
reinforcement at the bottom to mean that if the same candi-
date c is placed in the last position in the selected ranking
in two profiles, then c is also placed in the last position in
the selected ranking in the combined profile. They show that
independence at the bottom and reinforcement at the bot-
tom characterize Seq.-s-Loser rules (under mild additional
assumptions). Using Lemma 3.5, a simple adaptation of their
proof shows that Seq.-s-Winner rules can be similarly char-
acterized by independence at the top and reinforcement at the
top. (s-Score methods do not satisfy similar independence
assumptions; they have been characterized by Levenglick
(1977) and Smith (1973).)

Refining their characterization of Seq.-s-Loser
rules, Freeman, Brill, and Conitzer (2014) character-
ize Seq.-Plurality-Loser (aka STV) as the only Seq.-s-Loser
rule satisfying independence of clones (Tideman 1987),
Seq.-Veto-Loser (aka Coombs) as the only one that, in case
a strict majority of voters have the same ranking, copies that
ranking as the output ranking, and Seq.-Borda-Loser (aka
Baldwin) as the only one always placing a Condorcet winner
in the first position. Using Lemma 3.5, we can similarly
characterize Seq.-Plurality-Winner as the only method in its
class that copies a majority ranking.
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Score Sequential-Winner Sequential-Loser
Kemeny Plurality Veto Borda Plurality Veto Borda Plurality Veto Borda

Independence at the top X X X X
Independence at the bottom X X X X
Reinforcement X X X X X X X X X X
Reinforcement at the top X X X X X X
Reinforcement at the bottom X X X X X X
Condorcet winner at top X X
Copy majority X X X
Independence of clones X

Table 1: An overview of the axiomatic properties of our studied rules. See the full version for definitions. These results are either
easy to see, or follow directly from results of Freeman, Brill, and Conitzer (2014).

5 Simulations
We analyze our three families of scoring-based ranking rules
for Plurality and Borda on synthetically generated profiles.2

5.1 Setup
To deal with ties in the computation of our rules, each time
we sample a ranking profile over candidates C, we also sam-
ple a ranking �tie ∈ L(C) uniformly at random and break
ties according to �tie for all rules. To quantify the difference
between two rankings �1,�2 ∈ L(C), we use their normal-
ized swap distance κ(�1,�2)/

(
m
2

)
, i.e., their swap distance

divided by maximum possible swap distance.

(Normalized) Mallows We conduct simulations on pro-
files generated using the Mallows model (Mallows 1957) (as
observed by Boehmer et al. (2021) real-world profiles often
seem to be close to some Mallows profile). This model is
parameterized by a dispersion parameter φ ∈ [0, 1] and a
central ranking �∗ ∈ L(C). Then, a profile is assembled by
sampling rankings i.i.d. so that the probability of sampling a
ranking � ∈ L(C) is proportional to φκ(�,�

∗). We use the
normalization of the Mallows model proposed by Boehmer
et al. (2021), which is parameterized by a normalized dis-
persion parameter norm-φ ∈ [0, 1]. This parameter is then
converted to a dispersion parameter φ such that the expected
swap distance between a sampled vote and the central vote is
norm-φ·(m(m−1)/4). Then norm-φ = 0 results in profiles
only containing the central vote, and norm-φ = 1 leads to
profiles where all rankings are sampled with the same proba-
bility, so that on average rankings disagree with the central
ranking �∗ on half of the pairwise comparisons. Choosing
norm-φ = 0.5 leads to profiles where rankings on average
disagree with �∗ on a quarter of the pairwise comparisons.

5.2 Comparison of Our Ranking Methods
We analyze the average normalized swap distance between
the rankings selected by our three families of scoring-
based ranking methods on profiles containing 100 rankings

2In the full version, we describe the results of further experi-
ments. For instance, we analyze in which parts of the computed
ranking the considered methods agree or disagree most, the fre-
quency and position of ties, and the influence of the number of
alternatives and voters on our results.We repeat our experiments on
profiles sampled from Euclidean models and obtain similar results.

over 10 candidates. For this, we sampled 10 000 profiles
for each norm-φ ∈ {0, 0.1, . . . , 0.9, 1} and depict the re-
sults in Figure 1(a). Let us first focus on Plurality: We
find that the rankings produced by Seq.-Plurality-Loser and
Plurality-Score are quite similar, whereas the ranking pro-
duced by Seq.-Plurality-Winner is substantially different.
This observation is particularly strong for norm-φ ≤ 0.3:
In such profiles, all the rankings are similar to each other.
Accordingly, many candidates initially have a Plurality score
of zero, and thus there are many ties in the execution of
Plurality-Score and Seq.-Plurality-Loser (for the latter, ties
occur in more than half of the rounds). Thus, the rankings
computed by the two rules fundamentally depend on the
(shared) random tie-breaking order �tie. In contrast, for
Seq.-Plurality-Winner, for norm-φ ≤ 0.3, no ties in its exe-
cution appear. Thus, Seq.-Plurality-Winner is able to mean-
ingfully distinguish the weaker candidates on these profiles.

Turning to norm-φ ≥ 0.3 (where more candidates have
non-zero Plurality score and thus the tie-breaking is no longer
as important), Seq.-Plurality-Loser and Plurality-Score
are still clearly more similar to each other than to
Seq.-Plurality-Winner; this indicates that Seq.-Winner rules
add a new perspective to existing scoring-based ranking rules.

When using Borda scores, the rankings returned by the
three methods are quite similar. This is intuitive given that
Borda scores capture the general strength of candidates in
a profile much better than Plurality scores. Thus, the Borda
score of a candidate also changes less drastically in case a
candidate is deleted. Increasing norm-φ, the selected rank-
ings become more different from each other (as profiles get
more chaotic, leading to more similar Borda scores of candi-
dates). Interestingly, for large values of norm-φ, Borda-Score
has the same (small) distance to the other two rules, while
Seq.-Borda-Winner and -Loser are more different.

5.3 Comparison to Kemeny Ranking
To assess which method produces the “most accurate” rank-
ings, we compare them to Kemeny’s method. For 10 000 pro-
files for each norm-φ ∈ {0, 0.1, . . . , 0.9, 1}, in Figure 1(b),
we show the average normalized swap distance of the Ke-
meny ranking to the rankings selected by our rules.

For Plurality, Seq.-Plurality-Winner is closest to the
Kemeny ranking for every value of norm-φ, while
Seq.-Plurality-Loser and Plurality-Score have a much larger
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Figure 1: Pairwise average normalized swap distance between rankings produced by different methods for Plurality (solid) and
Borda (dashed) on Mallows profiles with 10 candidates and 100 voters.

distance to the Kemeny ranking. For norm-φ ≤ 0.3,
Seq.-Plurality-Loser and Plurality-Score are notably far
away from the Kemeny ranking. As before, this is because,
for these two rules, large parts of the ranking are simply de-
termined by the random tie-breaking order in such profiles.
Seq.-Plurality-Winner is not affected by this, and it is very
close to Kemeny for norm-φ ≤ 0.5. For norm-φ ≥ 0.7,
their distance from the Kemeny ranking becomes more sim-
ilar for our three methods. This is intuitive, recalling that
for norm-φ = 1, profiles are “chaotic”, with many different
rankings having comparable quality.

For Borda, all three methods have a similar small distance
to the Kemeny ranking. This distance increases steadily from
0 for norm-φ = 0 to around 0.1 for norm-φ = 1.

6 Complexity
We study various computational problems related to
Sequential-Winner and Sequential-Loser rules. By break-
ing ties arbitrarily, it is easy to compute some ranking that
is selected by such a rule. However, in some (high-stakes)
applications, it might not be sufficient to simply output some
selected ranking. For instance, some candidate could claim
that there also exist other rankings selected by the same rule
where that candidate is ranked higher. To check such claims,
and get some understanding of the rankings that can be se-
lected in the presence of ties, we need an algorithm that for a
given candidate d and position k, decides whether d is ranked
in position k in some ranking selected by the rule. Accord-
ingly, we introduce the following computational problem:

POSITION-k DETERMINATION for social preference function f

Given: A ranking profile P over candidate set C, a desig-
nated candidate d ∈ C, and an integer k ∈ [|C|].

Question: Is there a ranking � selected by f on P where d is
in position k, i.e.,� ∈ f(P ) with pos(�, d) = k?

Where possible, we will design (parameterized) algorithms
that solve this problem (Dorn and Schlotter 2017). We also
prove hardness results, which will apply even to restricted
versions of this problem that are most relevant in practice.
Specifically, we would expect candidates to mainly be inter-
ested if they can be ranked highly. Thus, we introduce the
TOP-k DETERMINATION problem, where we ask whether a

given candidate can be ranked in one of the first k positions.3
Lastly, the special case of both problems with k = 1 is of
particular importance: The WINNER DETERMINATION prob-
lem asks whether the designated candidate can be ranked in
the first position.

For the three Sequential-Loser rules, it is known that their
WINNER DETERMINATION problem is NP-complete. For
STV, this was stated by Conitzer, Rognlie, and Xia (2009),
and for Baldwin and Coombs, this was proven by Mattei, Nar-
odytska, and Walsh (2014). We will see that the correspond-
ing TOP-k DETERMINATION problems for the Sequential-
Winner rules are also NP-complete. Thus, since almost all
of our problems turn out to be NP-hard, we take a more fine-
grained view. In particular, we will study the influence of
the number n of voters and the number m of candidates on
the complexity of our problems. This analysis is not only of
theoretical interest but also practically relevant, as in many ap-
plications one of the two parameters is considerably smaller
than the other (e.g., in political elections m is typically much
smaller than n, while in applications such as meta-search en-
gines or ranking applicants, n is often much smaller than m).
Tables 2 and 3 provide overviews of our results.

6.1 Parameter Number of Candidates
We start by considering the parameter m, the number of can-
didates. It is easy to see that POSITION-k DETERMINATION
for all Sequential-Winner and Sequential-Loser rules is fixed-
parameter tractable with respect tom (by iterating over allm!
possible output rankings). However, it is possible to improve
the dependence on the parameter in the running time.

Theorem 6.1. For every scoring system s, POSITION-k DE-
TERMINATION can be solved in time

• O(2m ·nm2) andO(mk ·nm2) for Sequential-s-Winner,
• O(2m ·nm2) andO(mm–k ·nm2) for Sequential-s-Loser.

Proof (algorithm). We present an algorithm for
Seq.-s-Winner (the results for Seq.-s-Loser follow by
applying Lemma 3.5). We use dynamic programming. Call
a subset C ′ ⊆ C an elimination set if there is a selected

3If we have an algorithm for POSITION-k DETERMINATION,
we can solve the TOP-k DETERMINATION problem by using the
algorithm for positions i = 1, . . . , k. (This is a Turing reduction.)
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n m

Sequential-Plurality-Loser (STV) NP-c. (Thm. 6.2) FPT (Obs. 6.4) FPT (Thm. 6.1)
Sequential-Veto-Loser (Coombs) NP-c. (Thm. 6.5) W[1]-h. (Thm. 6.6), XP (Thm. 6.7) FPT (Thm. 6.1)
Sequential-Borda-Loser (Baldwin) NP-c. (Thm. 6.8) NP-c. for n = 8 (Thm. 6.8) FPT (Thm. 6.1)

Table 2: Our results for Sequential-Loser rules. All hardness results hold for WINNER DETERMINATION; all algorithmic results
also apply to POSITION-k DETERMINATION. The unparameterized NP-hardness results in the first column were already stated
or proven by Conitzer, Rognlie, and Xia (2009) and Mattei, Narodytska, and Walsh (2014).

ranking where the candidates from C ′ are ranked in the
first |C ′| positions. We introduce a table T with entry T [C ′]
for each subset C ′ ⊆ C. T [C ′] will be true iff C ′ is an
elimination set. We initialize the table by setting T [∅] to true.
Now we compute T for each subset C ′ ⊆ C in increasing
order of the size of the subset using the following recurrence:
We set T [C ′] to true if there is a candidate c ∈ C ′ such that
T [C ′ \ {c}] is true and c is an s-winner in P |C\(C′\{c}).

After filling the table, we return “true” if and only if there
is a subset C ′ ⊆ C \{d} with |C ′| = k−1 such that T [C ′] is
true and d is an s-winner in P |C\C′ . By filling the complete
table we get a running time in O(2m · nm2). However, it is
sufficient to only fill the table for all subsets of size at most
k − 1, resulting in a running time in O(mk · nm2).

6.2 Sequential Loser
We study Seq.-Plurality/Veto/Borda-Loser (aka STV,
Coombs, and Baldwin). The WINNER DETERMINATION
problem is NP-hard for all three rules. Table 2 shows
an overview of our results. In particular, we get a clear
separation of the rules for the number n of voters:
• Seq.-Plurality-Loser admits a simple FPT algorithm,
• Seq.-Veto-Loser is W[1]-hard but in XP, and
• Seq.-Borda-Loser is NP-hard for 8 voters.

Plurality Conitzer, Rognlie, and Xia (2009) stated that
WINNER DETERMINATION for Seq.-Plurality-Loser (aka
STV) is NP-hard. This result has been frequently cited and
used. The proof was omitted in the conference paper, and to
our knowledge no proof has ever appeared in published work.
To aid future research, we include a simple reduction here.
Theorem 6.2. WINNER DETERMINATION for
Sequential-Plurality-Loser (aka STV) is NP-hard.

Proof. We reduce from the NP-hard variant of 3-SAT where
each clause contains at most three literals and each literal
appears exactly twice (Berman, Karpinski, and Scott 2003).
Let ϕ be a formula fulfilling these restrictions with clause
set F = {c1, . . . , cm} and variable set X = {x1, . . . , xn}.
Let L = X ∪X be the set of literals. We construct a ranking
profile with candidate set C = {d,w} ∪ F ∪ L, where d is
our designated candidate, and the following voters:

100 voters d � . . .
99 voters w � d � . . .
98 voters cj � w � d � . . . ∀j ∈ [m]

60 voters ` � ` � w � d � . . . ∀` ∈ L
2 voters ` � cj � w � d � . . . ∀j ∈ [m], ` ∈ cj

For this ranking profile, in every execution of
Seq.-Plurality-Loser the first n eliminated candidates must
be a subset L′ ⊆ L of literals such that for every variable we
select either its positive literal or its negative literal (but not
both). In other words, L′ must satisfy ` ∈ L′ ↔ ` /∈ L′. To
see this, note that all literal candidates initially have a Plu-
rality score of 64, which is the lowest Plurality score in the
profile, and that all other candidates have a higher Plurality
score. Thus, in the first round an arbitrary literal ` of some
variable x is eliminated. This increases the Plurality score of
the opposite literal ` to 124. In the second round, we have to
eliminate again an arbitrary literal (however, this time a literal
corresponding to a variable different from x). We repeat this
process for n rounds until for each variable exactly one of
the corresponding literals has been eliminated. We claim that
an execution of Seq.-Plurality-Loser eliminates d last if and
only if the assignment that sets all literals from L′ to true
satisfies ϕ.

Suppose ϕ is satisfied by some variable assignment α, and
consider an execution of Seq.-Plurality-Loser that begins by
eliminating the n literals set to true in α. After this, the scores
of the remaining candidates are:

(i) d has 100 points and w has 99 points,
(ii) cj for j ∈ [m] has between 100 and 104 points (as at

least one of the literals in cj has been eliminated), and
(iii) each literal ` ∈ L set to false by α has 124 points.

In the next round, w is eliminated, giving 99 points to d.
In the next m rounds, each clause candidate cj is eliminated,
giving its points to d. Then, remaining literals are eliminated,
also each giving their points to d. Thus, d is the last remaining
candidate and ranked in first position in the selected ranking.

Let L′ ⊆ L be the set of literals eliminated in the first
n rounds in some execution of Seq.-Plurality-Loser (recall
` ∈ L′ ↔ ` /∈ L′). Suppose that the assignment α setting all
literals from L′ to true does not satisfy ϕ. After L′ has been
eliminated, the scores of the remaining candidates are:

(i) d has 100 points and w has 99 points,
(ii) cj for j ∈ [m]: if α satisfies cj , it has between 100 and

104 points, otherwise it has 98 points, and
(iii) each literal ` ∈ L set to false by α has 124 points.

In the next round, one of the unsatisfied clauses is eliminated,
redistributing its 98 points to w, bringing the score of w to
197. Note that while w remains uneliminated, d cannot gain
additional points (because all voters prefer w to d, except the
100 voters who have d ranked top). Thus, dwill be eliminated
before w, and thus d cannot be eliminated last.
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n k n+ k m

Sequential-Plurality-Winner NP-c. W[1]-h., XP W[1]-h., XP FPT FPT
Sequential-Veto-Winner NP-c. FPT W[2]-h., XP FPT FPT
Sequential-Borda-Winner NP-c. NP-h. for n = 8 W[1]-h., XP ? FPT

Table 3: Our results for Sequential-Winner rules. All hardness results hold for the TOP-k DETERMINATION problem; all
algorithmic results also apply to the general POSITION-k DETERMINATION problem.

Motivated by this hardness result, we turn to parameter-
ized complexity. By Theorem 6.1, the problem is solvable in
O(2m ·nm2) time. We show that unless the Exponential Time
Hypothesis (ETH)4 is false, we cannot hope to substantially
improve the exponential part of this running time.
Theorem 6.3. If the ETH is true, then WINNER DETERMI-
NATION for Sequential-Plurality-Loser (aka STV) cannot be
solved in 2o(m) · poly(n,m) time.

Turning to the number n of voters, observe that initially
only at most n candidates have a non-zero Plurality score. All
other candidates (which are not ranked first in any ranking)
will be eliminated immediately, without thereby changing the
Plurality scores of other candidates. After these eliminations,
we are left with at most n candidates. This makes it easy to
see that POSITION-k DETERMINATION is fixed-parameter
tractable with respect to n (by using Theorem 6.1).
Observation 6.4. POSITION-k DETERMINATION for
Sequential-Plurality-Loser (aka STV) is solvable in O(2n ·
nm2) time.

Veto For Seq.-Veto-Loser (aka Coombs), Mattei, Narodyt-
ska, and Walsh (2014) showed that WINNER DETERMINA-
TION is NP-hard. We give another NP-hardness proof that
also implies an ETH-based lower bound for parameter m.
Theorem 6.5. WINNER DETERMINATION for
Sequential-Veto-Loser (aka Coombs) is NP-complete.
If the ETH is true, then the problem cannot be solved in
2o(m) · poly(n,m) time.

For the parameter n, we show that the problem is W[1]-
hard, based on an involved reduction from MULTICOLORED
INDEPENDENT SET. This suggests that Seq.-Veto-Loser be-
haves quite differently from Seq.-Plurality-Loser.
Theorem 6.6. WINNER DETERMINATION for
Sequential-Veto-Loser (aka Coombs) is W[1]-hard with
respect to the number n of voters.

On the positive side, WINNER DETERMINATION and even
POSITION-k DETERMINATION are solvable in polynomial
time if n is constant. The reason is that for Seq.-Veto-Loser,
the “status” of an execution is fully captured by the bottom
list containing the bottom-ranked candidate of each voter,
i.e., for a ranking profile (�1, · · · �n) over m candidates the
bottom list is (cand(�1,m), . . . , cand(�n,m)). If we know
the current bottom list, we can deduce which candidates have
been eliminated thus far (these are exactly the candidates that
appear behind the currently bottom candidate of a voter in its

4The ETH states that 3-SAT with n variables cannot be solved
in 2o(n) · poly(n) time (Impagliazzo, Paturi, and Zane 2001).

original vote). As there are only mn possibilities for the bot-
tom list, dynamic programming over all possible bottom lists
yields an XP algorithm for POSITION-k DETERMINATION.
Theorem 6.7. POSITION-k DETERMINATION for
Sequential-Veto-Loser is in XP with respect to the number n
of voters.

Borda We conclude by studying Seq.-Borda-Loser (aka
Baldwin). Mattei, Narodytska, and Walsh (2014) proved that
WINNER DETERMINATION for this rule is NP-hard, adapting
an earlier reduction about hardness of manipulation due to
Davies et al. (2014). In fact, by giving a construction based
on weighted majority graphs and using tools from Bachmeier
et al. (2019), we prove that this NP-hardness persists even
for only n = 8 voters. This result suggests that the Borda
scoring system leads to the hardest computational problems.
Theorem 6.8. Let n ≥ 8 be a fixed even integer. Then WIN-
NER DETERMINATION for Sequential-Borda-Loser (aka
Baldwin), restricted to instances with exactly n voters, is
NP-complete. In addition, if the ETH is true, then the prob-
lem cannot be solved in 2o(m) · poly(m) time.

6.3 Sequential Winner
We briefly summarize our results for
Seq.-Plurality/Veto/Borda-Winner (see Table 3); for details
see the full version. WINNER DETERMINATION is trivial for
these rules, so we focus on TOP-k DETERMINATION. For all
rules, TOP-k DETERMINATION is NP-hard and W[1]-hard
with respect to k. For parameter n, the picture is more diverse:
For Borda, it is again NP-hard for n = 8, while Plurality
and Veto switch their role (we have an FPT algorithm for
Veto and W[1]-hardness for Plurality). Due to Lemma 3.5,
this switch is unsurprising, but the W[1]-hardness requires a
separate (though similar) proof as Theorem 6.6.

7 Future Directions
There are many directions for future work. For example, do
the hard problems we have identified become tractable if
preferences are structured, for example single-peaked? (For
Coombs, see (Grofman and Feld 2004, Prop. 2).) Instead of
parallel universes, one could break ties immediately (e.g., by
some fixed order), and focus on finding the fastest algorithms
for computing the output ranking. (Computing STV in this
model is known to be P-complete (Csar et al. 2017).) The
Borda-Score rule is known to give a 5-approximation of Ke-
meny’s method (Coppersmith, Fleischer, and Rudra 2006);
do any other of the rules from our families provide an approx-
imation? Finally, one could try to extend our results to other
scoring vectors, and potentially prove dichotomy theorems.
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