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Abstract
We study the formation of stable outcomes via simple dynam-
ics in cardinal hedonic games, where the utilities of agents
change over time depending on the history of the coalition
formation process. Specifically, we analyze situations where
members of a coalition decrease their utility for a leaving
agent (resent) or increase their utility for a joining agent (ap-
preciation). We show that in contrast to classical dynamics,
for resentful or appreciative agents, dynamics are guaranteed
to converge under mild conditions for various stability con-
cepts. Thereby, we establish that both resent and appreciation
are strong stability-driving forces.

1 Introduction
Coalition formation is a vibrant topic in multi-agent sys-
tems that has been continuously researched during the last
decades. It concerns the question of dividing a set of agents,
for example, humans or machines, into disjoint coalitions
such as research teams. Agents carry preferences over these
coalition structures. A common assumption is that exter-
nalities, that is, the coalition structure outside one’s own
coalition, play no role. This is captured in the prominent
framework of hedonic games. Moreover, the desirability of
a coalition structure is usually measured with respect to sta-
bility. Abstractly speaking, a coalition structure is stable if
there is no agent or set of agents that can perform a bene-
ficial deviation by joining existing coalitions or by forming
new coalitions.

There are two specific properties of hedonic games cru-
cially influencing past research. First, the number of possi-
ble coalitions an agent can be part of is exponentially large.
Therefore, a repeatedly considered challenge is to come up
with reasonable succinctly representable settings. It is very
prominent in this context to aggregate utilities from cardinal
valuations of other agents. Second, most established stability
concepts suffer from non-existence under strong restrictions
which often leads to computational boundaries such as hard-
ness of the decision problem whether a stable state exists.
Much of the research has therefore focused on identifying
suitable conditions guaranteeing stable states.

The dominant coalition formation framework is static in
two dimensions. First, stability is usually a static concept
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in the sense that, since a coalition structure is either stable
or not, we are only interested in finding these stable struc-
tures. The underlying assumption here is that we operate
in a centralized system where a (desirable) coalition struc-
ture can be created by a central authority. This paradigm has
only recently been complemented by interpreting deviations
of agents as a dynamic process. The goal here is to reach
stable coalition structures through decentralized individual
decisions (Brandt, Bullinger, and Wilczynski 2021; Brandt,
Bullinger, and Tappe 2022). Second, utility functions are
static. To demonstrate the implications of this assumption,
we describe a run-and-chase example, which is present in
many classes of hedonic games. Consider a situation where
there are only the two agents Alice and Bob. Alice wants
to be alone in her coalition, whereas Bob wants to be in a
joint coalition with Alice. It is clear that in the two possible
coalition structures, there is always an agent who wants to
change their situation. From a centralized perspective, this
simply means that no coalition structure has the prospect of
stability. In a distributed, dynamic setting where utilities are
static, the following occurs indefinitely: Whenever Alice and
Bob are in a joint coalition, then Alice leaves the coalition to
be alone. However, whenever Alice and Bob are in two sepa-
rate coalitions, then Bob joins Alice. In practice, such an in-
finite situation is unreasonable: After playing run-and-chase
for a while, either Alice or Bob are likely to change their
behavior and therefore their preferences. On the one hand,
Bob might get frustrated because he is constantly left by Al-
ice and therefore stops his efforts to join her. On the other
hand, Alice could realize the high effort that Bob makes to
be in a coalition with her and feels sufficient appreciation
to eventually accept Bob in her coalition. In both scenarios,
we reach a state that is stable because of the history of the
coalition formation process.

In this paper, we model situations where the history in-
fluences the agents’ utilities, offering a new perspective on
the reachability of stable coalition structures. We study a dy-
namic coalition formation process where agents perform de-
viations based on stability concepts. However, in contrast
to previous work on dynamics, we assume that a deviation
has an effect on the perception of the deviator, resulting in
agents changing their utility for the deviator. We distinguish
two approaches. First, an agent might act resentfully in the
sense that, like Bob, she lowers her utility for an agent aban-
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SCS CS IS CNS NS

ASHG
resent 3 (3.1) 3 (3.1) 3 (3.1) ? ?
resent+IR 3 (3.1) 3 (3.1) 3 (3.1) 3 (3.3) 3 (3.3)
appreciation 7 (4.4) 7 (4.4) ? 3 (4.5) ?
MFHG
resent ? ? ? ? 7 (3.4)
resent+IR 3 (3.2) 3 (3.2) 3 (3.2) 3 (3.3) 3 (3.3)
appreciation 7 (4.4) 7 (4.4) ? ? 7 (4.6)

Table 1: Overview of results. “3” means that the corre-
sponding dynamics is guaranteed to converge; “7” means
that we have an example for an infinite sequence. See Sec-
tion 2 for definitions. For each result, we include the number
of the respective statement.

doning her. A deviator abandoning a resentful agent again
and again eventually looses all of her attraction to the re-
sentful agent. On the other hand, an agent could appreciate
the effort of another agent to be part of her coalition, and
therefore, like Alice, increase her utility for an agent when-
ever the agent joins her. After sufficient effort, the urge to
leave the deviator ceases.

1.1 Contribution
We initiate the study of cardinal hedonic games under util-
ity functions changing over time. In particular, we consider
utility modifications based on the resentful and appreciative
perception of other agents. We investigate whether decen-
tralized dynamics based on various types of deviations are
guaranteed to converge. Deviations might be constrained to
be individually rational (IR), that is, a deviating agent needs
to prefer her new coalition to being alone. We showcase our
results by considering additively separable hedonic games
(ASHGs) and modified fractional hedonic games (MFHGs),
where an agent’s utility for a coalition is the sum or average
utility for the other agents in the coalition, respectively. Ta-
ble 1 provides an overview of these results. First, for resent-
ful agents performing individually rational deviations, con-
vergence is guaranteed in all considered cases. If deviations
may also violate individual rationality, the situation becomes
more complicated and elusive to a complete understanding;
nevertheless, we establish several convergence guarantees
while also having an involved example of a cycling dynam-
ics in MFHGs. In contrast, appreciation is usually not suffi-
cient to guarantee convergence. Notably, as proved in Corol-
lary 4.3 four of our open questions concerning both resentful
and appreciative agents are in some sense equivalent.

In fact, most of our results do not only apply to ASHGs
and/or MFHGs but to larger classes of hedonic games. For
this, we develop an axiomatic framework for utility aggre-
gation based on the perception of friends and enemies, that
is, agents yielding positive and negative utility, respectively.

In our simulations, we observe that our model of dynamic
utilities leads to the (quick) convergence of Nash dynam-
ics. Moreover, we analyze the structure and expressiveness
of the produced outcomes. Finally, we outline results for

other perception models and for computational questions
concerned with finding shortest converging sequences.

1.2 Related Work

Hedonic games originate from economic theory (Drèze and
Greenberg 1980), but their constant and broad consideration
only started with key publications by Banerjee, Konishi, and
Sönmez (2001), Cechlárová and Romero-Medina (2001),
and Bogomolnaia and Jackson (2002). An overview of he-
donic games is provided in the survey by Aziz and Savani
(2016). The search for suitable representations of reasonable
classes of hedonic games has led to various proposals (see,
e.g., Cechlárová and Romero-Medina 2001; Bogomolnaia
and Jackson 2002; Ballester 2004; Elkind and Wooldridge
2009; Olsen 2012; Aziz et al. 2019).

Various stability concepts and their computational bound-
aries have been previously studied. We focus on results
concerning ASHGs (Bogomolnaia and Jackson 2002) and
MFHGs (Olsen 2012). Sung and Dimitrov (2010) show
prototype NP-hardness reductions for single-agent stabil-
ity concepts in ASHGs, paving the way for many simi-
lar results for single-agent and group stability (see, e.g.,
Aziz, Brandt, and Seedig 2013; Brandt, Bullinger, and
Tappe 2022; Bullinger 2022). Gairing and Savani (2019)
consider ASHGs under symmetric utilities and show PLS-
completeness of computing stable states, while Woegin-
ger (2013) and Peters (2017) show ΣP

2 -completeness of
the (strict) core in ASHGs. Peters and Elkind (2015) pro-
vide a meta view on computational hardness. For MFHGs,
there seem to be less computational boundaries. Indeed,
for symmetric and binary utilities, stable states exist and
can be efficiently computed. Core stability is even tractable
for symmetric and arbitrarily weighted utilities (Monaco,
Moscardelli, and Velaj 2018). Apart from the consideration
of stability, other desirable notions of efficiency or fairness
such as Pareto optimality, envy-freeness, or popularity have
been studied for ASHGs and MFHGs (Aziz, Brandt, and
Seedig 2013; Elkind, Fanelli, and Flammini 2020; Bullinger
2020; Brandt and Bullinger 2022). These papers provide
more evidence that MFHGs seem to be less complex than
ASHGs.

The dynamical, distributed approach to coalition forma-
tion received increased attention very recently (Hoefer, Vaz,
and Wagner 2018; Bilò et al. 2018; Carosi, Monaco, and
Moscardelli 2019; Brandt, Bullinger, and Wilczynski 2021;
Fanelli, Monaco, and Moscardelli 2021; Brandt, Bullinger,
and Tappe 2022; Bilò, Monaco, and Moscardelli 2022).
There, Bilò et al. (2018); Brandt, Bullinger, and Wilczyn-
ski (2021); Brandt, Bullinger, and Tappe (2022) consider
stability based on single-agent deviations, whereas Carosi,
Monaco, and Moscardelli (2019); Fanelli, Monaco, and
Moscardelli (2021) consider group stability.

2 Preliminaries and Model
In this section, we define the basic coalition formation set-
ting, our specific model, and provide some first observations.
For an integer i ∈ N, we define [i] = {1, . . . , i}.

5500



2.1 Cardinal Hedonic Games
Let N = [n] be a finite set of agents. A coalition is any sub-
set ofN . We denote the set of all possible coalitions contain-
ing agent i ∈ N by Ni = {C ⊆ N : i ∈ C}. Any partition
of the agents N is also called coalition structure and we de-
note the set of all partitions of N by ΠN . Given an agent
i ∈ N and a partition π ∈ ΠN , let π(i) denote the coalition
of i, i.e., the unique coalition C ∈ π with i ∈ C. A (cardi-
nal) hedonic game is a pair (N, u) consisting of a set N of
agents and a utility profile u = (ui)i∈N where ui : N → Q
is the utility function of agent i. Thus, for i, j ∈ N , ui(j) is
i’s utility for agent j. We sometimes equivalently view a util-
ity function as a vector ui ∈ Qn. An agent j ∈ N is a friend
(or enemy) of an agent i ∈ N if ui(j) > 0 (or ui(j) < 0).

To move from utilities for single agents to utilities over
coalitions, we use cardinal aggregation functions (CAFs).
For every agent i ∈ N , the CAF Ai : Ni × Qn → Q speci-
fies i’s utility for a given coalition for her given utility vector.
Then, the utility of an agent for a partition π with respect to
aggregation function Ai is uAi

i (π) = Ai(π(i), ui). To keep
notation concise, we sometimes omit the CAF as a super-
script when it is clear from the context. For an agent i ∈ N
with utility function ui, a coalition C ∈ Ni is individually
rational (IR) if Ai(C, ui) ≥ Ai({i}, ui). Further, a parti-
tion π is individually rational (IR) for agent i if π(i) is an
individually rational coalition.

Common classes of cardinal hedonic games such as the
two specific classes studied in this paper have a straightfor-
ward representation with respect to CAFs. For each agent
i ∈ N with utility function ui,

• additively separable hedonic games (ASHGs) (Bogomol-
naia and Jackson 2002) use the aggregation function AS
defined by AS i(C, ui) =

∑
j∈C\{i} ui(j) and

• modified fractional hedonic games (MFHGs) (Olsen
2012) use the aggregation function MF defined by
MF i(C, ui) =

∑
j∈C\{i} ui(j)

|C|−1 if |C| ≥ 2 and
MF i(C, ui) = 0, otherwise.

2.2 Deviations and Stability
As indicated in the introduction, we distinguish different sta-
bility notions based on single-agent deviations and group de-
viations. Given a partition π ∈ ΠN , agent i ∈ N might
perform a single-agent deviation from π(i) to any coali-
tion C ∈ π ∪ {∅}, resulting in the partition π′ = (π \
{π(i), C}) ∪ {π(i) \ {i}, C ∪ {i}}; and a group of agents
C ⊆ N might perform a group deviation, leading to the par-
tition π′ = (π\{π(j) | j ∈ C})∪{π(j)\C | j ∈ C}∪{C}.
Depending on which agents improve as a result of a devia-
tion, we distinguish the following types of deviations. Agent
i’s single-agent deviation from π(i) toC ∈ π∪{∅}, resulting
in partition π′, is a Nash (NS) deviation if ui(π′) > ui(π).
An NS deviation of i from π to π′ is called

• an individual (IS) deviation if uj(π′) ≥ uj(π) for all
j ∈ C, where C is the coalition to which i deviated; and
• a contractual Nash (CNS) deviation if uj(π′) ≥ uj(π)

for all j ∈ π(i) \ {i}.

NS

ISCNS

SCS

CS

Figure 1: Relations among our stability concepts. Arrows in-
dicate implications. For example, strict core stability (SCS)
implies core stability (CS) and individual stability (IS).

A group deviation of coalition C from π to π′ is
• a core (CS) deviation if ui(π′) > ui(π) for all i ∈ C;

and
• a strict core (SCS) deviation if ui(π′) ≥ ui(π) for all
i ∈ C and uj(π′) > uj(π) for some j ∈ C.

Finally, for all types of deviations introduced above, we
define the respective stability notion of a partition by the ab-
sence of a corresponding deviation. For example, a partition
π is said to be Nash-stable (NS) if there is no NS deviation
from π to another partition. The logical relations among the
resulting stability concepts are illustrated in Figure 1 (see
also Aziz and Savani 2016).

For a given partition, several single-agent or group devi-
ations might be possible. Yet, some deviations seem to be
more reasonable than others. We say that a deviation is IR if
the resulting partition is IR for all deviating agents. For all
our considered stability concepts it holds that if an agent has
a deviation (that is potentially not IR), then she also has an
IR deviation where she forms a singleton coalition.

2.3 Dynamic Coalition Formation
We now introduce our model of dynamic coalition forma-
tion over time, and the concepts of resent and appreciation.
Throughout the paper, we consider sequences of partitions
(πt)t≥0, where for every t ≥ 1, πt evolves from πt−1 by
means of some single-agent or group deviation. We assume
that both the initial coalition structure π0 and the initial util-
ity vectors u0i for each agent i ∈ N are given. However,
utilities change over time as follows. Under resent, agents
decrease their utilities for all deviators that leave them (by
one), while under appreciation, agents increase their utili-
ties for all deviators that join them (by one).1 More formally,
if for some t ≥ 1, πt evolves from πt−1 via a single-agent
deviation of agent k ∈ N , then, for i, j ∈ N ,
• for resentful agents, uti(j) arises from ut−1i (j) as

uti(j) =

{
ut−1i (j)− 1 i 6= k, j = k, j ∈ πt−1(i),

ut−1i (j) else.

• for appreciative agents, uti(j) arises from ut−1i (j) as

uti(j) =

{
ut−1i (j) + 1 i 6= k, j = k, j ∈ πt(i),

ut−1i (j) else.
1Note that our choice of decreasing, resp., increasing the util-

ities by one is somewhat arbitrary, as our theoretical results hold
for any fixed increase or decrease of utilities. However, note that
in case the utility change in each round is not constant, our con-
vergence guarantees are no longer applicable, as, for instance, run-
and-chase situations can occur.
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If for t ≥ 1, πt evolves from πt−1 via a group deviation
of C ⊆ N , then, for i, j ∈ N ,

• for resentful agents, uti(j) arises from ut−1i (j) as

uti(j) =

{
ut−1i (j)− 1 i /∈ C, j ∈ C, j ∈ πt−1(i),

ut−1i (j) else.

• for appreciative agents, uti(j) arises from ut−1i (j) as

uti(j) =

{
ut−1i (j) + 1 i 6= j, i ∈ C, j ∈ C,
ut−1i (j) else.

We are concerned about sequences of partitions that
evolve by deviations with respect to the current util-
ities of the agents. For any stability concept α ∈
{NS , IS ,CNS ,CS ,SCS}, a sequence of partitions (πt)t≥0
is called an execution of an α dynamics if πt evolves from
πt−1 through an α deviation with respect to the utility func-
tions (ut−1i )i∈N . If all deviations are individually rational,
we call the dynamics individually rational, e.g., individually
rational NS dynamics in the case of Nash stability.

An execution of an α dynamics converges if it terminates
after a finite number of T steps in a partition πT that is sta-
ble with respect to (uTi )i∈N under the stability notion α.
We say that the α dynamics converges if every execution of
the α dynamics converges for every initial utility profile and
partition. By contrast, the dynamics cycles if there exists an
infinite execution of the dynamics (for some initial utilities
and partition). The central question of this paper is when dy-
namics converge for resentful or appreciative agents.

It is convenient to use a compact notation for utilities. We
write ut,Ai

i (π) = Ai(π(i), uti) and ut,Ai

i (C) = Ai(C, u
t
i)

for the utility of agent i at time t for a partition π ∈ ΠN or
for coalition C ∈ Ni, respectively. If the CAF Ai is clear
from context, we usually omit it as superscript.

Before our main analysis, we present a useful lemma that
holds for arbitrary dynamics. The lemma can be applied to
show that, from a certain point onwards, every deviation oc-
curs infinitely often in an infinite execution of a dynamic.2

Lemma 2.1. Let (πt)t≥0 be an infinite sequence of parti-
tions induced by single-agent (or group) deviations. Then,
there exists a t0 ≥ 0 such that every single-agent (or group)
deviation performed at some time t ≥ t0 occurs infinitely
often.

Lastly, we call an infinite sequence of partitions π =
(πt)t≥0 periodic if there exist t0 ∈ N and p ∈ N such
that, for all k ∈ N0 and l ∈ {0, . . . , p − 1}, it holds that
πt0+kp+l = πt0+l.

2.4 Properties of Aggregation Functions
We now introduce some useful properties of CAFs. For
a simplified exposition, we give intuitive, informal defini-
tions. A formal treatment can be found in our full version
(Boehmer, Bullinger, and Kerkmann 2022). The CAF of an
agent i ∈ N satisfies

2All missing proofs can be found in our full version (Boehmer,
Bullinger, and Kerkmann 2022).

• aversion to enemies (ATE) if i’s aggregated utility does
not decrease when an enemy leaves i’s coalition.
• individually rational aversion to enemies (IR ATE) if
i’s aggregated utility does not decrease when an enemy
leaves one of i’s individually rational coalitions.
• enemy monotonicity (EM) if decreasing the utility for an

enemy cannot increase i’s aggregated utility for a coali-
tion containing the enemy.
• enemy domination (ED) if in case i’s utility for some

agent j is sufficiently negative and i’s utility for every
other agent is bounded, then no coalition containing j is
individually rational for i.

All of these axioms capture the treatment of enemies. The
first two axioms deal with situations where an enemy leaves
the agent’s coalition, where ATE is stronger than IR ATE.
On the other hand, EM and ED are variable utility condi-
tions describing situations where the utility for an enemy
decreases or some agent turns into a very bad enemy, re-
spectively. Apart from the implication between ATE and IR
ATE, there are no other logical relationships between any
pair of axioms.
Example 2.2. In this example, we consider a game (N, u)
for which the CAF MF violates ATE. LetN = {a, b, c} and
let the single-agent utilities be ua(b) = −1, ua(c) = −3,
ub(a) = 1, and ub(c) = −1. (The utilities uc(a) and uc(b)
are irrelevant.)

Then, removing an enemy can make an agent worse. In-
deed, MF a(N, ua) = −2 > −3 = MF a({a, c}, ua).
Hence, MF violates ATE. On the other hand, as we will see
in Proposition 2.3, removing an enemy from an individually
rational coalition cannot decrease the utility in an MFHG.
For instance, MF b(N, ub) = 0 < 1 = MF b({a, b}, ub). C

Still, classical aggregation functions usually satisfy (most
of) our introduced axioms.
Proposition 2.3. The additively separable CAF AS i sat-
isfies ATE, IR ATE, EM, and ED. The modified fractional
CAF MF i satisfies IR ATE, EM, and ED but violates ATE.

3 Dynamics for Resentful Agents
In this section, we study the convergence of different types
of dynamics for resentful agents. We start by considering
(S)CS and IS dynamics, before turning to CNS and NS dy-
namics.

3.1 Core Stability and Individual Stability
If deviating agents need consensus from their new coalition,
it turns out that resent is a strong force to establish conver-
gence. The intuitive reason for this is that an agent a can
only leave an agent b for a limited number of times until re-
sent prevents that they form a joint coalition again. In fact,
otherwise b’s utility for a becomes arbitrarily negative and
b no longer gives a her consent to join. We will prove that
SCS dynamics, and thereby also CS and IS dynamics, al-
ways converge for a wide class of CAFs.
Theorem 3.1. The SCS, CS, and IS dynamics converge for
resentful agents whose CAFs satisfy aversion to enemies and
enemy monotonicity.
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Proof sketch. We claim that in an infinite sequence of SCS
deviations, there are infinitely many deviations due to which
the previously non-negative utility of some agent for another
is decreased, directly leading to a contradiction. Assume for
the sake of contradiction that, from some time step t0 on, no
deviation decreases the non-negative utility of some agent
for another. So, if agent a leaves agent b and thus b’s utility
for a decreases, then b already had a negative utility for a.
Consequently, by aversion to enemies, each deviation from
t0 onward is a Pareto improvement. Using enemy mono-
tonicity, it can be shown that every sequence of Pareto im-
provements has bounded length, and we thus reach a contra-
diction.

As the cardinal aggregation function AS satisfies aver-
sion to enemies and enemy monotonicity (Proposition 2.3),
Theorem 3.1 in particular implies that the SCS, CS, and IS
dynamics always converge in ASHGs for resentful agents.

Notably, Theorem 3.1 breaks down if we consider a CAF
violating aversion to enemies, even if enemy monotonic-
ity is still satisfied. Indeed, we can then “ignore” individ-
ual utilities. For instance, anonymous hedonic games where
agents only care about the size of their coalitions satisfy en-
emy monotonicity. In such games, resent is clearly irrele-
vant and there exist anonymous hedonic games where IS
dynamics cycle (Brandt, Bullinger, and Wilczynski 2021).
Consequently, a result similar to Theorem 3.1 for aggrega-
tion functions that only satisfy enemy monotonicity cannot
be obtained. On the other hand, it remains an open question
whether enemy monotonicity is necessary for Theorem 3.1.

Unfortunately, MF violates aversion to enemies (Propo-
sition 2.3), implying that Theorem 3.1 cannot be directly
applied to MFHGs for resentful agents. Nevertheless, if we
require the performed SCS deviations to be individually ra-
tional, then we can achieve convergence for a class of games
containing MFHGs (see Proposition 2.3).
Theorem 3.2. The individually rational SCS, CS, and IS dy-
namics converge for resentful agents whose CAFs satisfy in-
dividually rational aversion to enemies and enemy mono-
tonicity.

It remains open whether general SCS, CS, or IS dynamics
for resentful agents may cycle in an MFHG.

3.2 Contractual Nash Stability and Nash Stability
For individually rational NS dynamics, resent helps to estab-
lish convergence for a wide class of games.
Theorem 3.3. The individually rational NS dynamics con-
verges for resentful agents whose CAFs satisfy enemy domi-
nation.

Proof sketch. Assume that there is a game with an infinite
sequence of individually rational NS deviations. Then, by
Lemma 2.1 there is a time step t0 after which each devia-
tion is performed infinitely often. This implies that if agent
a leaves agent b at some point after t0, then b has an arbi-
trarily negative utility for a at some point after t0. Applying
enemy domination, this implies that there is a point in time
after which agent b can never perform an individually ratio-
nal NS deviation to a coalition containing a. Thus, after t0,

no agent can ever be abandoned by an agent that she joined
after t0. Using a potential function argument, one can show
that this implies that the dynamics always converges.

As AS and MF satisfy enemy domination (Proposi-
tion 2.3), Theorem 3.3 implies that the individually rational
NS dynamics converges in ASHGs and MFHGs for resentful
agents. However, we do not know under which conditions
resent is sufficient to guarantee convergence for arbitrary
(not necessarily individually rational) NS dynamics. In this
case, our proof for Theorem 3.3 no longer works because
it is possible that agents join coalitions for which they have
an arbitrarily low utility (if the utility for their abandoned
coalition was even worse). In fact, slightly counterintuitive,
there is a non-trivial example of a cycling NS dynamics in
an MFHG for resentful agents.

Theorem 3.4. The NS dynamics may cycle in MFHGs for
resentful agents.

This result indicates that some condition like aversion to
enemies is probably needed for establishing a convergence
guarantee for general NS dynamics; however, it remains
open whether such a result is possible (even for ASHGs).
Notably, this question for CAFs satisfying aversion to en-
emies is the same as asking whether a CNS dynamics may
cycle: For resentful agents in case of a cycling NS dynamics,
there is also a cycling CNS dynamics.

Proposition 3.5. For resentful agents with CAFs satisfying
aversion to enemies, every sequence of NS deviations con-
tains only finitely many deviations that are not CNS devia-
tions.

4 Dynamics for Appreciative Agents
We now turn to analyzing the effects of appreciation on the
convergence of different types of dynamics. Here, as state-
ments for general CAFs would require the introduction of
(even) further axioms, we focus on AS and MF instead.
We start by establishing a close connection between cycling
dynamics for resentful and appreciative agents in ASHGs,
highlighting a close connection between the two studied
models. Subsequently, we analyze CS and (C)NS dynamics.

4.1 From Resent to Appreciation
We describe how we can transform certain types of infinite
sequences of deviations for resentful agents to sequences for
appreciative agents and vice versa. We focus on ASHGs, yet
believe that similar statements can hold for other classes of
hedonic games. We start with Nash stability.

Theorem 4.1. The following statements are equivalent:

1. There exists an ASHG admitting an infinite and periodic
sequence of NS deviations for resentful agents.

2. There exists an ASHG admitting an infinite and periodic
sequence of NS deviations for appreciative agents.

The idea to prove Theorem 4.1 is to reverse a periodic
fragment of an infinite sequence and to appropriately adjust
the initial utilities. This essentially reverses the roles of re-
sent and appreciation, as the agents that an agent a leaves in
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the sequence for resentful agents correspond to the agents a
joins in the sequence for appreciative agents.

By Proposition 3.5, Theorem 4.1 can be extended to also
include infinite and periodic sequences of CNS deviations
for resentful agents. In fact, the equivalence can be extended
even further, as we show that in ASHGs with appreciative
agents, the question whether there is a cycling NS dynamics
is equivalent to asking for a cycling IS dynamics.

Proposition 4.2. For appreciative agents in ASHGs every
sequence of NS deviations contains only finitely many devi-
ations that are not IS deviations.

The idea is that in every infinite sequence of NS devia-
tions, there exists a certain time step from which on agent a
has a positive utility for each agent b that joins a (because b
has already joined a sufficiently often).

To sum up, combining Theorem 4.1 and Propositions 4.2
and 3.5, we get the following equivalences.

Corollary 4.3. The following statements are equivalent:

1. There exists an ASHG admitting an infinite and periodic
sequence of CNS deviations for resentful agents.

2. There exists an ASHG admitting an infinite and periodic
sequence of NS deviations for resentful agents.

3. There exists an ASHG admitting an infinite and periodic
sequence of NS deviations for appreciative agents.

4. There exists an ASHG admitting an infinite and periodic
sequence of IS deviations for appreciative agents.

4.2 Convergence for Appreciative Agents
We now give an overview under which circumstances ap-
preciation is (not) sufficient to guarantee convergence in
MFHGs and ASHGs. In contrast to resent, appreciation is
not sufficient to guarantee convergence of CS dynamics.3

Theorem 4.4. The individually rational CS dynamics may
cycle in ASHGs and MFHGs for appreciative agents.

However, in the games considered in Theorem 4.4, there
exists an execution of the CS dynamics that converges. This
raises the (open) question whether a converging execution of
the CS dynamics exists for every initial state in ASHGs and
MFHGs for appreciative agents.

Lastly, we consider IS and (C)NS dynamics. In ASHGs
for appreciative agents, it remains open whether IS and NS
dynamics may cycle. In fact, we have seen in Proposition 4.2
that these two questions are equivalent and in Corollary 4.3
that they are very closely related to our open questions con-
cerning resentful agents. On the other hand, for CNS, appre-
ciation is sufficient to guarantee convergence.

Theorem 4.5. The CNS dynamics converges in ASHGs for
appreciative agents.

We proved in Theorem 3.4 that NS dynamics may cycle in
MFHGs for resentful agents. “Reversing” this sequence and
appropriately adjusting the initial utilities leads to a cycling
NS dynamics for appreciative agents.

3For ASHGs, the next statement can be extended to an ASHG
where initial valuations are symmetric by slightly modifying the
game presented by Aziz, Brandt, and Seedig (2013, Figure 2).

steps #coalitions max coalition size

Uniform utilities
resent 60 055 50 1
apprec 4309 2.74 42.57
resent+apprec 15 261 5.26 18.43

Gaussian utilities
resent 968 25.74 25.2
apprec 1226 21.69 25.19
resent+apprec 694 24.64 25.28

Table 2: Some of our experimental results on ASHGs. The
columns contain the name of the dynamics, the average
number of steps until convergence, the average number of
coalitions in the produced outcome, and the average maxi-
mum size of a coalition in the produced outcome.

Theorem 4.6. The individually rational NS dynamics may
cycle in MFHGs for appreciative agents.

It remains open whether IS dynamics may cycle in
MFHGs for appreciative agents. Note that the arguments
from Proposition 4.2 for showing the “equivalence” for
IS and NS dynamics under appreciation do not work
for MFHGs.

5 Simulations
We analyze by means of simulations how resent and appre-
ciation influence NS dynamics in ASHGs by examining the
speed of convergence and the composition of the reached
stable states. This gives insights in the actual process that
leads to convergence beyond the convergence guarantees
and counterexamples presented before. We only provide a
brief overview of some of our results; see our full version
for details (Boehmer, Bullinger, and Kerkmann 2022). We
focus on ASHGs with n = 50 agents and sample 100 games
for each of the following utility models:
Uniform For two agents a, b ∈ N with a 6= b, we sample
ua(b) by sampling an integer from [−100, 100].

Gaussian For each agent a ∈ N , we sample her base quali-
fication µa by sampling an integer from [−100, 100]. For
two agents a, b ∈ N with a 6= b, we sample ua(b) by
drawing an integer from the Gaussian distribution with
mean µb and standard deviation 10.

Our dynamics start with the singleton partition. Subse-
quently, we perform an NS deviation selected uniformly at
random until the dynamics converges. In addition to the con-
cepts considered in our theoretical analysis, we also consider
resentful-appreciative agents, i.e., agents that are both re-
sentful and appreciative. Table 2 shows parts of our results.

Uniform Utilities The original NS dynamics without re-
sent or appreciation did not converge in any of our sampled
games within a limit of 100 000 steps. In contrast to this, for
resentful, appreciative and resentful-appreciative agents, NS
dynamics always converged within this limit. However, re-
sentful agents needed much longer (i.e., on average 60 005
steps) than resentful-appreciative agents (15 261 steps) and
appreciative agents (4309 steps). Thus, while both resent and
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appreciation are helpful to establish convergence, apprecia-
tion is more powerful than resent here, and in fact adding
resent to appreciation rather hurts than helps (as the two can
“cancel out”). Moreover, generally speaking, a lot of steps
until convergence are still needed. In fact the produced out-
comes for all three dynamics are quite “degenerated”: For
resentful agents, in all games, all pairwise utilities have be-
come non-positive resulting in a final outcome only consist-
ing of singletons. For appreciative agents, there is typically
one large coalition containing 40 or more agents together
with one or two small coalitions. Notably, it does not hap-
pen here that eventually all utilities between pairs of agents
are positive but only that certain pairwise utilities become
large enough so that enough agents favor larger coalitions
(even if their utility for some coalition members is negative).
For resentful-appreciative agents, we usually have several
medium-size coalitions in the produced outcomes which are
thus in some sense in between outcomes for resentful agents
and outcomes for appreciative agents. In fact, outcomes for
resentful-appreciative agents also have a stronger connec-
tion to the initial utilities than for resent or appreciation.
On average, significantly fewer agents have an NS deviation
with respect to their initial utilities.

Gaussian Utilities For Gaussian utilities, the original NS
dynamics without resent or appreciation converged for 3 of
our 100 games within 100 000 steps. In contrast, for resent-
ful, appreciative, and resentful-appreciative agents, NS dy-
namics converged in all games. In particular, convergence
was much quicker (at most 2000 steps) than under uniform
utilities, indicating that Gaussian utilities seem to facilitate
reaching stable states in ASHGs compared to uniform utili-
ties. The difference between resentful agents (converging in
on average 968 steps), appreciative agents (1226 steps), and
resentful-appreciative agents (694 steps) is less profound
here with resentful-appreciative agents converging fastest.
Moreover, the outcomes produced by our three dynamics are
quite similar and are in fact all quite close to being stable in
the initial game (only around 10% of the agents have an NS
deviation with respect to their initial utilities). The outcomes
typically consist of one large coalition containing roughly
half of the agents (these are usually the agents with a posi-
tive ground qualification), while other agents are placed into
coalitions of size one or two.

6 Discussion
We initiated the study of hedonic games with time-
dependent utility functions being influenced by previous de-
viations. In our theoretical analysis, we have investigated
whether the resentful or appreciative perception of other
agents is sufficient to guarantee convergence for dynam-
ics based on various deviation types. We have posed sev-
eral open questions throughout the paper (even showing the
equivalence of some of them in Corollary 4.3). For future
work, complementing our simulations, it would be interest-
ing to theoretically analyze the effects of combining resent
and appreciation. A concrete open question here is whether
CS dynamics are guaranteed to converge, which is the case
for resentful agents but not for appreciative agents. More

generally, it is also possible to consider other effects that
could affect agents’ valuations over time and potentially
contribute to additional convergence results.

Deviator-Resent One specific idea is deviator-resent,
which models the restraint of a deviator to revert her de-
cision to abandon other agents. In this case, an agent leaving
coalition C to join coalition C ′ decreases her utility for all
agents in C \ C ′. An intuitive reason why deviator-resent
can contribute to the convergence of dynamics is that, af-
ter agent a abandons a coalition C, a’s utility for C de-
creases and thus a is less likely to join C again. However,
deviator-resent does not resolve the run-and-chase example,
implying that NS dynamics may cycle for a wide variety of
hedonic games with deviator-resentful agents. In contrast,
for CNS dynamics, we show that deviator-resent guarantees
convergence in ASHGs and MFHGs if agents only devi-
ate to non-singleton coalitions if they strictly prefer them
to being alone. While this additional constraint might look
arbitrary, we remark that it is needed as there are ASHGs
and MFHGs with infinite sequences of individually ratio-
nal CNS deviations. Deviator-resent is nevertheless a pow-
erful force for stability, as CS dynamics with individual ra-
tional deviations in MFHGs and ASHGs and IS dynamics
in ASHGs always converge. However, deviator-resent is not
sufficient to guarantee convergence of IS and general CS dy-
namics in MFHGs, yielding a different behavior of ASHGs
and MFHGs for IS dynamics. Notably, we did not prove
any such contrasts in our analysis of resent and appreci-
ation. Overall, our results indicate that deviator-resent has
clear ramifications on convergence guarantees, yet the gen-
eral picture seems to be slightly more nuanced than for re-
sent or appreciation.

Shortest Converge Sequences In our simulations, we
have analyzed how fast random executions of NS dynamics
converge for resentful and/or appreciative agents. An inter-
esting related direction to shed further light on the power of
resent and appreciation is to analyze the length of the short-
est converging execution of dynamics. The corresponding
computational problem is to decide whether in a given game
(where a stable outcome is guaranteed to be reachable), there
is a converging deviation sequence of a given length from
some given starting partition. Notably, this problem has not
been addressed in the literature for classical dynamics, yet
is of no less relevance in the general case. While existing
hardness results for deciding whether a game admits a sta-
ble outcome suggest the hardness of the shortest converge
sequence problem for the general case, they do not directly
imply hardness, as stable states might not be reachable from
some initial partition via the allowed deviations. Moreover,
convergence might require exponential time from some ini-
tial partition (Brandt, Bullinger, and Tappe 2022). In our
full version (Boehmer, Bullinger, and Kerkmann 2022), we
present three reductions showing that for ASHGs deciding
whether we can converge in a given number of steps is NP-
hard for CS, IS, CNS, and NS dynamics for resentful, for
appreciative, and for classical agents (with constant utility
functions over time).
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