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Abstract

We study the fair allocation of indivisible goods among
agents with identical, additive valuations but individual bud-
get constraints. Here, the indivisible goods—each with a spe-
cific size and value—need to be allocated such that the bundle
assigned to each agent is of total size at most the agent’s bud-
get. Since envy-free allocations do not necessarily exist in the
indivisible goods context, compelling relaxations—in partic-
ular, the notion of envy-freeness up to k goods (EFk)—have
received significant attention in recent years. In an EFk al-
location, each agent prefers its own bundle over that of any
other agent, up to the removal of k goods, and the agents
have similarly bounded envy against the charity (which cor-
responds to the set of all unallocated goods). It has been
shown in prior work that an allocation that satisfies the bud-
get constraints and maximizes the Nash social welfare is 1/4-
approximately EF1. However, the computation (or even exis-
tence) of exact EFk allocations remained an intriguing open
problem.
We make notable progress towards this by proposing a sim-
ple, greedy, polynomial-time algorithm that computes EF2
allocations under budget constraints. Our algorithmic result
implies the universal existence of EF2 allocations in this fair
division context. The analysis of the algorithm exploits intri-
cate structural properties of envy-freeness. Interestingly, the
same algorithm also provides EF1 guarantees for important
special cases. Specifically, we settle the existence of EF1 al-
locations for instances in which: (i) the value of each good is
proportional to its size, (ii) all goods have the same size, or
(iii) all the goods have the same value. Our EF2 result extends
to the setting wherein the goods’ sizes are agent specific.

1 Introduction
Discrete fair division is an actively growing field of re-
search at the interface of computer science, mathematical
economics, and multi-agent systems (Brandt et al. 2016;
Aziz et al. 2022; Amanatidis et al. 2022). This study is moti-
vated, in large part, by resource-allocation settings in which
the underlying resources have to be assigned integrally and
cannot be fractionally divided among the agents. Notable
examples of such settings include fair allocation of courses
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(Budish 2011; Othman, Sandholm, and Budish 2010), public
housing units (Deng, Sing, and Ren 2013), and inheritance
(Goldman and Procaccia 2015).

A distinguishing feature of discrete fair division is its de-
velopment of fairness notions that are applicable in the con-
text of indivisible goods. A focus on relaxations is neces-
sitated by the fact that existential guarantees, under clas-
sic fairness notions, are scarce in the context of indivis-
ible goods. The fundamental fairness criterion of envy-
freeness—which requires that each agent values the bundle
assigned to her over that of any other agent—cannot be guar-
anteed in the indivisible-goods setting; consider the simple
example of a single indivisible good and multiple agents.
Interestingly, such pathology can be addressed by consider-
ing a natural relaxation: prior works have shown that, among
agents with monotone valuations, there necessarily exists an
allocation in which envy towards any agent can be resolved
by the removal of a good (Lipton et al. 2004; Budish 2011).

More generally, recent research in discrete fair division
has addressed existential and algorithmic questions related
to the notion of envy-freeness up to k goods (EFk); see, e.g.,
the survey (Suksompong 2021) and references therein. In an
EFk allocation, each agent prefers its own bundle over that
of any other agent, up to the removal of k goods from the
other agent’s bundle. A mature understanding has been de-
veloped in recent years specifically for allocations that are
envy-free up to one good (EF1), e.g., it is known that, un-
der additive valuations, Pareto efficiency can be achieved in
conjunction with EF1 (Caragiannis et al. 2019; Barman, Kr-
ishnamurthy, and Vaish 2018).

However, most works on EF1, and further relaxations, as-
sume that all possible assignments of the indivisible goods
(among the agents) are feasible. On the other hand, combi-
natorial constraints are an unavoidable requirement in many
resource-allocation settings. As an illustrative example to
highlight the significance of constraints in discrete fair divi-
sion settings, consider a curator tasked with fairly partition-
ing artwork among different museums (i.e., among different
agents).1 Each artifact (indivisible good) has an associated
value and a space requirement (depending on its size). Note
that the artifacts assigned to a particular museum must fit

1This stylized example is adapted from (Gourvès, Monnot, and
Tlilane 2014)
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within its premises and, hence, in this setting, not all alloca-
tions are feasible. Indeed, here the curator needs to identify a
partition of the artifacts that is not only fair but also feasible
with respect to the museums’ space constraints. The current
work addresses an abstraction of this problem.

We study the fair allocation of m indivisible goods among
n agents with identical, additive valuations but individual
budget constraints. Here, each good g ∈ [m] has a size
s(g) ∈ Q+ and value v(g) ∈ Q+, and the goods need to
be partitioned such that the bundle assigned to each agent
a ∈ [n] is of total size at most the agent’s budget Ba ∈ Q+.
Note that in this constraint setting, one might not be able
to assign all the m goods among the n agents. Specifically,
consider a case wherein the total size s([m]) >

∑n
a=1 Ba.

To account for goods that might remain unallocated, we uti-
lize the construct of charity. This idea has been used in prior
works; see, e.g., (Wu, Li, and Gan 2021; Chaudhury et al.
2021). The subset of goods that are not assigned to any of
the n agents are, by default, given to the charity.

In this framework, we consider envy-freeness up to k
goods (EFk) while respecting the budget constraints. Re-
call that in the current model, the agents have identical,
additive valuations, i.e., for any agent a ∈ [n], the value
of any subset of goods S ⊆ [m] is the sum of values of
the goods in it, v(S) :=

∑
g∈S v(g). Also, we say that for

an agent a ∈ [n]—with assigned bundle Aa ⊆ [m]—EFk
holds against a subset F iff the value of the assigned bundle,
v(Aa), is at least as much as the value of F , up to the re-
moval of k goods from F . An allocation (A1, A2, . . . An)—
in which agent a ∈ [n] receives subset Aa—is deemed to
be EFk iff for every agent a ∈ [n], the two following condi-
tions hold (i) For every other agent b ∈ [n] and every sub-
set F ⊆ Ab of size at most Ba, the EFk guarantee holds
for agent a against F . (ii) For every subset F of goods as-
signed to the charity, i.e., for every F ⊆ [m] \ ∪ni=1Ai, such
that s(F ) ≤ Ba, EFk holds for agent a against F . That is,
while evaluating envy from agent a towards agent b (resp.,
the charity), we consider, within Ab (resp., [m] \ ∪ni=1Ai),
all subsets of size at most Ba, the budget of agent a.

The fair-division model with budget constraints was pro-
posed by Wu et al. (2021). Addressing agents with dis-
tinct, additive valuations, Wu et al. (2021) show that an
allocation that satisfies the budget constraints and maxi-
mizes the Nash social welfare is 1/4-approximately EF1. A
manuscript by Gan et al. (2021) improves this guarantee to
1/2-approximately EF1 for agents with identical, additive
valuations. In addition, Gan et al. (2021) show that if all the
agents have the same budget and in the case of two agents,
an EF1 allocation can be computed efficiently. However, for
a general number of agents with distinct budgets, the compu-
tation (or even existence) of exact EFk allocations remained
an intriguing open problem.

1.1 Our Results and Techniques
We make notable progress towards this open question by
proposing a simple, greedy, polynomial-time algorithm that
computes EF2 allocations under budget constraints (Theo-
rem 1). Our algorithmic result implies the universal exis-
tence of EF2 allocations in this fair division context. The

same algorithm also provides EF1 guarantees for important
special cases. Specifically, we settle the existence of EF1 al-
locations for instances in which: (i) the value of each good
is proportional to its size, (ii) all goods have the same size,
or (iii) all the goods have the same value; see Theorems 8,
9, and 10. That is, we prove that if the densities, values, or
sizes of the goods are homogeneous, then an EF1 allocation
is guaranteed to exist. Furthermore, our EF2 result extends
to the setting wherein the goods’ sizes are agent-specific.
This extension appears in the the full version of the current
work (Barman et al. 2022).

Our algorithm (Algorithm 1) allocates goods in decreas-
ing order of density2 while maintaining the budget con-
straints. It is relevant to note that while the design of the
algorithm is simple, its analysis rests on intricate structural
properties of envy-freeness under budget constraints. We ob-
tain the EF2 and EF1 guarantees using ideas that are notably
different from the ones used in the unconstrained settings; in
particular, they are different from the analysis of the envy-
cycle-elimination method (Lipton et al. 2004) or the round-
robin algorithm (Aziz et al. 2022).

Complementing the robustness of the algorithm, we also
provide an example that shows that the greedy algorithm
might not find an EF1 allocation, i.e., the EF2 guarantee is
tight (Section 3.6).

The Knapsack Problem. The budget constraints, as consid-
ered in this work, are the defining feature of the classic
knapsack problem. The knapsack problem and its numerous
variants have been extensively studied in combinatorial op-
timization, approximation and online algorithms (Martello
and Toth 1990; Kellerer, Pferschy, and Pisinger 2004; Al-
bers, Khan, and Ladewig 2021). The knapsack problem finds
many applications in practice (Skiena 1999). Recall that the
objective in the knapsack problem is to find a subset with
the maximum possible value, subject to a single budget con-
straint. That is, the goal in the standard knapsack problem is
utilitarian and not concerned with fairness.

Algorithmic aspects of the special cases considered in the
current paper have been addressed in prior works: (i) knap-
sack instances in which the value of each good is propor-
tional to its size are known as proportional instances (Cy-
gan, Jeż, and Sgall 2016) or subset-sum instances (Pisinger
2005), (ii) instances where all the goods have the same value
are referred to as cardinality (Gálvez et al. 2021; Gálvez
et al. 2021; Khan et al. 2021) or unit (Cygan, Jeż, and Sgall
2016) instances. In addition, we also study the special case
wherein all the goods have the same size.

Proportional and cardinality versions of the knapsack
problem are known to be technically challenging by them-
selves. In particular, in the context of online algorithms, it
is known that there does not exist a deterministic algorithm
with a bounded competitive ratio for these two versions
(Lueker 1998; Marchetti-Spaccamela and Vercellis 1995).

The knapsack problem has also been studied from the
perspective of group fairness (Patel, Khan, and Louis 2021)

2The density of a good g is defined to be its value-by-size ratio,
v(g)/s(g).
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and fairness in aggregating voters’ preferences (Fluschnik
et al. 2019). In these works, there is only one knapsack,
and the single, selected subset of goods induces (possibly
distinct) valuations among the agents. By contrast, the
current work addresses multiple knapsacks, one for each
agent.

Generalized Assignment Problem (GAP). We also consider
instances in which the goods’ sizes are agent specific. While
such instances constitute a generalization of the formulation
considered in the rest of the paper, they themselves form a
special case of the instances of a well-studied problem called
GAP (Shmoys and Tardos 1993). In GAP, both the sizes and
values of goods are agent specific. It is known that value
maximization in GAP is APX-hard. In fact, even with com-
mon values and agent-specific sizes, the value-maximization
objective does not admit a polynomial-time approximation
scheme (Chekuri and Khanna 2005).

1.2 Additional Related Work
As mentioned previously, EFk allocations have been stud-
ied in various discrete fair division contexts (Suksompong
2021). In particular, Bilò et al. (2022) consider settings in
which the indivisible goods correspond to vertices of a given
graph G, and each agent must receive a connected subgraph
of G. It is shown in (Bilò et al. 2022) that if the graph G is
a path, then, under the connectivity constraint, an EF2 allo-
cation is guaranteed to exist. Under connectivity constraints
imposed by general graphs G, Bei et al. (2022) characterize
the smallest k for which an EFk allocation necessarily ex-
ists among two agents (i.e., this result addresses the n = 2
case). We also note that exact EFk guarantees are incom-
parable with multiplicative approximations, as obtained in
(Wu, Li, and Gan 2021).

The current work focuses on settings in which the agents
have an identical (additive) valuation over the goods. We
note that, in the context of budget constraints, identical val-
uations already provide a technically-rich model. Fair divi-
sion with identical valuations has been studied in multiple
prior works; see, e.g., (Plaut and Roughgarden 2020; Bar-
man and Sundaram 2021).

2 Notation and Preliminaries
We study the problem of fairly allocating a set of indivis-
ible goods [m] = {1, 2, . . . ,m} among a set of agents
[n] = {1, 2, . . . , n} with budget constraints. In the setup,
every good g ∈ [m] has a size s(g) ∈ Q+ and a value
v(g) ∈ Q+. The density of any good g ∈ [m] will be
denoted as ρ(g) := v(g)/s(g). Furthermore, every agent
a ∈ [n] has an associated budget Ba ∈ Q+ that specifies an
upper bound on the cumulative size of the set of goods that
agent a can receive. We conform to the framework wherein
the valuations and sizes of the goods are additive; in par-
ticular, for any subset of goods S ⊆ [m], we write the
value v(S) :=

∑
g∈S v(g) and the size s(S) :=

∑
g∈S s(g).

Hence, in this setup, a subset S ⊆ [m] can be assigned
to agent a ∈ [n] only if s(S) ≤ Ba, and the subset
has value v(S) for the agent. An instance of the fair divi-

sion problem with budget constraints is specified as a tuple
⟨[m], [n], {v(g)}g∈[m], {s(g)}g∈[m], {Ba}a∈[n]⟩.

Note that in fair division settings with constraints, one
might not be able to assign all the m goods among the n
agents. Specifically, consider a setting wherein s([m]) >∑n

a=1 Ba. To account for goods that might remain unallo-
cated, we utilize the construct of charity. The goods that are
not assigned to any of the n agents are, by default, given to
the charity agent.

An allocation A = (A1, A2, . . . , An) refers to a tuple of
disjoint sets of goods, i.e., for every a ∈ [n], Aa ⊆ G and
for all a, b ∈ [n] such that a ̸= b, Aa ∩ Ab = ∅. Here Aa

indicates the set of goods allocated to agent a. Throughout,
we will maintain allocationsA = (A1, A2, . . . , An) that are
feasible, i.e., satisfy the budget constraints of all the agents,
s(Aa) ≤ Ba for every agent a ∈ [n]. As mentioned above,
the set of remaining goods, [m] \ (A1 ∪A2 ∪ · · · ∪An), will
be assigned to the charity.

Next, we define the fairness notions studied in this work.
Consider an allocation A = (A1, A2, . . . , An). An agent
a ∈ [n] is said to be envy-free up to one good (EF1) towards
agent b ∈ [n] iff for every subset F ⊆ Ab, with s(F ) ≤ Ba

(and |F | ≥ 1), there exists a good f ∈ F such that v(Aa) ≥
v(F \ {f}). Further, an agent a ∈ [n] is said to be EF1
towards the charity iff for every subset F ⊆ [m] \ ∪na=1Aa,
with s(F ) ≤ Ba (and |F | ≥ 1), there exists a good f ∈ F
such that v(Aa) ≥ v(F \ {f}). The allocation A is said to
be EF1 iff every agent a ∈ [n] is EF1 towards every other
agent b ∈ [n] and the charity. Analogously, we define EF2:

Definition 1 (EF2). Let A = (A1, A2, . . . , An) be an ar-
bitrary allocation. An agent a ∈ [n] is said to be envy-free
up to two goods (EF2) towards agent b ∈ [n] iff for every
subset F ⊆ Ab, with s(F ) ≤ Ba (and |F | ≥ 2), there exist
goods f1, f2 ∈ F such that v(Aa) ≥ v(F \ {f1, f2}). Fur-
ther, an agent a ∈ [n] is said to be EF2 towards the charity
iff for every subset F ⊆ [m] \ ∪na=1Aa, with s(F ) ≤ Ba

(and |F | ≥ 2), there exist goods f1, f2 ∈ F such that
v(Aa) ≥ v(F \ {f1, f2}). The allocation A is said to be
EF2 iff every agent a ∈ [n] is EF2 towards every other agent
b ∈ [n] and the charity.

Throughout, we will assume that the goods have distinct
densities – this assumption holds without loss of generality
and can be enforced by perturbing the densities (and appro-
priately the values) by sufficiently small amounts. The as-
sumption ensures that, in any nonempty subset S ⊆ [m],
the good with the maximum density argmaxg∈S ρ(g) is
uniquely defined. Also, indexing the goods, in any subset
S = {g1, g2, . . . , gk}, in decreasing order of density results
in a unique ordering with ρ(g1) > ρ(g2) > . . . > ρ(gk).
For any subset S ⊆ [m] and good g ∈ [m], we will use the
shorthands S + g := S ∪ {g} and S − g := S \ {g}.

3 The Density Greedy Algorithm
This section develops a greedy algorithm (Algorithm 1 -
DensestGreedy) that allocates goods in decreasing order
of density, while maintaining the budget constraints. We will
prove that the algorithm achieves EF2 for general budget-
constrained instances and EF1 for multiple special cases.
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Theorem 1. For any given fair divi-
sion instance with budget constraints
⟨[m], [n], {v(g)}g∈[m], {s(g)}g∈[m], {Ba}a∈[n]⟩, Algo-
rithm 1 (DensestGreedy) computes an EF2 allocation in
polynomial time.

Algorithm 1: DensestGreedy – Given instance
⟨[m], [n], {v(g)}g, {s(g)}g, {Ba}a⟩, allocate the goods
[m] among agents [n] (the unassigned goods go to charity).

1: Initialize allocation (A1, . . . , An) ← (∅, . . . , ∅). Also,
define the set of active agents N := [n] and the set of
unallocated goods G := [m].

2: while G ̸= ∅ and N ̸= ∅ do
3: Select arbitrarily a minimum-valued agent a ∈ N ,

i.e., a = argmin
b∈N

v(Ab).

4: if for all goods g ∈ G we have s(Aa + g) > Ba then
5: Set agent a to be inactive, i.e., N ← N \ {a}.
6: else
7: Write g′ = argmax

g∈G: s(Aa+g)≤Ba

ρ(g) and update

Aa ← Aa + g′ along with G← G− g′.
8: end if
9: end while

10: return (A1, A2, . . . , An)

Recall the assumption that the goods have distinct densi-
ties and, hence, in Line 7 we obtain a unique good g′ (among
the ones that fit within agent a’s available budget). While
our goal is to find a fair, integral allocation of the (indivisi-
ble) goods, for analytic purposes, we will consider fractional
assignment of goods to agents. Towards this, for any scalar
α ∈ [0, 1] and good g ∈ [m], we define α · g to be a new
good whose size and value are α times the size and value
of good g, respectively. With fractional goods, we obtain set
difference between subsets I and J by adjusting the frac-
tional amount of each good present in I . Formally, for sub-
sets I = {g1, g2, . . . , gk} and J , let αi denote the fraction of
the good gi present in J ,3 then I \J := ∪ki=1{(1− αi) · gi}.

We next define key constructs for the analysis. For any
subset of goods S, we define two density-wise prefix subsets
of S; in particular, S(i) is the subset of the i densest goods
in S and S[B] consists of the densest goods in S of total size
B. Formally, for any subset of goods S = {s1, s2, . . . , sk},
indexed in decreasing order of density, and any index 1 ≤
i ≤ |S|, write S(i) := {s1, . . . , si}. Furthermore,

Definition 2 (Prefix Subset S[B]). For any subset of goods
S = {g1, g2, . . . , gk}, indexed in decreasing order of den-
sity, and for any nonnegative threshold B < s(S), let P =
{g1, . . . , gℓ−1} be the (cardinality-wise) largest prefix of S
such that s(P ) ≤ B. Then, we define S[B] := P ∪ {α · gℓ},
where α = B−s(P )

s(gℓ)
.

If the threshold B ≥ s(S), then we simply set S[B] = S.

3Note that, if αi = 0, then the good gi is not included in J .
Complementarily, if αi = 1, then the good gi is completely in-
cluded in J . Also, gi itself could be a fractional good.

Note that in S[B] at most one good is fractional and, for
B ≤ s(S), the size of S[B] is exactly equal to B. It is also
relevant to observe that, if Aa is the subset of goods assigned
to agent a ∈ [n] at the end of Algorithm 1, then A

(i)
a is in

fact the set of the first i goods assigned to agent a in the
algorithm; recall that the algorithm assigns the goods in de-
creasing order of density. The following two propositions
provide useful properties of Algorithm 1 and are based on
the algorithm’s selection criteria. All the missing proofs, in-
cluding the ones of these two propositions, appear in the full
version of the paper (Barman et al. 2022).

Proposition 1. Let X = {g1, g2, . . . , gk} denote the set
of goods assigned to an agent a ∈ [n] i.e.,X = Aa and
Y = {h1, h2, . . . , hℓ} be the set of goods assigned to one
of the agents b ∈ [n], or to the charity, i.e., Y = Ab or
Y = [m]\ ∪ni=1 Ai , at the end of Algorithm 1. Further,
let the goods in the sets X,Y be indexed in decreasing or-
der of density. For indices i < |X| and j < |Y |, sup-
pose v

(
X(i)

)
< v

(
Y (j)

)
and s

(
X(i) + hj+1

)
≤ Ba. Then,

ρ(gi+1) > ρ(hj+1).

Proposition 2. Let X = {g1, g2, . . . , gk} denote the
set of goods assigned to an agent a ∈ [n] and Y =
{h1, h2, . . . , hℓ} be the set of goods assigned to one of the
agents b ∈ [n], or to the charity, at the end of Algorithm
1. Further, let the goods in the sets X,Y be indexed in de-
creasing order of density. If, for any index j < |X|, the size
s(X + hj+1) ≤ Ba, then we have v(X) ≥ v

(
Y (j)

)
.

We define the function EFCount(·) to capture envy count,
i.e., the number of goods that need to be removed in order to
achieve envy-freeness. Specifically, for any subset of goods
X,Y , we define EFCount(X,Y ) as the minimum number
of goods whose removal from Y yields a subset of goods
with value at most v(X),

EFCount(X,Y ) := min
R⊆Y : v(Y \R)≤v(X)

|R| (1)

3.1 Structural Properties of Envy Counts
This section develops important building blocks for the al-
gorithm’s analysis.

Lemma 2. For any subset of goods X and Y along with any
index i < |Y |, let T := s

(
Y (i)

)
and T̂ := s

(
Y (i+1)

)
. Then,

EFCount
(
X[T̂ ], Y [T̂ ]

)
≤ EFCount

(
X [T ], Y [T ]

)
+ 1.

Proof. Write c := EFCount
(
X [T ], Y [T ]

)
. Therefore, by

definition, there exists a size-c subset R ⊆ Y [T ] with the
property that v(X [T ]) ≥ v(Y [T ] \ R). Define subset R′ :=
R∪{hi+1}, where hi+1 is the good in the set Y (i+1) \Y (i).
For this set R′ of cardinality c+ 1, we have

v
(
X [T̂ ]

)
≥ v

(
X [T ]

)
≥ v

(
Y [T ] \R

)
= v

(
Y [T̂ ] \R′

)
.

This implies EFCount
(
X[T̂ ], Y [T̂ ]

)
≤ c+1, and the lemma

stands proved.
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The following lemma shows that if EFCount from a sub-
set X to a subset Y is more than two, then we can select
prefix subsets of X and Y such that the count becomes ex-
actly equal to two.
Lemma 3. Let X and Y be any subsets of goods with the
property that EFCount(X,Y ) ≥ 2. Then, there exists an
index t ≤ |Y | such that, with T := s

(
Y (t)

)
, we have

EFCount
(
X [T ], Y [T ]

)
= 2.

Proof. The lemma essentially follows from a discrete ver-
sion of the intermediate value theorem. For indices t ∈
{0, 1, 2, . . . , |Y |}, define the function h(t) := s

(
Y (t)

)
,

i.e., h(t) denotes the size of the t densest goods in Y .
Extending this function, we consider the envy count at
different size thresholds; in particular, write H(t) :=
EFCount

(
X [h(t)], Y [h(t)]

)
for each t ∈ {0, 1, 2, . . . , |Y |}.

Note that H(0) = 0. We will next show that (i)H(|Y |) ≥ 2
and (ii) the discrete derivative of H is at most one, i.e.,
H(t+ 1)−H(t) ≤ 1 for all 0 ≤ t < |Y |. These properties
of the integer-valued function H imply that there necessar-
ily exists an index t∗ such that H(t∗) = 2. This index t∗

satisfies the lemma.
Therefore, we complete the proof by establishing proper-

ties (i) and (ii) for the function H(·). For (i), note that the
definition of the prefix subset gives us v(X) ≥ v

(
X [s(Y )]

)
.

Hence, EFCount
(
X [s(Y )], Y

)
≥ EFCount(X,Y ) ≥ 2; the

last inequality follows from the lemma assumption. Since
h(|Y |) = s(Y ), we have H(|Y |) ≥ 2. Property (ii) follows
directly from Lemma 2. This completes the proof.

The next lemma will be critical in our analysis. At a high
level, it asserts that if we have two subsets X ′ and Z ′ with
EFCount(X ′, Z ′) = 2 and one adds more value into X ′ than
Z ′, then the envy count does not increase.
Lemma 4. Given two subsets of goods X and Z along with
two nonnegative size thresholds T, T̂ ∈ R+ with the proper-
ties that

• EFCount
(
X [T ], Z[T̂ ]

)
= 2 and

• v
(
X \X [T ]

)
≥ v

(
Z \ Z[T̂ ]

)
.

Then, EFCount(X,Z) ≤ EFCount
(
X [T ], Z[T̂ ]

)
= 2.

Proof. Given that EFCount
(
X [T ], Z[T̂ ]

)
= 2, there exist

two goods g′1, g
′
2 ∈ Z[T̂ ] such that v

(
Z[T̂ ] − g′1 − g′2

)
≤

v
(
X [T ]

)
. Now, using the definition of the prefix subsets

(Definition 2) we get

v(X) = v
(
X [T ]

)
+ v

(
X \X [T ]

)
≥ v

(
Z[T̂ ] − g′1 − g′2

)
+ v

(
X \X [T ]

)
≥ v

(
Z[T̂ ] − g′1 − g′2

)
+ v

(
Z \ Z[T̂ ]

)
(via lemma assumption)

= v(Z)− (v(g′1) + v(g′2)) (2)

The definition of the prefix subset Z[T̂ ] ensures that, cor-
responding to goods g′1, g

′
2 ∈ Z[T̂ ], there exist two goods

g1, g2 ∈ Z such that v(g1) + v(g2) ≥ v(g′1) + v(g′2). This
bound and inequality (2) give us v(X) ≥ v(Z − g1 − g2).
This implies EFCount(X,Z) ≤ 2 and completes the proof
of the lemma.

Remark 1. Lemma 4 continues to hold when
EFCount

(
X [T ], Z[T̂ ]

)
= c, for a general integer c ≥ 1.

3.2 Proof of Theorem 1: DensestGreedy
Achieves EF2

This subsection establishes Theorem 1. The runtime analy-
sis of the algorithm is direct. Therefore, we focus on prov-
ing that DensestGreedy necessarily finds an EF2 alloca-
tion. Towards this, let X = {x1, x2, . . . , xk} be the sub-
set of goods allocated to a fixed agent a ∈ [n], and let
Y = {y1, y2, . . . , yℓ} be the subset of goods allocated to an
agent b ∈ [n] or to the charity at the end of DensestGreedy.
The goods in both X and Y are indexed in decreasing order
of density. Proving EF2 between the sets of goods X and Y
corresponds to showing that, for any subset of goods Z ⊆ Y ,
with s(Z) ≤ Ba, we have EFCount(X,Z) ≤ 2.

Consider any such subset Z and index its goods in de-
creasing order of density, Z = {z1, z2, . . . , zℓ′}. Note that,
if EFCount(X,Z) ≤ 1, we already have the EF2 guaran-
tee. Therefore, in the remainder of the proof we address the
case wherein EFCount(X,Z) ≥ 2. We will in fact show
that this inequality cannot be strict, i.e., it must hold that the
envy count is at most 2 and, hence, we will obtain the EF2
guarantee. Our proof relies on carefully identifying certain
prefix subsets, showing that they satisfy relevant properties,
and finally invoking Lemma 4.

We start by considering function h(i) which denotes the
size of the i densest goods in set Z, i.e., h(i) := s(Z(i)) for
i ∈ {0, 1, 2, . . . , |Z|}. Furthermore, define index

t := min
{
i : EFCount

(
X [h(i)], Z(i)

)
= 2

}
(3)

Figure 1: Figure illustrating size thresholds τ , τ̂ , and the
good gZ .

Existence of such an index t ≥ 2 follows from Lemma 3.
Also, note that Z(i) = Z [h(i)]. We will denote the tth good
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in Z by gZ , i.e., gZ = zt. In addition, using t we define the
following two size thresholds (see Figure 1)

τ := s
(
Z(t−1)

)
and τ̂ := s

(
Z(t)

)
(4)

That is, τ = h(t − 1) and τ̂ = h(t). Now,
Lemma 2 and the definition of t (equation (3)) give us
EFCount

(
X [τ ], Z [τ ]

)
≥ 1. Furthermore, using the minimal-

ity of t we get EFCount
(
X [τ ], Z [τ ]

)
< 2. Hence,

EFCount
(
X [τ ], Z [τ ]

)
= 1 (5)

We will establish two properties for the sets X
and Z under consideration and use them to invoke
Lemma 4. Specifically, in Lemma 5 we will show that
EFCount

(
X [τ ], Z [τ̂ ]

)
= 2 and in Lemma 7 we prove

v
(
X \X [τ ]

)
≥ v

(
Z \ Z [τ̂ ]

)
. These are exactly the two

properties required to apply Lemma 4 with T = τ and
T̂ = τ̂ .
Lemma 5. EFCount

(
X [τ ], Z [τ̂ ]

)
= 2.

Proof. Since EFCount
(
X [τ ], Z [τ ]

)
= 1 (see equation (5)),

there exists a good g1 ∈ Z [τ ] such that v
(
X [τ ]

)
≥

v
(
Z [τ ] − g1

)
. Also, by definition, we have Z [τ̂ ] = Z [τ ] ∪

{gZ}. Hence, the previous inequality reduces to v
(
X [τ ]

)
≥

v
(
Z [τ̂ ] − gZ − g1

)
. That is, removing g1 and gZ from Z [τ̂ ]

gives us a set with value at most that of X [τ ]. Therefore,
we have EFCount

(
X [τ ], Z [τ̂ ]

)
= 2. The lemma stands

proved.

We define γ as the size of the goods in X that are at least
as dense as gZ , i.e.,

γ :=
∑

g∈X:ρ(g)≥ρ(gZ)

s(g) (6)

We will establish bounds considering γ and use them to
prove Lemma 7 below.

Claim 6. It holds that γ ≤ τ̂ and v
(
X [γ]

)
< v

(
Z [τ ]

)
.

Proof. We will first establish the stated upper bound on γ.
Assume, towards a contradiction, that γ > τ̂ . By definition
of γ, we have that all the goods in X [γ] have density at least
ρ(gZ). Now, given that γ > τ̂ , we get that the density of each
good in X [τ̂ ] is at least ρ(gZ). In particular, all the goods
in the set X [τ̂ ] \ X [τ ] are at least as dense as gZ . Hence,
v
(
X [τ̂ ] \X [τ ]

)
≥ v

(
Z [τ̂ ] \ Z [τ ]

)
= v(gZ). This inequal-

ity and equation (5) give us EFCount(X [τ̂ ], Z [τ̂ ]) ≤ 1; see
Lemma 4. This bound, however, contradicts the definition of
t (and, correspondingly, τ̂ ) as specified in equation (3). This
gives us the desired upper bound, γ ≤ τ̂ .

Next, we prove the second inequality from the claim.
For a contradiction, assume that v

(
X [γ]

)
≥ v

(
Z [τ ]

)
. Since

γ ≤ τ̂ , we further get v
(
X [τ̂ ]

)
≥ v

(
Z [τ ]

)
= v

(
Z [τ̂ ] − gZ

)
.

That is, EFCount
(
X [τ̂ ], Z [τ̂ ]

)
≤ 1. This envy count contra-

dicts the definition of t (and, correspondingly, τ̂ ); see equa-
tion (3). Therefore, by way of contradiction, we obtain the
second part of the claim.

We will now prove Lemma 7.

Lemma 7. v
(
X \X [τ ]

)
≥ v

(
Z \ Z [τ̂ ]

)
.

Proof. Since Z ⊆ Y , the good gZ appears in the sub-
set Y . Recall that the goods in the subsets Z and Y =
{y1, y2, . . . , yℓ} are indexed in order of decreasing density.
Write t′ ∈ [|Y |] to denote the index of gZ in Y (i.e., gZ =

yt′ ). Claim 6 gives us v
(
X [γ]

)
< v

(
Z [τ ]

)
=

∑t−1
i=1 v(zi) ≤∑t′−1

i=1 v(yi). That is, v
(
X [γ]

)
< v

(
Y (t′−1)

)
. Also, by def-

inition of γ (equation 6), we have that the goods in X \X [γ]

(if any) have density less than ρ(gZ). These observations and
Proposition 1 imply that including gZ in X [γ] must violate
agent a’s budget Ba, i.e., it must be the case that

γ + s(gZ) > Ba (7)

Using inequality (7), we will prove that v
(
X [γ] \X [τ ]

)
≥

v
(
Z \ Z [τ̂ ]

)
. This bound directly implies the lemma, since

X [γ] ⊆ X . In particular, the size of the concerned set satis-
fies

s
(
X [γ] \X [τ ]

)
= γ − τ

= γ − τ̂ + s(gZ) (τ̂ − s(gZ) = τ )
> Ba − τ̂ (via inequality (7))

≥ s
(
Z \ Z [τ̂ ]

)
(8)

The last inequality follows from the facts that s(Z) ≤
Ba and s(Z [τ̂ ]) = τ̂ . Furthermore, by definition of γ,
we have that every good g ∈ X [γ] \ X [τ ] has density
ρ(g) ≥ ρ(gZ). In addition, for every good g′ ∈ Z \ Z [τ̂ ],
the density ρ(g′) ≤ ρ(gZ). These bounds on the densi-
ties and the sizes of the subsets X [γ] \ X [τ ] and Z \ Z [τ̂ ]

give us v
(
X [γ] \X [τ ]

)
≥ v

(
Z \ Z [τ̂ ]

)
. As mentioned previ-

ously, this inequality and the containment X [γ] ⊆ X imply
v
(
X \X [τ ]

)
≥ v

(
Z \ Z [τ̂ ]

)
. The lemma stands proved.

Overall, Lemma 5 gives us EFCount
(
X [τ ], Z [τ̂ ]

)
=

2. In addition, via Lemma 7, we have v
(
X \X [τ ]

)
≥

v
(
Z \ Z [τ̂ ]

)
. Therefore, applying Lemma 4, we conclude

that EFCount(X,Z) ≤ 2. This establishes the desired EF2
guarantee for the allocation computed by Algorithm 1 and
completes the proof of Theorem 1.

3.3 Fair Division in Proportional Instances
This section shows that, if all the goods have the same den-
sity, then an EF1 allocation can be computed in polyno-
mial time. While in the rest of the paper we assume that the
goods have distinct densities, here we in fact address goods
with exactly the same densities. We address this technical
difference, by simply including any consistent tie breaking
rule in Algorithm 1. That is, for proportional instances, the
DensestGreedy algorithm applies a tie breaking rule (e.g.,
lowest index first) while selecting among the unallocated
goods in Line 7. With this minor modification, all the pre-
viously established results (specifically, Lemma 7) continue
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to hold for proportional instances. The following theorem
asserts the EF1 guarantee for proportional instances.

Theorem 8. For any given budget-constrained fair divi-
sion instance ⟨[m], [n], {v(g)}g, {s(g)}g, {Ba}a⟩ in which
all the goods have the same density (i.e., v(g)/s(g) =
v(g′)/s(g′) for all goods g, g′ ∈ [m]), Algorithm 1
(DensestGreedy) computes an EF1 allocation in polyno-
mial time.

Proof. We use the constructs defined in Sections 3.1 and 3.2.
In particular, let X be the set of goods allocated to an agent
a ∈ [n] and let Y be the set of goods allocated to an agent
b ∈ [n], or to the charity at the end of Algorithm 1. Consider
any subset Z ⊆ Y , with size s(Z) ≤ Ba (and |Z| ≥ 2). By
way of contradiction, we will show that EFCount(X,Z) ≤
1 and, hence, obtain the stated EF1 guarantee.

Assume, towards a contradiction, that EFCount(X,Z) ≥
2. In such a case, the constructs (specifically, t, τ , τ̂ , and
the good gZ) considered in Sections 3.1 and 3.2 are well-
defined. Using the previously-established properties of these
constructs, we will show that there necessarily exists a good
g ∈ Z such that v(X) ≥ v(Z − g). Hence, by contradic-
tion, we will get that EFCount(X,Z) < 2, i.e., EF1 holds
between X and Z.

We first note that the size of the set X is at least
τ . This follows from inequality (8), which gives us
s
(
X [γ] \X [τ ]

)
> 0 and, hence, we have s(X) − τ ≥

s
(
X [γ]

)
− τ > 0. This lower bound on the size of X im-

plies that the prefix subset X [τ ] has size exactly equal to τ .
In addition, s(Z [τ ]) = τ . Now, given that all the goods have
the same density, we obtain v(X [τ ]) = v(Z [τ ]). Therefore,

v(X) = v
(
X [τ ]

)
+ v

(
X\X [τ ]

)
= v

(
Z [τ ]

)
+ v

(
X\X [τ ]

)
≥ v

(
Z [τ ]

)
+ v

(
Z\Z [τ̂ ]

)
(via Lemma 7)

= v
(
Z [τ ]

)
+ v

(
Z\Z [τ ]

)
− v(gZ)

(since Z [τ̂ ] \ Z [τ ] = {gZ})
≥ v(Z − gZ)

Hence, we obtain that EFCount(X,Z) ≤ 1, which is a con-
tradiction. This establishes the theorem.

3.4 Fair Division of Equal-Sized Goods
This section establishes that the DensestGreedy algorithm
finds EF1 allocations for instances in which all the goods
have equal sizes.4

Theorem 9. For any given budget-constrained fair divi-
sion instance ⟨[m], [n], {v(g)}g, {s(g)}g, {Ba}a⟩ in which
all the goods have the same size (i.e., s(g) = s(g′) for all
goods g, g′ ∈ [m]), Algorithm 1 (DensestGreedy) com-
putes an EF1 allocation in polynomial time.

4As in the general case, the values of the goods can be distinct.
Here, we also retain the assumption that all the goods have distinct
densities.

3.5 Fair Division in Cardinality Instances
Here, we establish the existence of EF1 allocations in in-
stances wherein each good has the same value.5 Note that,
in such a setup, the densest good is the one with the small-
est size. We establish the following theorem for cardinality
instances.
Theorem 10. For any given budget-constrained fair divi-
sion instance ⟨[m], [n], {v(g)}g, {s(g)}g, {Ba}a⟩ in which
all the goods have the same value (i.e., v(g) = v(g′) for
all goods g, g′ ∈ [m]), Algorithm 1 (DensestGreedy) com-
putes an EF1 allocation in polynomial time.

3.6 Tightness of the Analysis
In this section we provide an example for which Algorithm
1 does not find an EF1 allocation. This shows that the EF2
guarantee obtained for the algorithm (in Theorem 1) is tight.

We consider an instance with two agents and three indi-
visible goods, i.e., n = 2 and m = 3. Both the agents have
a budget of one, B1 = B2 = 1. We set the sizes and val-
ues of the three goods as shown in the following table; here
ε ∈ (0, 1/2) is an arbitrarily small parameter.

Good Size Value
g1 ε 10
g2 0.5 0.5
g3 1− ε 1− 2ε

Table 1: An instance showing that the EF2 guarantee ob-
tained by Algorithm 1 is tight.

The densities of the goods satisfy ρ(g1) > ρ(g2) > ρ(g3).
Also, note that Algorithm 1 returns the allocation with A1 =
{g1, g3} and A2 = {g2}. Since v(g1) > v(g2) and v(g3) >
v(g2), the retuned allocation is not EF1.

4 Conclusion and Future Work
The current work makes notable progress towards efficient
computation (and, hence, universal existence) of exact EFk
allocations under budget constraints. Our algorithmic results
are obtained via a patently simple algorithm, which lends it-
self to large-scale and explainable implementations. The al-
gorithm’s analysis, however, relies on novel insights, which
are different from the ideas used for EFk guarantees in prior
works and also from the ones used in approximation algo-
rithms for the knapsack problem.

In budget-constrained fair division the existence and com-
putation of EF1 allocations is an intriguing open problem.
We note that, interestingly, a constrained setting’s computa-
tional (in)tractability does not reflect the fairness guarantee
one can expect. For instance, the knapsack problem is NP-
hard for proportional instances and yet, EF1 allocations can
be computed for such instances in polynomial time. With
this backdrop, obtaining EFk guarantees in the GAP formu-
lation6 is another interesting direction for future work.

5As in the general case, the goods can have different sizes.
6As mentioned previously, in the GAP version of the problem,

the goods have agent-specific sizes and values.
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