
Properties of Position Matrices and Their Elections
Niclas Boehmer1, Jin-Yi Cai2, Piotr Faliszewski3, Austen Z. Fan2, Łukasz Janeczko3,

Andrzej Kaczmarczyk3, Tomasz Wąs3, 4

1 Algorithmics and Computational Complexity, Technische Universität Berlin
2 University of Wisconsin-Madison

3 AGH University
4 Pennsylvania State University

niclas.boehmer@tu-berlin.de, jyc@cs.wisc.edu, faliszew@agh.edu.pl, afan@cs.wisc.edu, ljaneczk@agh.edu.pl,
andrzej.kaczmarczyk@agh.edu.pl, twas@psu.edu

Abstract

We study the properties of elections that have a given po-
sition matrix (in such elections each candidate is ranked on
each position by a number of voters specified in the matrix).
We show that counting elections that generate a given po-
sition matrix is #P-complete. Consequently, sampling such
elections uniformly at random seems challenging and we pro-
pose a simpler algorithm, without hard guarantees. Next, we
consider the problem of testing if a given matrix can be imple-
mented by an election with a certain structure (such as single-
peakedness or group-separability). Finally, we consider the
problem of checking if a given position matrix can be imple-
mented by an election with a Condorcet winner. We comple-
ment our theoretical findings with experiments.

1 Introduction
Studies of voting and elections are at the core of computa-
tional social choice (Brandt et al. 2016). An (ordinal) elec-
tion is represented by a set of candidates and a collection of
voters who rank the candidates from the most to the least
appealing one. Such preferences are sometimes shown in an
aggregate form as a position matrix, which specifies for each
candidate the number of voters that rank him or her on each
possible position. Motivated by the connection of position
matrices to the so-called maps of elections, and their simi-
larity to weighted majority relations, we study the properties
of elections with a given position matrix.

The idea of a map of elections, introduced by Szufa et al.
(2020) and Boehmer et al. (2021b), is to collect a set of elec-
tions, compute the distances between them, and embed the
elections as points in the plane, so that the Euclidean dis-
tance between points resembles the distance between the
respective elections. Such maps are useful because nearby
elections seem to have similar properties (such as, e.g., run-
ning times of winner determination algorithms, scores of
winning candidates, etc.; see, e.g., the works of Szufa et al.
(2020), Boehmer et al. (2021a), and Boehmer and Schaar
(2022)). However, there is a catch. The positionwise dis-
tance, which is commonly used in these maps, views elec-
tions with the same position matrix as identical. Hence there
might exist very different elections that, nonetheless, have

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

identical position matrices and in a map are placed on top
of each other. We want to evaluate to what extent this issue
constitutes a problem for maps of elections.

The second motivation for our studies is that position ma-
trices are natural counterparts of weighted majority rela-
tions, which specify for each pair of candidates how many
voters prefer one to the other. While weighted majority rela-
tions provide sufficient information to determine winners of
many Condorcet-consistent voting rules,1 position matrices
provide the information needed by positional scoring rules
(i.e., rules where each voter gives each candidate a num-
ber of points that depends on this candidate’s position in his
or her ranking). Together with Condorcet-consistent rules,
positional scoring rules are among the most widely studied
single-winner voting rules. While weighted majority rela-
tions are commonly studied and analyzed (even as early as
in the classic theorem of McGarvey (1953)), position matri-
ces have not been studied as carefully.

Our contributions regard three main issues. First, we ask
how similar are elections that have the same position matrix.
To this end, we would like to sample elections with a given
position matrix uniformly at random. Unfortunately, doing
so appears to be challenging. In particular, a natural sam-
pling algorithm requires the ability to count elections that
generate a given position matrix, and we show that doing so
is #P-complete. While, formally, there may exist a different
approach, perhaps providing only an approximately uniform
distribution, finding it is likely to require significant effort
(indeed, researchers have been trying to solve related sam-
pling problems for quite a while, without final success as of
now; see, e.g., the works of Jacobson and Matthews (1996)
and Hong and Miklós (2021)). We design a simpler sampling
algorithm, without hard guarantees on the distribution, and
use it to evaluate how different two elections with a given
position matrix can be. The algorithm, albeit not central to
our study, might be of independent interest when consider-
ing sampling various preference distributions (Regenwetter
et al. 2006; Tideman and Plassmann 2012; Allen et al. 2017).

1Rules that can be computed using only the weighted ma-
jority relation are called C2 by Fishburn (1977); see also the
overview of Zwicker (2015). A Condorcet winner is preferred to
every other candidate by a majority of voters. Condorcet-consistent
rules always select Condorcet winners when they exist. Some non-
Condorcet-consistent rules are also C2 (e.g., the Borda rule).

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

5507

Second, we consider structural properties of elections that
generate a given position matrix (or its normalized variant,
called a frequency matrix). Specifically, given a matrix we
ask if there is an election that generates it and whose votes
come from a given domain (such as the single-peaked do-
main (Black 1958), some group-separable domains (Inada
1964, 1969), or a domain given explicitly vote-by-vote as
part of the input). We show polynomial-time algorithms that,
given a frequency matrix and a description of a domain (e.g.,
via a single-peaked axis or by listing the votes explicitly),
decides if there is an election with votes from this domain
that generates this matrix. We apply these algorithms to test
which frequency matrices from the map of elections can be
generated from elections with a particular structure.2

Finally, we consider the problem of deciding for a given
position matrix if there is an election that implements the
matrix and has a Condorcet winner (i.e., a candidate who
is preferred to every other one by a strict majority of vot-
ers). We evaluate experimentally which matrices from our
map have such elections, provide a necessary condition for
such elections to exist, and check how often this condition
is effective on the map of elections. Additionally, for each
matrix from the map we compute for how many different
candidates there is an election that generates this matrix and
where this candidate is a Condorcet winner.

With our theoretical and empirical analysis, we ultimately
want to answer the question how much information is con-
tained in a position matrix and how much flexibility is still
left when implementing it.3

2 Preliminaries
For each k ∈ N+, by [k] we denote the set {1, . . . , k}. Given
a matrixX , byXi,j we mean its entry in row i and column j.
For two equal-sized setsX and Y , by Π(X,Y) we mean the
set of one-to-one mappings from X to Y . Sn is a shorthand
for Π([n], [n]), i.e., the set of permutations of [n].

An election E is a pair (C,V) consisting of a set C =
{c1, c2, . . . , cm} of candidates and a collection V =
(v1, v2, . . . , vn) of votes, i.e., complete, strict orders over
the candidates. These orders rank the candidates from the
most to the least appealing one according to a given voter
(we use the terms “vote” and “voter” interchangeably). If
some voter v prefers candidate c over candidate c′, then we
write c �v c′; we omit the subscript when it is clear from
context. Given a vote vi : c1 � c2 � · · · � cm, we say that
vi ranks c1 on the first position, c2 on the second one, and so
on. For two votes u and v over the same candidate set, their
swap distance, swap(u, v), is the smallest number of swaps
of adjacent candidates necessary to transform u into v.

In an election E = (C,V), a candidate c ∈ C is a Con-
dorcet winner of the election if for every other candidate d

2We form a map that is analogous to that used by Boehmer et al.
(2021b), but which uses 8 candidates rather than 10 (using fewer
candidates helps significantly with our computation times).

3Some proofs and details are deferred to the full version of
the paper: https://arxiv.org/abs/2303.02538. The code for the ex-
periments is available at: https://github.com/Project-PRAGMA/
Position-Matrices-AAAI-2023.

more than half of the voters prefer c to d.

2.1 Position and Frequency Matrices
Let E be some election and assume that the candidates are
ordered in some way. The position matrix of E (with respect
to this order) is a non-negative, integral m × m matrix X
such that for each i, j ∈ [m], Xi,j is the number of voters
that rank the j-th candidate on the i-th position. By P (E) we
denote the set of all position matrices of E for all possible
orderings of candidates. Note that the matrices in P (E) only
differ by the order of their columns.

For a position matrix X ∈ P (E), where E is an election
with n voters, the corresponding frequency matrix is Y :=
1
n · X . In other words, frequency matrices are normalized
variants of the position ones, where each value Yi,j gives
the fraction of voters that rank the j-th candidate on the i-
th position. Every frequency matrix is bistochastic, i.e., the
elements in each row and in each column sum up to one.
Hence, we often refer to bistochastic matrices as frequency
matrices, and to integral square matrices with nonnegative
entries, where each row and each column sums up to the
same value, as position matrices.

We say that an election E realizes (or generates) a po-
sition matrix X (or, a frequency matrix Y) if X ∈ P (E)
(or, n · Y ∈ P (E), where n is the number of voters in E).
Boehmer et al. (2021b) showed that every position matrixX
is realizable by some election (their result is a reinterpreta-
tion of an older result of Leep and Myerson (1999)). Yang
and Guo (2016) also showed that position matrices are al-
ways realizable as part of a proof that they can be used to
solve a Borda manipulation problem. Note that two distinct
elections may generate the same position matrix.
Example 1. Consider an election E with candidates a, b, c,
and d and four votes shown below on the left. On the right
we show a position matrix of this election (for the natural
ordering of the candidates). Note that this is also a position
matrix for an election with two votes a � b � c � d and
two votes b � a � d � c.

v1 : a � b � c � d,

v2 : b � a � d � c,

v3 : a � b � d � c,

v4 : b � a � c � d.


a b c d

1 2 2 0 0
2 2 2 0 0
3 0 0 2 2
4 0 0 2 2


2.2 Structured Domains
We are interested in elections where the votes have some
structure. For example, the single-peaked domain captures
votes on the political left-to-right spectrum (and, more gen-
erally, votes focused on a single issue, such as those regard-
ing the temperature in a room or the level of taxation).
Definition 1. An election E = (C,V) is single-peaked if
there is an order . (the societal axis) over candidates C such
that for each vote v ∈ V and for each ` ≤ |C|, the top ` can-
didates according to v form an interval with respect to ..

Intuitively, in a single-peaked election each voter first se-
lects their favorite candidate and, then, extends his or her
ranking step by step with either the candidate directly to the
left or directly to the right (wrt. .) of those already ranked.

5508

Figure 1: Map of elections visualizing the 8x80 dataset.
Each dot represents an election and its color the statistical
model used to generate it. xD-Cube/Sphere models are Eu-
clidean models where the points of the candidates and voters
are chosen uniformly at random from an x-dimensional hy-
percube/hypersphere (1D-Interval is 1D-Cube; 2D-Square is
2D-Cube). For Mallows and Urn elections the transparency
of the coloring indicates the value of the used parameter.

Group-separability captures settings where the candidates
have some features and the voters have hierarchical prefer-
ences over these features. Let C be a set of candidates and
consider a rooted, ordered tree T , where each leaf one-to-
one corresponds to a candidate. A frontier of T is a vote that
we obtain by reading the names of the candidates associated
with the leaves of T from left to right. A vote is compatible
with T if it can be obtained as its frontier by reversing for
some nodes in T the order of their children. Intuitively, we
view the internal nodes of T as features and a candidate has
the features that appear on the path from it to the root.
Definition 2. An election E = (C,V) is group-separable if
and only if there is a tree T over candidate set C such that
each vote from V is compatible with T .

We focus on balanced trees (i.e., complete binary trees)
and on caterpillar trees (i.e., binary trees where each non-
leaf has at least one leaf as a child). If an election is group-
separable for a balanced/caterpillar tree, then we say that this
election is balanced/caterpillar group-separable.
Example 2. The election from Example 1 is both single-
peaked (for societal axis c . a . b . d) and balanced group-
separable (for a tree whose frontier is a � b � c � d).

Single-peaked elections were introduced by Black (1958),
and group-separable ones by Inada (1964, 1969). We men-
tion that Inada’s original definition is different from the one
that we provided, but they are equivalent (Karpov 2019) and
the tree-based one is algorithmically much more convenient.
We point readers interested in structured domains to the re-
cent survey of Elkind, Lackner, and Peters (2022).

2.3 Map of Elections
For our experiments, we use an 8x80 dataset that resem-
bles those of Szufa et al. (2020), Boehmer et al. (2021b),

and Boehmer et al. (2022). It contains 480 elections with
8 candidates and 80 votes generated using the same sta-
tistical models, with the same parameters, as the map of
Boehmer et al. (2022). In particular, we used (i) impartial
culture (IC), where each vote is equally likely, (ii) the Mal-
lows and urn distributions, whose votes are more or less cor-
related, depending on a parameter, (iii) various Euclidean
models, where candidates and voters are points in Euclidean
spaces and the voters rank the candidates with respect to
their geometric distance, and (iv) uniform distributions over
balanced group-separable, caterpillar group-separable, and
single-peaked elections (we refer to the uniform distribution
of single-peaked elections as the Walsh model; we also use
the model of Conitzer (2009) to generate single-peaked elec-
tions). See the full paper for exact descriptions. We repeated
all our experiments from Sections 4 and 5 on analogously
composed datasets with a varying number of candidates and
voters. Specifically, we considered elections with either 4 or
8 candidates and either 40, 80, or 160 voters. The results on
those datasets were similar to those for the 8x80 one.

We present our dataset as a map of elections, i.e., as points
on a plane, where each point corresponds to an election (see
Fig. 1). The Euclidean distances between the points resem-
ble positionwise distances between the respective elections.
For a definition of the positionwise distance, we point the
reader to the work of Szufa et al. (2020) or to the full ver-
sion; an important aspect of this distance is that for two elec-
tions E andF (with the same numbers of candidates and vot-
ers) it depends only on P (E) and P (F). Hence, we will also
sometimes speak of the distance between position matrices.

Our maps include two special position matrices, the uni-
formity one (UN), which corresponds to elections where
each candidate is ranked on each position equally often, and
the identity one (ID), which corresponds to elections where
all votes are identical. ID models “perfect order,” whereas
UN models “perfect chaos” (but note that there exist very
structured elections whose position matrix is UN). UN and
ID, as well as two other special points, were introduced by
Boehmer et al. (2021b). For each two elections, their posi-
tionwise distance is at most as large as the distance between
UN and ID (Boehmer et al. 2022).

3 Counting and Sampling Elections
Given a position matrix, it would be useful to be able to sam-
ple elections that realize it uniformly at random. Unfortu-
nately, doing so seems challenging. Indeed, one of the nat-
ural sampling algorithms requires, among others, the ability
to count elections that realize a given matrix, a task which
we show to be #P-complete. While, formally, this does not
preclude the existence of a polynomial-time uniform sam-
pler (and, certainly, it does not preclude the existence of
an approximately uniform one), we believe that it suggests
that finding such algorithms would require deep insights; for
closely related problems such insights are still elusive (Ja-
cobson and Matthews 1996; Hong and Miklós 2021).

Formally, in the #REALIZATIONS problem we are
given an m × m position matrix X (and a candi-
date set {c1, . . . , cm}, where, for each i, candidate ci corre-
sponds to the i-th column of X) and we ask for the number

5509

of elections that realize X . Two elections are distinct if their
voter collections are distinct when viewed as multisets.

Theorem 1. #REALIZATIONS is #P-complete even if the re-
alizing elections contain three votes.

3.1 Preparing for the Proof of Theorem 1
We first provide the necessary background for our proof of
Theorem 1. Given a graph G, directed or undirected, a t-
edge coloring is a function that associates each of its edges
with one of t colors. Such a coloring is proper if for each
vertex the edges that touch it have different colors. A graph
is r-regular if each vertex touches exactly r edges (for di-
rected graphs, both incoming and outgoing edges count).
The #P-hardness of #REALIZATIONS follows by a reduc-
tion from the problem of counting proper 3-edge colorings
of a given 3-regular bipartite (simple) graph. We refer to this
problem as 3-REG.-BIPARTITE-3-EDGE-COLORING. We
start by establishing that this problem is #P-hard. To prove
this, we will give a reduction from a specific Holant prob-
lem, which we will call HOLANT-SPECIAL. In this problem
we are given a planar, 4-regular, directed graph G, where
each vertex has two incoming edges and two outgoing ones.
Further, we have an embedding of this graph on the plane,
which has the following property: As we consider the edges
touching a given vertex in the counter-clockwise order, ev-
ery other edge is incoming and every other one is outgo-
ing. Let C be the set of all 3-edge-colorings of G. Given
a vertex v, its four touching edges e1, . . . , e4 (listed in the
counter-clockwise order, starting from some arbitrary one)
and some coloring σ ∈ C , we denote by σ(v) the vector
(σ(e1), . . . , σ(e4)). We define a function f so that:

1. f(σ(v)) = 0 if σ(v) includes three different colors,
2. f(σ(v)) = 2 if all colors in σ(v) are identical,
3. f(σ(v)) = 1 if σ(v) includes two different colors and

there are two consecutive edges in the counter-clockwise
order that have the same color,

4. f(σ(v)) = 0 otherwise (i.e., if σ(v) includes two differ-
ent colors and each two consecutive edges in the counter-
clockwise order have different colors).

The goal is to compute
∑
σ∈C

∏
v∈V (G) f(σ(v)). Cai, Guo,

and Williams (2016) have shown that doing so is #P-
complete (their results are far more general than this; the
problem we consider is a variant of their 〈2, 1, 0, 1, 0〉-
HOLANT problem). The left-hand side of Fig. 2 shows an
example input for HOLANT-SPECIAL.

Theorem 2. #3-REG.-BIPARTITE-3-EDGE-COLORING is
#P-hard.

Proof. We give a reduction from HOLANT-SPECIAL to #3-
REG.-BIPARTITE-3-EDGE-COLORING. The construction is
inspired by those used by Cai, Guo, and Williams (2016).
Let G = (V,E) be the input graph and let the notation be as
in the discussion preceding the theorem statement.

The high-level idea is to modify graph G by replacing
each vertex v ∈ V with a gadget, while keeping “copies” of
edges from E. Then, the value of f(σ(v)) for some edge-
coloring σ of the edges from E in G corresponds to the

B

A D

C

Figure 2: An example input graph (left) and the gadget used
in the proof of Theorem 2. The letters label the gadget’s dan-
gling edges. The colors illustrate its bipartiteness.

number of proper 3-edge-colorings in the gadget for v as-
suming the “copies” of E in the constructed graph are col-
ored according to σ. Specifically, we replace each vertex v
by the gadget depicted in the right-hand side of Fig. 2. Its
four dangling edges implement the original four edges of v.
However, we need some care in deciding which of the dan-
gling edges we connect to which vertices from the gadgets
corresponding to the neighbors of v in G (we will return to
this issue after we explain how the gadget works).

For each of our gadgets, we name the dangling edges A,
B, C, and D, as shown in Fig. 2. It is now easy to see that if
all dangling edges are of the same color, say 1, then there are
two colorings of the remaining edges of the gadget resulting
in a proper coloring: Both “vertical” edges need to have the
same color (either 2 or 3), and both “horizontal” edges need
to have the same color (the single remaining one). Similarly,
if edges A and B have the same color, and edges C and D
have the same color, then there is a unique proper coloring of
the other edges. By symmetry, the same holds if both edges
A and D and edges B and C have the same color. Finally,
if edges A and C have the same color, and edges B and
D have the same color (or, the dangling edges have three
different colors) then there are no proper colorings of the
remaining edges in the gadget. This way, for each vertex v
and coloring σ, v’s gadget implements the f(σ(v)) function.

Next we describe how we connect the dangling edges of
the gadgets. If u and v are two vertices of G and there is
a directed edge from u to v, then we merge one of the A
and C dangling edges of u’s gadget with one of theB andD
dangling edges of v’s gadget (which dangling edges we use
is irrelevant for this proof). Since each vertex in G has two
incoming and two outgoing edges, doing so is possible.

As the gadgets are bipartite themselves, and due to the
way in which we connect their edges, the resulting graph G′
is bipartite. It is also clear that it is 3-regular. Finally, due
to the way in which 3-edge-colorings of G can be extended
to proper 3-edge-colorings of G′ (see the description of the
gadgets), we see that the number of the latter is equal to the
output of the HOLANT-SPECIAL for G. The reduction runs
in polynomial-time and the proof is complete.

The above result also applies to 3-regular planar bipartite
graphs. To see this, it suffices to appropriately arrange our
gadgets in space (sometimes rotating them) and choose the
dangling edges to connect more carefully.

3.2 The Proof of Theorem 1
The answer to an instance of #REALIZATIONS is the number
of accepting paths of a non-deterministic Turing machine

5510

that constructs an election and then checks if it realizes the
input matrix. As this machine works in (non-deterministic)
polynomial time, #REALIZATIONS is in #P.

To show #P-hardness, we give a reduction from
#3-REG.-BIPARTITE-3-EDGE-COLORING to #REALIZA-
TIONS. Let G = (U, V ;E) be our input 3-regular bipar-
tite graph, where U is the set of vertices on the left, V is
the set of vertices on the right, and E is a set of edges.
Since G is 3-regular, we have |U | = |V |. W.l.o.g., we let
U = {u1, . . . , um} and V = {v1, . . . , vm}. We form an
m×m matrix X , where each entry Xi,j is either 1, if there
is an edge between vi and uj , or 0, if there is no such edge.
As G is 3-regular, X has exactly three ones in each row and
in each column, so it is a position matrix and each election
that realizes it contains three votes.

We now show that each proper 3-edge-coloring ofG gives
an election realizing matrix X . For a given coloring, the
edges of the same color form a perfect matching in G. We
interpret such a matching as a single vote. Specifically, we
treat vertices from U as candidates and vertices from V as
positions in the vote being constructed (e.g., if the match-
ing contains an edge between vi and uj , then the vote ranks
candidate uj on position i). Hence, for each 3-coloring we
get an election consisting of three votes, one for each match-
ing associated with one color. Since all edges must be part
of some matching and each edge corresponds to a single 1-
entry in X , the resulting election realizes X .

Each election realizing matrix X corresponds to six 3-
edge-colorings of G. Indeed, taking one 3-edge-coloring,
each of the six permutations of the colors gives raise to
the same election. This holds, because for a single 3-edge-
coloring, each color forms an edge-disjoint matching (as op-
posed to graphs with parallel edges, where this would not be
true). So our reduction preserves the number of solutions
with a multiplicative factor of 6. This completes the proof.

3.3 Experiments
We checked experimentally how diverse are elections that
generate the same position matrix. To do so, we used the
isomorphic swap distance, due to Faliszewski et al. (2019).
Definition 3. Let E = (C,V) and F = (D,U) be two
elections, where C = {c1, . . . , cm}, D = {d1, . . . , dm},
V = (v1, . . . , vn), and U = (u1, . . . , un). Their isomorphic
swap distance is:

dswap(E ,F) = min
σ∈Sn

min
π∈Π(C,D)

∑n
i=1 swap(π(vi), uσ(i)),

where π(vi) is the vote vi where each candidate c ∈ C is
replaced with candidate π(c).

Intuitively, the isomorphic swap distance between two
elections is the summed swap distance of their votes, pro-
vided we first rename the candidates and reorder the votes
to minimize this value. Maps of elections could be generated
using the isomorphic swap distance instead of the position-
wise one, and they would be more accurate than those based
on the positionwise distance (Boehmer et al. 2022), but the
isomorphic swap distance is NP-hard to compute and chal-
lenging to compute in practice (Faliszewski et al. 2019); in-
deed, we use a brute-force implementation.

Boehmer et al. (2022) have shown that the largest isomor-
phic swap distance between two elections withm candidates
and n voters is 1

4n(m2 −m) (up to minor rounding errors;
for this result, see their technical report). Whenever we give
an isomorphic swap distance between two elections (with
the same numbers of candidates and voters), we report it as
a fraction of this value.

As we do not have a fast procedure for sampling (approx-
imately) uniformly at random elections that realize a given
matrix, we use the following naive approach (let X be an
m×m position matrix):

1. We form an election E = (C,V), where C = (c1, . . . , cm)
and V is initially empty. For each i ∈ [m], candidate ci
corresponds to the i-th column of the matrix.

2. We repeat the following until X consists of zeros only:
We form a bipartite graph with vertices c1, . . . , cm on
the left and vertices 1, . . . ,m on the right; there is an
edge between cj and i exactly if Xi,j > 0. We draw
uniformly at random a perfect matching in this graph (it
always exists; (Leep and Myerson 1999))—we generate
it relying on the standard self-reducibility of computing
perfect matchings and using the classic reduction to com-
puting the permanent (Valiant 1979), which we compute
using the formula of Ryser (1963).4 Given such a match-
ing, we form a vote v where each candidate cj ∈ C is
ranked on the position to which he or she is matched. We
extend E with vote v and we subtract fromX the position
matrix of the election that contains v as the only vote.

In essence, the above procedure is a randomized variant of
the algorithm presented by Boehmer et al. (2021b) to show
that every position matrix is realized by some election.

We performed the following experiment: (i) For each elec-
tion from the 8x80 dataset we computed its position matrix,
(ii) using the naive sampler, we generated 100 pairs of elec-
tions that realize it, and, (iii) for each pair of elections, we
computed their isomorphic swap distance. We report the re-
sults in Figure 3a, where each dot has a color that corre-
sponds to the farthest distance computed for the respective
matrix.5 For elections close to UN, this distance can be very
large. Indeed, for about half of the elections (all located close
to UN) this distance is larger than 20% of the maximum pos-
sible isomorphic swap distance. On the other hand, elections
realizing position matrices in the vicinity of ID are much
more similar to each other, which is quite natural.

While we used a naive sampling algorithm rather than a
uniform one, the results are sufficient to claim that for many
position matrices—in particular, those closer to UN than to
ID—there are two elections that generate them, whose iso-
morphic swap distance is very large. If we had a uniform

4We used a python module called permanent (https://git.
peteshadbolt.co.uk/pete/permanent) by Pete Shadbolt. In principle,
we could have used an approximately uniform sampler that runs
in polynomial time (Jerrum, Sinclair, and Vigoda 2004; Bezáková
et al. 2008), but they are too slow in practice.

5We tried 100 pairs for two reasons. First, each computation
is quite expensive. Second, even with testing 10 pairs the results
were very similar to those for 100 pairs (if we reported average
distances, the results also would not change very much).

5511

(a) Swap distance. (b) Condorcet winners.

Figure 3: Maps with our experimental results for the
8x80 dataset. On the left, we show the maximum isomorphic
swap distance found for elections realizing a given matrix.
On the right, we show the number of candidates that can be
Condorcet winners in elections realizing the matrices.

sampler, the distances could possibly increase, but the over-
all conclusion would not change. Indeed, we ran our ex-
periment for an analogous dataset, but for elections with 4
candidates and 16 voters; in this case we computed maxi-
mum possible isomorphic swap distances by generating all
elections realizing a given matrix. The results are analogous.
(For this experiment we also counted how many elections re-
alize a given matrix and the results were strongly correlated
with the above described results for the maximum distance.)

4 Recognizing Structure
In this section we consider the problem of deciding if a given
(arbitrary) position or frequency matrix can be realized by
elections whose votes come from some domain (e.g., the
single-peaked or group-separable one). Overall, we find that
if a precise description of the domain is part of the input
(e.g., if we are given the societal axis for the single-peaked
domain), then for frequency matrices we can often solve this
problem in polynomial time. For position matrices our re-
sults are less positive and less comprehensive. The reason
why frequency matrices are easier to work with here is that
they only specify fractions of votes where a given candidate
appears on a given position, whereas position matrices spec-
ify absolute numbers of such votes and thus are less flexible.

Let us fix a candidate set C. We consider sets D of votes,
called domains, specified in one of the following ways:

1. explicit: D contains explicitly listed votes, or
2. single-peaked: D contains all votes that are single-

peaked with respect to an explicitly given axis ., or
3. group-separable: D contains all group-separable votes

that are compatible with a given rooted, ordered tree T ,
where each leaf is associated with a unique candidate.
We only consider balanced or caterpillar trees.

The next theorem is our main result of this section.

Theorem 3. There is a polynomial-time algorithm that
given a frequency matrix X and an explicit, single-peaked,
or group-separable (balanced or caterpillar) domainD, de-
cides if there is an election that realizes X , and whose votes
all belong to D.

For example, given a frequency matrix X and a societal
axis ., we can check if there is an election that realizes X
and is single-peaked with respect to .. A similar result for
single-peakedness and a variant of weighted majority rela-
tions is provided by Spaanjard and Weng (2016).

The proof of Theorem 3 is quite involved and is available
in the full version of the paper, but we mention two issues.
First, some of our algorithms proceed by solving appropri-
ate linear programs and, in principle, the elections that they
discover might have exponentially many votes with respect
to the length of the encoding of the input. This is not a prob-
lem as our algorithms do not build these elections explicitly.
Second, while our algorithms need an explicit description of
the domain, such as the societal axis or the underlying tree,
for the balanced group-separable domain we can drop this
assumption, and we can even deal with position matrices:
Theorem 4. There is a polynomial-time algorithm that
given a frequency (or position) matrix X decides if the ma-
trix can be realized by a balanced group-separable election.

Interestingly, if instead of taking the entire balanced
group-separable domain (for a given tree) we only allow for
an explicitly specified subset of its votes, the problem be-
comes NP-hard.
Theorem 5. Given a set D of votes, listed explicitly, and
a position matrix X , it is NP-hard to decide if there is an
election that realizes X and whose votes are all from D.
This holds even if the votes in D are both single-peaked and
balanced group-separable.

Proof. We reduce from the NP-hard X3C problem, where
we are given a set U = {u1, . . . , u3m} of 3m elements and
a family S = {S1, . . . , Sn} of size-3 subsets of U . We ask
if there are m sets from S whose union is U .

Let I be our input instance of X3C. We form a 6m× 6m
position matrix X with values m − 1 on the diagonal, and
where for each odd column there is value 1 directly below
the m − 1 entry, and for each even column there is value 1
directly above the m − 1 entry (all other entries are equal
to 0). The matrix looks as follows:

m− 1 1 0 0 · · · 0
1 m− 1 0 0 · · · 0
0 0 m− 1 1 · · · 0
0 0 1 m− 1 · · · 0
...

...
...

...
. . . 1

0 0 0 0 · · · m− 1

 .

We let the candidate set be C = {c1, . . . , c6m}, where for
each i ∈ [6m], candidate ci corresponds to the i-th column.
For each set S` = {ui, uj , uk}we include in the domainD a
vote v` that is equal to c1 � c2 � · · · � c6m except that c2i
and c2i+1 are swapped, c2j and c2j+1 are swapped, and c2k
and c2k+1 are swapped. We claim that there is an election
that realizes X and whose votes all belong to D if and only
if I is a yes-instance of X3C.

Let us assume that there are m sets from S whose union
is U and, w.l.o.g., that these sets are S1, . . . , Sm. One can
verify that election (C, (v1, . . . , vm)) realizes X . Indeed,
since S1, . . . , Sm cover U , for each candidate ci there are

5512

m − 1 votes where ci is ranked on the i-th position, and a
single vote where ci is either ranked one position higher or
one position lower, depending on the parity of i.

For the other direction, let us assume that there is an elec-
tion E that realizes X and, w.l.o.g., that it contains votes
v1, . . . , vm (all the votes must be distinct as otherwise some
non-diagonal entry of this election’s position matrix would
have value greater than 1). Since E realizes X , for each
i ∈ [3m] there is exactly one vote in E that ranks c2i be-
low c2i+1. This means that for each ui ∈ U , there is exactly
one set among S1, . . . , Sm that includes ui. Hence, I is a
yes-instance of X3C.

Finally, all votes in D are single-peaked with respect to
societal axis c6m−1 � c6m−3 � · · · � c3 � c1 � c2 �
c4 � · · · � c6m and are balanced group-separable with re-
spect to a tree whose frontier is c1 � c2 � · · · � c6m
(formally, for this, we need to have a number of candidates
equal to a power of two, which is easy to ensure).

An Experiment. Using our algorithms from Theorems 3
and 4, we checked for each of the frequency matrices from
our 8x80 dataset whether it is realizable by a single-peaked
or a caterpillar/balanced group-separable election (for each
election we tried all societal axes and all caterpillar trees).
For all three domains we found that for each election in the
dataset, its frequency matrix can be realized by an election
from the domain only if the election itself belongs to this
domain.6 This indicates that frequency matrices (and also
position matrices) of elections from restricted domains have
specific features that are not likely to be produced by elec-
tions sampled from other models.

5 Condorcet Winners
Our final set of results regards Condorcet winners in elec-
tions that realize a given position matrix.

First, we consider the problem of deciding if a given po-
sition matrix can be realized by an election where a certain
candidate is a Condorcet winner. In general, the complexity
of this problem remains open, but if we restrict our attention
to elections that only contain votes from a given set we ob-
tain a hardness result (even if the input matrix can always be
realized using votes from the given set).
Theorem 6. Given a set D of votes, listed explicitly, a po-
sition matrix X (which can be realized by an election con-
taining only votes fromD)7, and a candidate c, it is NP-hard
to decide if there is an election realizing X , in which c is a
Condorcet winner and all votes come from D.

Making partial progress on the general problem, we pro-
vide a necessary condition for the existence of an election
realizing a given position matrix in which a given candi-
date c is a Condorcet winner. Roughly speaking, for each
i ∈ [m], our condition looks for a set S of candidates (dif-
ferent from c) that frequently appear in the first i positions. If

6Elections from our dataset that are part of a restricted domain
are almost exclusively sampled from models that are guaranteed to
produce such elections.

7Verifying this condition is not part of the problem as, by Theo-
rem 5, such a test is NP-hard. It is simply a feature of our reduction.

occurrences of candidates from S on the first i positions are
“sufficiently frequent” compared to how often candidate c
appears in the first i − 1 positions, and both S and i are
“small enough,” then c cannot be a Condorcet winner in any
election realizing the matrix.

Theorem 7. For each position matrix X and each c ∈ [m],
if there is an election E realizing X , where c is a Condorcet
winner, then for every i ∈ [m] and S ⊆ [m], it holds that∑
j∈S
∑i
k=1Xk,j≤|S|·

⌊
n−1

2

⌋
+
∑i−1
k=1

(
Xk,c·min(|S|, i−k)

)
.

The condition can be checked in polynomial time.

Experiment 1. We tested our condition on the elections
from the 8x80 dataset. We checked for each election and
each candidate whether the condition is satisfied, but there
is no election realizing the matrix in which the candidate is
a Condorcet winner (using an ILP formulation of the prob-
lem). It turns out that this situation is very rare: among all
480 matrices in the 8x80 dataset (i.e., among the position
matrices of the elections from the dataset), there were only 6
in which there was one candidate for which our condition
gave the wrong answer (there were none with more than one
such candidate). Thus, our condition appears to be quite an
effective way to detect potential Condorcet winners.

Experiment 2. We conclude with an experiment where for
each position matrix from our 8x80 dataset we count how
many different candidates are a Condorcet winner in at least
one election realizing the matrix. The results are in Fig. 3b.

First, we observe that while 94 elections from our
8x80 dataset do not have a Condorcet winner, only two
of them have a position matrix that cannot be realized by
an election with a Condorcet winner. Second, examining
Fig. 3b, we see that for most matrices there are multiple dif-
ferent possible Condorcet winners, with the average number
of Condorcet winners being 2.6 and 120 matrices having
four or more possible Condorcet winners. The number of
possible Condorcet winners is correlated with the position
of the matrix on the map. Generally speaking, it seems that
the closer a matrix is to UN, the more possible Condorcet
winners we have. However, in the close proximity of UN
there is a slight drop in the number of possible Condorcet
winners. Overall, these results confirm that elections realiz-
ing a given position matrix can be very different from each
other (in terms of pairwise comparisons of candidates).

6 Conclusions
We have analyzed various properties of elections that re-
alize given position or frequency matrices. Among others,
(i) we have shown algorithms for deciding if such elections
can be implemented using votes from particular structured
domains, and (ii) we have found that for a given matrix,
such elections can be very diverse. The latter result is wit-
nessed by the fact that two elections realizing a matrix may
have large isomorphic swap distance and may have different
Condorcet winners. Hence, while maps of elections (based
on position matrices) certainly are very convenient tools for
visualizing some experimental results (including ours), for
others their value might be limited. It would be interesting to
find such experiments and establish their common features.

5513

Acknowledgments
NB was supported by the DFG project ComSoc-MPMS (NI
369/22). This project has received funding from the Euro-
pean Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant
agreement No 101002854).

References
Allen, T. E.; Goldsmith, J.; Justice, H. E.; Mattei, N.; and
Raines, K. 2017. Uniform random generation and domi-
nance testing for CP-nets. Journal of Artificial Intelligence
Research, 59: 771–813.
Bezáková, I.; Štefankovič, D.; Vazirani, V.; and Vigoda, E.
2008. Accelerating Simulated Annealing for the Permanent
and Combinatorial Counting Problems. SIAM Journal on
Computing, 37(5): 1429–1454.
Black, D. 1958. The Theory of Committees and Elections.
Cambridge University Press.
Boehmer, N.; Bredereck, R.; Faliszewski, P.; and Nieder-
meier, R. 2021a. Winner Robustness via Swap- and Shift-
Bribery: Parameterized Counting Complexity and Experi-
ments. In Proceedings of IJCAI-2021, 52–58.
Boehmer, N.; Bredereck, R.; Faliszewski, P.; Niedermeier,
R.; and Szufa, S. 2021b. Putting a Compass on the Map of
Elections. In Proceedings of IJCAI-2021, 59–65.
Boehmer, N.; Faliszewski, P.; Niedermeier, R.; Szufa, S.;
and Wąs, T. 2022. Understanding Distance Measures
Among Elections. In Proceedings of IJCAI-2022, 102–108.
Boehmer, N.; and Schaar, N. 2022. Collecting, Classifying,
Analyzing, and Using Real-World Elections. Technical Re-
port arXiv:2204.03589 [cs.GT], arXiv.org.
Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; and Procaccia,
A., eds. 2016. Handbook of Computational Social Choice.
Cambridge University Press.
Cai, J.-Y.; Guo, H.; and Williams, T. 2016. The complexity
of counting edge colorings and a dichotomy for some higher
domain Holant problems. Research in the Mathematical Sci-
ences, 3: 18.
Conitzer, V. 2009. Eliciting Single-Peaked Preferences Us-
ing Comparison Queries. Journal of Artificial Intelligence
Research, 35: 161–191.
Elkind, E.; Lackner, M.; and Peters, D. 2022. Preference Re-
strictions in Computational Social Choice: A Survey. Tech-
nical Report arXiv:2205.09092 [cs.GT], arXiv.org.
Faliszewski, P.; Skowron, P.; Slinko, A.; Szufa, S.; and Tal-
mon, N. 2019. How Similar Are Two Elections? In Pro-
ceedings of AAAI-2019, 1909–1916.
Fishburn, P. 1977. Condorcet Social Choice Functions.
SIAM Journal on Applied Mathematics, 33(3): 469–489.
Hong, L.; and Miklós, I. 2021. A Markov Chain on the Solu-
tion Space of Edge-Colorings of Bipartite Graphs. Technical
Report arXiv:2103.11990 [cs.GT], arXiv.org.

Inada, K. 1964. A Note on the Simple Majority Decision
Rule. Econometrica, 32(32): 525–531.
Inada, K. 1969. The Simple Majority Decision Rule. Econo-
metrica, 37(3): 490–506.
Jacobson, M.; and Matthews, P. 1996. Generating Uniformly
Distributed Random Latin Squares. Journal of Combinato-
rial Designs, 4(6): 405–437.
Jerrum, M.; Sinclair, A.; and Vigoda, E. 2004. A
Polynomial-Time Approximation Algorithm for the Perma-
nent of a Matrix with Nonnegative Entries. Journal of the
ACM, 51(4): 671–697.
Karpov, A. 2019. On the number of group-separable prefer-
ence profiles. Group Decision and Negotiation, 28(3): 501–
517.
Leep, D.; and Myerson, G. 1999. Marriage, Magic, and Soli-
taire. The American Mathematical Monthly, 106(5): 419–
429.
McGarvey, D. 1953. A Theorem on the Construction of Vot-
ing Paradoxes. Econometrica, 21(4): 608–610.
Regenwetter, M.; Grofman, B.; Marley, A. A. J.; and Tsetlin,
I. 2006. Behavioral Social Choice - Probabilistic Models,
Statistical Inference, and Applications. Cambridge Univer-
sity Press.
Ryser, H. J. 1963. Combinatorial Mathematics, volume 14
of The Carus Mathematical Monographs. MAA Press: An
Imprint of the American Mathematical Society.
Spaanjard, O.; and Weng, P. 2016. Single-peakedness Based
on the Net Preference Matrix: Characterization and Algo-
rithms. In Proceedings of COMSOC-2016.
Szufa, S.; Faliszewski, P.; Skowron, P.; Slinko, A.; and Tal-
mon, N. 2020. Drawing a Map of Elections in the Space of
Statistical Cultures. In Proceedings of AAMAS-2020, 1341–
1349.
Tideman, T.; and Plassmann, F. 2012. Modeling the Out-
comes of Vote-Casting in Actual Elections. In Felsenthal,
D.; and Machover, M., eds., Electoral Systems: Paradoxes,
Assumptions, and Procedures, chapter 9, 217–251. Springer.
Valiant, L. 1979. The Complexity of Computing the Perma-
nent. Theoretical Computer Science, 8(2): 189–201.
Yang, Y.; and Guo, J. 2016. Exact algorithms for weighted
and unweighted Borda manipulation problems. Theoretical
Computer Science, 622: 79–89.
Zwicker, W. 2015. Introduction to the Theory of Voting. In
Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; and Procac-
cia, A. D., eds., Handbook of Computational Social Choice,
chapter 2. Cambridge University Press.

5514

