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Abstract

We study a fair allocation problem of indivisible items under
additive externalities in which each agent also receives utility
from items that are assigned to other agents. This allows us
to capture scenarios in which agents benefit from or compete
against one another. We extend the well-studied properties of
envy-freeness up to one item (EF1) and envy-freeness up to
any item (EFX) to this setting, and we propose a new fair-
ness concept called general fair share (GFS), which applies
to a more general public decision making model. We under-
take a detailed study and present algorithms for finding fair
allocations.

1 Introduction
Fair allocation of indivisible items is an active field of
research within computer science and economics (Brams
and Taylor 1996; Bouveret, Chevaleyre, and Maudet 2016;
Thomson 2016). The general problem is to allocate the items
among the agents so as to satisfy certain fairness criteria. For
example, one important fairness concept is envy-freeness,
which stipulates that no agent wants to swap her bundle with
another agent’s bundle. The field has witnessed several new
solution concepts, algorithms, and applications.

In most of the work on fair allocation, agents are assumed
to derive value only from the set of items allocated to them.
In this paper, we consider a significantly more general model
in which an agent’s value for an allocation may depend both
on the agent’s own bundle as well as on the bundles of items
given to other agents. The latter aspect is referred to in the
economics literature as externalities. Whereas the theory of
fair allocation has progressed tremendously, the topic is rel-
atively less developed when externalities are involved in the
valuations of the agents.

Externalities in agent preferences are present in many
real-world scenarios. When resources are allocated among
agents, an agent may derive positive value from resources
given to the agent’s friend or family member because the
agent has access rights to the resource. Positive externali-
ties can also capture settings where agents are divided into
groups and each agent receives the same utility whenever
some agent in the group is allocated an item, and no utility
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when an agent outside the group is allocated the item. Like-
wise, negative externalities can arise in various resource al-
location settings. For example, when dividing assets among
conflicting groups, the allocation of a critical asset to an-
other group may hamper one group’s functionality. Yet an-
other example of negative externalities is the case of sport
drafts, where a team may incur negative value if a valuable
player is given to a competing team.

Although externalities have been considered in some prior
work on resource allocation problems, the focus was on ei-
ther allocation of divisible resources (Brânzei, Procaccia,
and Zhang 2013; Li, Zhang, and Zhang 2015) or concepts
based on maximin fair share (Seddighin, Saleh, and Ghodsi
2021). In this paper, we revisit important fairness concepts
such as envy-freeness and consider suitable relaxations in
the context of indivisible items under externalities.

Since there may not exist an envy-free allocation in gen-
eral, much of the recent research has focused on relaxations
of envy-freeness by removing one or more items from con-
sideration, e.g., envy-freeness up to one item (EF1) (Lipton
et al. 2004; Budish 2011). Caragiannis et al. (2019) proposed
a stronger concept than EF1 called envy-freeness up to any
item (EFX). The intuition is that if agent i envies agent j’s
assignment, then the envy should be eliminated when any
item is removed from j’s assignment. Aziz et al. (2022a)
generalized EFX to the setting of goods and chores (i.e., neg-
ative values) when there are no externalities. The difference
is that the envy from i towards j can be eliminated by remov-
ing agent i’s least preferred good from j’s bundle, and also
by removing agent i’s favorite chore from i’s own bundle.

For allocation problems under externalities, envy-freeness
needs to be carefully extended. When we consider fair allo-
cation of goods without externalities, if agent i envies agent
j’s assignment, then removing any item from agent j’s bun-
dle decreases the envy. However, this no longer holds when
externalities exist. For instance, assume that agent i receives
value 5 when item a is assigned to agent i and receives value
10 when a is assigned to agent j. In that case, it is unclear
that removing item a from j’s bundle decreases i’s “envy”
towards j, since i actually derives more utility when the item
is allocated to j than when it is allocated to i herself. This is-
sue becomes more complicated when both positive and neg-
ative externalities are allowed.

Another widely studied fairness concept under additive
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valuations is proportionality, which requires each agent to
receive at least 1/n of the value that she has for the set of
all items, where n denotes the number of agents. Conitzer,
Freeman, and Shah (2017) proposed a variant of propor-
tionality for a more general public decision making problem
than allocation of indivisible items under externalities. They
showed that their concept is guaranteed to be feasible under
positive valuations. However, this guarantee ceases to hold
when negative valuations are also allowed.

We summarize our contributions as follows. First, we de-
fine the concepts of EF1 and EFX under externalities that
still coincide with previous definitions for goods and chores
when externalities do not exist. Note that our new concepts
work for both positive and negative externalities.

Second, we show how to compute an EFX allocation be-
tween two agents in time O(m logm), where m denotes the
number of items, and how to compute an EF1 allocation be-
tween two agents in time linear in m.

Third, we show that the set of EFX allocations among
three agents could be empty. Under binary values and a “no-
chore” assumption, we show that an EF1 allocation always
exists among three agents by proposing a new algorithm that
computes such an allocation in polynomial time.

Fourth, we propose a new fairness concept called gen-
eral fair share (GFS) based on proportionality. We present a
polynomial-time algorithm that computes an allocation sat-
isfying general fair share up to one item (GFS1) for the more
general public decision making model where both positive
and negative valuations are allowed.

Finally, we present a taxonomy of fairness definitions in-
cluding both existing and newly proposed concepts.

2 Related Work
Fair allocation of indivisible items is an active topic of re-
search in computer science and economics (Brams and Tay-
lor 1996; Bouveret, Chevaleyre, and Maudet 2016; Thomson
2016). For some recent overviews, we refer to the surveys of
Amanatidis et al. (2022) and Aziz et al. (2022b).

For allocation problems under externalities, fairness con-
cepts need to be carefully revisited and extended. Velez
(2016) proposed a natural adaptation of envy-freeness which
requires that no agent prefers the allocation obtained by
swapping her bundle with another agent. Brânzei, Procaccia,
and Zhang (2013) considered both the envy-freeness con-
cept of Velez (2016) and proportionality in the context of
cake-cutting. Li, Zhang, and Zhang (2015) studied truthful
mechanisms in the setting of cake-cutting under externali-
ties. Since cake-cutting involves the allocation of a divisi-
ble resource, one can obtain existence results without relax-
ations even when externalities are present.

In our paper, we focus on allocation of indivisible items.
Seddighin, Saleh, and Ghodsi (2021) presented an algorithm
for computing an allocation that satisfies a relaxation of a
concept called maximin share fairness, which can in turn be
viewed as a relaxation of proportionality. Note that both Sed-
dighin, Saleh, and Ghodsi (2021) and Brânzei, Procaccia,
and Zhang (2013) restricted their attention to settings with
positive externalities, whereas we allow both positive and

negative externalities. Li, Zhang, and Zhang (2015) made
the restrictive assumption that agents derive externalities
that are percentages of other agents’ values. Mishra, Padala,
and Gujar (2022) studied a special form of externalities in
which an agent receives the same externality from an item
regardless of which other agent receives the item.

A related line of work concerns house or residential al-
location with externalities, where an agent’s value for an
allocation is influenced by other agents assigned to her
neighborhood (Chauhan, Lenzner, and Molitor 2018; Mas-
sand and Simon 2019; Elkind et al. 2020; Agarwal et al.
2021; Bullinger, Suksompong, and Voudouris 2021; Gross-
Humbert et al. 2021).

3 Model
We consider a setting where a set of indivisible items A =
{a1, . . . , am} are to be allocated among a set of agents N =
{1, . . . , n} under additive externalities.

An allocation is denoted by π = (π1, . . . , πn) where each
πi ⊆ A is the bundle assigned to agent i such that for any
distinct i, j ∈ N , we have πi ∩ πj = ∅. If

⋃
i∈N πi = A,

then we call π a complete allocation of A. Unless specified
otherwise, we only consider complete allocations. Let Π de-
note the set of all allocations. For any item a ∈ A, let π(a)
denote the agent who receives item a in allocation π.

Every agent i ∈ N is associated with a valuation function
Vi : Π → R, which assigns a real value to every allocation
π ∈ Π. We assume that agents have additive valuations and
externalities. Under the additive preference domain, we have
Vi(π) =

∑
a∈A Vi(π(a), a), where we abuse notation and let

Vi(j, a) represent the value that agent i receives when item a
is assigned to agent j. Note that in problems without exter-
nalities, an agent receives the same value from an allocation
as long as the agent receives the same bundle.

4 EF1 and EFX under Externalities
In this section, we consider how to generalize the definitions
of EF1 and EFX to the setting of externalities. Note that we
need to carefully design both definitions to ensure that they
coincide with the previous definitions without externalities.

Velez (2016) proposed a natural adaptation of envy-
freeness which requires that no agent prefers the alloca-
tion obtained by swapping her bundle with another agent’s
bundle. Since this notion has become the standard of envy-
freeness in the setting of externalities, we simply refer to it
as envy-freeness. In this work, we follow this idea of swap-
ping bundles to define EF1 and EFX. Let πi↔j represent a
new allocation in which only agents i and j swap their bun-
dles in π while other agents’ bundles remain the same.

Definition 4.1 (Envy-Freeness (Velez 2016)). An allocation
π is envy-free (EF) if there do not exist agents i, j ∈ N such
that Vi(π

i↔j) > Vi(π).

Recall that envy-freeness cannot be guaranteed in the in-
divisible domain even if there are two agents and one item,
and the agents have no externalities. In view of this chal-
lenge, a natural recourse is to explore “up to one item re-
laxations” of fairness concepts. The intuition is that when
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an agent is envious, she would like to swap her bundle with
another agent. The “up to k” relaxation ensures that such a
swap is not desirable if at most k items are removed from
consideration. We next formalize an “up to k items relax-
ation” of EF under externalities.

Definition 4.2 (Envy-Freeness up to k Items). An allocation
π is envy-free up to k items (EFk) if for every pair of agents
i, j ∈ N , there exists a set of items C ⊆ A and an allocation
λ such that the following conditions hold:

1. |C| ≤ k;
2. λℓ = πℓ \ C for all ℓ ∈ N ;
3. Vi(λ) ≥ Vi(λ

i↔j).

In words, Definition 4.2 states that an allocation π is EFk
if for each pair of agents i and j, there exists a set of items C
of size at most k such that for the new allocation λ obtained
by removing items in C from each agent ℓ’s bundle πℓ in π,
agent i would not like to swap her bundle λi with agent j’s
bundle λj . Note that if k = 1 and there are no externali-
ties, then Definition 4.2 coincides with the EF1 concept as
formalized by Budish (2011) for goods and by Aziz et al.
(2022a) for goods and chores.

We next generalize EFX to the case of externalities. A first
attempt is to define the generalization so that if agent i envies
agent j, then removing any item from either of their bundles
should eliminate the envy. However, this fails to capture the
original idea of Caragiannis et al. (2019) when externalities
exist, as shown in Example 4.3.

Example 4.3. Consider two agents N = {1, 2} and three
items A = {a, b, c}. The values of items and externalities are
described in Table 1. For allocation π = {(1, ab), (2, c)} in
which agent 1 receives items a, b and agent 2 receives item c,
agent 2 has envy towards agent 1:

V2(π)− V2(π
1↔2) = (1 + 2 + 2)− (4 + 1 + 3) = −3.

If we remove item b from agent 1’s bundle, then agent 2
envies agent 1 even more. That is, for allocation π̃ =
{(1, a), (2, c)},

V2(π̃)− V2(π̃
1↔2) = (1 + 2)− (4 + 3) = −4.

a b c
1 3, 1 1, 2 2, 1
2 1, 4 2, 1 3, 2

Table 1: For each row i ∈ {1, 2} and each entry (x, y) in
row i, x and y denote the value that agent i receives when the
corresponding item is assigned to agent 1 and 2, respectively.

When we consider only goods (i.e., indivisible items with
positive values) without externalities, if some agent i en-
vies another agent j, then removing any item from agent j’s
bundle decreases the envy. However, this is no longer true
when externalities exist. As shown in Example 4.3, remov-
ing item b from agent 1’s bundle does not reduce the envy
from agent 2 towards agent 1. Instead, it increases this envy.

We thus propose a more suitable generalization of EFX in
Definition 4.4. Intuitively, if agent i envies agent j, then for
any item a such that removing a from the bundle of agent
i or j reduces the envy, i should no longer envy j after re-
moving a. This idea coincides with the definition of EFX for
goods and chores when there are no externalities (Aziz et al.
2022a). Recall that in the definition by Aziz et al. (2022a),
agent i’s envy towards agent j can be eliminated by remov-
ing i’s least preferred good from j’s bundle as well as by
removing i’s favorite chore (i.e., one yielding the least disu-
tility) from i’s own bundle.
Definition 4.4 (Envy-Freeness up to Any Item). An alloca-
tion π is envy-free up to any item (EFX) if for all agents
i, j ∈ N , if i envies j, then for any item a ∈ A and alloca-
tion λ with the properties

1. λℓ = πℓ \ {a} for all ℓ ∈ N and
2. Vi(λ)− Vi(λ

i↔j) > Vi(π)− Vi(π
i↔j),

the following holds:

Vi(λ) ≥ Vi(λ
i↔j).

We next explain Definition 4.4 in detail. Vi(π)−Vi(π
i↔j)

represents the envy from agent i towards agent j with re-
spect to allocation π. Because agent i envies agent j, we
have Vi(π) < Vi(π

i↔j), which implies Vi(π) − Vi(π
i↔j)

< 0. Allocation λ is obtained by removing some item a from
the bundle πℓ containing a. (Note that if a ̸∈ πi∪πj , then the
envy of i towards j does not change upon removing a, so we
may assume that a ∈ πi ∪ πj .) Similarly, Vi(λ)− Vi(λ

i↔j)
represents the envy from i towards j with respect to the new
allocation λ. Thus Vi(λ) − Vi(λ

i↔j) > Vi(π) − Vi(π
i↔j)

means that removing item a reduces the envy of i towards
j. Finally, Vi(λ) ≥ Vi(λ

i↔j) requires that i does not envy j
with respect to the new allocation λ.

Note that our new definition of EFX in Definition 4.4 still
implies EF1 in Definition 4.2. To see this, consider an EFX
allocation π. For any pair of agents i and j, if i envies j in
allocation π, then because valuations and externalities are
additive, there must exist an item a ∈ A such that removing
a from either bundle πi or πj helps decrease the envy of i
towards j. Since π is EFX, removing a must eliminate i’s
envy towards j. Thus the allocation π is also EF1. We next
show an example of an EF1 allocation that is not EFX.
Example 4.5. Consider the instance in Example 4.3. Allo-
cation π′ = {(1, bc), (2, a)} is EF1 but not EFX for agent 1.
To see this, first note that agent 1 envies agent 2:

V1(π
′)− V1(π

′1↔2) = (1 + 2 + 1)− (3 + 2 + 1) = −2.

If we remove item a from agent 2’s bundle π′
2, then agent

1 does not envy agent 2. That is, for allocation π̂ =
{(1, bc), (2, ∅)},

V1(π̂)− V1(π̂
1↔2) = (1 + 2)− (2 + 1) = 0.

On the other hand, if we remove item b from agent 1’s bundle
π′
1, which helps decrease agent 1’s envy, then agent 1 still

envies agent 2. That is, for allocation π = {(1, c), (2, a)},

V1(π)− V1(π
1↔2) = (1 + 2)− (3 + 1) = −1.
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5 Two Agents
In this section, we prove the existence of EFX allocations
between two agents by mapping onto a simplified problem
where agents have “symmetric valuations” and an EFX allo-
cation can be constructed in polynomial time. In Lemma 5.1,
we show how to construct an EFX allocation between two
agents when valuations are symmetric. Based on this result,
we then prove the existence of EFX allocations between two
agents in Theorem 5.2. We further show that an EF1 alloca-
tion between two agents can be computed in linear time.

We say that agents’ valuations are symmetric if for each
pair i, j ∈ N and each item a ∈ A, the following holds:
Vi(i, a) = Vj(j, a) and Vi(j, a) = Vj(i, a).

Lemma 5.1. An EFX allocation always exists for two agents
with symmetric valuations and can be computed in time
O(m logm).

Proof. Consider two agents with symmetric valuations. For
an item a, let ∆12(a) = V1(1, a) − V1(2, a) be the differ-
ence between the value V1(1, a) that agent 1 receives when
a is assigned to agent 1 and the value V1(2, a) that she re-
ceives when a is assigned to agent 2. Since valuations are
symmetric, V1(1, a)− V1(2, a) = V2(2, a)− V2(1, a).

Create an allocation π̃ as follows. We iteratively allocate
each item in decreasing order of |∆12(·)|. At each step, there
are two possible bundles for the item, leading to two dif-
ferent allocations. We choose one that the agent with the
smaller current total value weakly prefers from these two
allocations. That is, if ∆12(a) ≥ 0, then the item is assigned
to the agent with the smaller current total value; otherwise
the item is assigned to the other agent. Break ties arbitrarily.

We next prove that allocation π̃ is EFX for both agents.
Suppose we allocate all items in the order a1, a2, . . . , am.
For the base case, assigning a1 to either agent is EFX. For
the induction, assume that a partial allocation of items a1,
. . . , ak is EFX. Since the agents have symmetric valuations,
at most one agent can be envious. Without loss of generality,
assume agent 1 has at most the same value as agent 2 and the
algorithm allocates ak+1 according to agent 1’s preference.
Then agent 1’s envy towards agent 2 weakly decreases and
the allocation is still EFX for agent 1. If agent 2 becomes en-
vious, then removing item ak+1 will eliminate the envy. For
any item aj allocated to agent 1 with ∆12(aj) > 0, we have
∆12(aj) ≥ ∆12(ak+1) and removing any such item will
eliminate the envy from agent 2 as well; a similar argument
holds for any item aj allocated to agent 2 with ∆12(aj) < 0.
Thus the allocation remains EFX for both agents.

We can sort all items in decreasing order of |∆12(·)| in
time O(m logm) and thus we can compute an EFX alloca-
tion between two agents with symmetric valuations in poly-
nomial time. This completes the proof of Lemma 5.1.

Based on Lemma 5.1, we prove the existence of EFX al-
location between two agents in Theorem 5.2.

Theorem 5.2. There always exists an EFX allocation
between two agents which can be computed in time
O(m logm).

Proof. First create a dummy agent 1′ of 1. Both agent 1 and
agent 1′ treat each other as agent 2 and they have a symmet-
ric valuation function such that for any item a ∈ A, we have
V1(1, a) = V1′(1

′, a) and V1(1
′, a) = V1′(1, a) = V1(2, a).

That is, if item a is assigned to 1′, then agent 1′ receives the
value V1(1, a) and agent 1 receives the value V1(2, a) as if
item a is assigned to 2 from the perspective of agent 1.

Compute an EFX allocation π̃ between agents 1 and 1′

via the algorithm in the proof of Lemma 5.1. Allocation
π̃ divides all items A into two bundles; let agent 2 first
choose the bundle she prefers and leave the remaining bun-
dle to agent 1. Since agent 2 chooses first, she does not
envy agent 1. We showed that π̃ is EFX between 1 and 1′

in Lemma 5.1, so it is EFX no matter which bundle agent 1
receives. This completes the proof of Theorem 5.2.

We remark that constructing an EF1 allocation is easier
and can be done in linear time, because we do not need to
sort all items based on |∆(·)|. The detailed proof is provided
in the full version of our paper (Aziz et al. 2022c).
Corollary 5.3. There always exists an EF1 allocation be-
tween two agents which can be computed in time O(m).

6 Three Agents
In this section, we consider EF1 and EFX allocations among
three agents. Note that several real-world problems involve a
limited number of agents (e.g., divorce settlement and inher-
itance division). We first show that, in contrast to the positive
results of EFX allocations between two agents with external-
ities (Section 5) and among three agents without externali-
ties (Chaudhury, Garg, and Mehlhorn 2020), there may not
exist an EFX allocation for three agents with externalities.
We then prove that an EF1 allocation always exists among
three agents under binary values and a “no-chore” assump-
tion by proposing a polynomial-time algorithm for this case.
Theorem 6.1. The set of EFX allocations could be empty
when there are three agents.

Proof. We prove Theorem 6.1 through the following coun-
terexample. Consider three agents N = {1, 2, 3} and seven
items A = {a1, a2, a3, a4, a5, a6, g}. The values of items
and externalities are described in Table 2.

ak g
1 21, 16, 16 17, 16, 16
2 16, 21, 16 16, 24, 0
3 16, 16, 21 16, 0, 24

Table 2: Values for items and externalities. For each row i ∈
{1, 2, 3} and each entry (x, y, z) in row i, x, y, and z denote
the value that agent i receives when the corresponding item
is assigned to agent 1, 2, and 3, respectively.

First consider the case where item g is assigned to agent 1.

• If at most one item from {a1, . . . , a6} is assigned to agent
1, then either agent 2 or 3 receives at least three items
from this set. Suppose agent 1 receives {a4, g} (or just
{g}) and agent 2 receives {a1, a2, a3} (or more). Then
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agent 1 has envy towards agent 2, and the envy remains
when one item a1 is removed from agent 2’s bundle.

• If at least two items from {a1, . . . , a6} are assigned to
agent 1, then either agent 2 or 3 receives at most two
items from this set. Suppose agent 1 receives {a1, a2, g}
(or more) and agent 2 receives {a3, a4} (or less). Then
agent 2 has envy towards agent 1, and the envy remains
when one item a1 is removed from agent 1’s bundle.

The case where item g is assigned to agent 2 or 3 can be
handled by a similar type of analysis; we provide the details
in the full version of our paper (Aziz et al. 2022c).

We next consider EF1 allocations and restrict our atten-
tion to the case where the three agents have binary valua-
tions, i.e., each Vi(j, a) is either 0 or 1. Note that binary valu-
ations without externalities have previously been considered
in fair division both for the desirable normative properties
that they allow and for their ease of elicitation (Aleksan-
drov et al. 2015; Darmann and Schauer 2015; Bouveret and
Lemaı̂tre 2016; Barman, Krishnamurthy, and Vaish 2018;
Freeman et al. 2019; Halpern et al. 2020; Suksompong and
Teh 2022).

Even under the setting of binary valuations, it still ap-
pears to be challenging to check if a given instance admits
an EF1 allocation and to determine whether there always
exists an EF1 allocation for any instance. To make the ques-
tion tractable, we additionally impose one more assumption
in Definition 6.2: for each item, all agents prefer to own the
item rather than to have it assigned to others. Note that the
example in Theorem 6.1 satisfies this assumption.

Definition 6.2 (No-Chore Assumption). For any item a and
any pair of agents i, j, we have Vi(i, a) ≥ Vi(j, a).

We prove that an EF1 allocation always exists in this set-
ting and can be computed in polynomial time. Our method
may be useful for further exploration of more general set-
tings, e.g., whether there exists an EF1 allocation among
multiple agents under more general preference domains.

Theorem 6.3. For three agents under No-Chore Assumption
and binary valuations, there always exists an EF1 allocation
which can be computed in polynomial time.

Due to space limitation, we give a high-level description
of our algorithm here and present a detailed proof of Theo-
rem 6.3 in the full version of our paper (Aziz et al. 2022c).
The key idea is that given any instance, we iteratively apply
some reduction rules that assign one item, one pair, or three
items to some agents in an EF or EF1 manner. We show that
any instance can be reduced to a certain number of cases
where each case consists of a small number of items (no
more than 12). We then wrote a program to verify that for
each case there always exists an EF1 allocation by exhaus-
tive search.

For the sake of illustration, we next describe two simple
reduction rules. Given an item a ∈ A, we can create a 3-
by-3 matrix to represent each agent i’s valuation function
Vi(·, a), where the ith row corresponds to the values that
agent i receives when item a is assigned to each agent.

• Assign an item a to some agent i if it does not generate
envy from any agent towards i. For instance, if we have
an item with the following matrix, then we can assign it
to agent 1 without generating envy from any other agent.[

1 0 0
1 1 0
1 0 1

]

• Suppose that item a will not generate envy from agent i
if it is assigned to any other agent. Then we can leave this
item aside until we cannot apply any other reduction rules
and then consider assigning item a to the other two agents
in an EF1 manner. For instance, if we have an item with
the following matrix, then assigning it to either agent 2
or agent 3 does not generate envy from agent 1.[

1 1 1
0 1 0
0 0 1

]

Note that we have only taken an initial step towards a
complete understanding of EF1 allocations under external-
ities. We conjecture that an EF1 allocation always exists for
three agents under binary valuations even without the No-
Chore Assumption. For larger numbers of agents n, we may
need to relax EF1 to EFk where k is a function of n.

7 GFS and Public Decision Making
In this section, we propose a new fairness concept based on
proportionality that we call general fair share (GFS). This
concept works even for the “public decision making” setting
(Conitzer, Freeman, and Shah 2017), which generalizes fair
division of indivisible items under externalities. We show
that there always exists an allocation satisfying general fair
share up to one item (GFS1) even when the valuations can be
positive or negative, and such an allocation can be computed
in polynomial time via a variant of round robin. We also
discuss how GFS1 is superior to an existing proportionality
concept in public decision making.

7.1 Public Decision Making
An instance IP of public decision making consists of a set
of agents N and a set of issues A. Each issue a ∈ A is
associated with a set of choices aT , exactly one of which
needs to be selected. For each choice at ∈ aT of issue a,
each agent i derives a value Vi(a

t), where we reuse the no-
tation Vi in a slightly different way than in fair allocation
under externalities. An allocation π of instance IP is a set
of choices for all issues; let π(a) denote the choice made for
issue a. The value that agent i receives from allocation π is
Vi(π) =

∑
a∈A Vi(π(a)).

A fair allocation problem with additive externalities can
be reduced to an equivalent public decision making problem
as follows: Each item a is viewed as an issue and associated
with exactly n choices, where each choice corresponds to an
agent to whom the item could be given. For public decision
making, the number of choices is flexible, whereas for fair
allocation with externalities, the number of choices is equal
to the number of agents n.
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Conitzer, Freeman, and Shah (2017) proposed the follow-
ing concept for the public decision making problem, which
requires that each agent i should receive at least 1/n of the
maximum value she can get from all of the issues.1 For each
issue a, let V max

i (a) = maxat∈aT Vi(a
t)

Definition 7.1 (PROP-Max). Given an allocation π, the
Proportional-Max share of agent i (PROP-Maxi) is defined
as

PROP-Maxi =
1

n

∑
a∈A

V max
i (a).

An allocation π satisfies Proportionality-Max (PROP-Max)
if Vi(π) ≥ PROP-Maxi holds for all i ∈ N .

Conitzer et al. also introduced an “up to one” relaxation
of PROP-Max.
Definition 7.2 (PROP-Max up to One Issue). An allocation
π satisfies Proportionality-Max up to one issue (PROP-Max-
1) if for all i ∈ N , there exists a ∈ A such that

Vi(π)− Vi(π(a)) + V max
i (a) ≥ PROP-Maxi.

In other words, an allocation π satisfies PROP-Max-1 if
for each agent i, there exists an issue a such that changing
the assignment of a from π(a) to agent i’s best assignment
yielding V max

i (a) ensures that the value that agent i receives
is at least her PROP-Maxi.

Conitzer et al. showed that when all valuations are pos-
itive, there always exists a PROP-Max-1 allocation. How-
ever, our next proposition shows that a PROP-Max-1 may
not exist if negative valuations are allowed.
Proposition 7.3. There may not exist a PROP-Max-1 allo-
cation when negative valuations are allowed, even if there
are only two agents.

Proof. We show this negative result for the more restricted
setting of fair allocation with externalities.

Consider N = {1, 2} and A = {a1, a2, a3}. Suppose
that for distinct i, j ∈ N and each item a ∈ A, we have
Vi(i, a) = 0 and Vi(j, a) = −100. One agent (say, 1) must
receive at least two items, and the value of agent 2 is −200.
However, agent 2’s maximum value is 0, but it is not possible
to attain this by reassigning one item.

7.2 GFS and GFS1 Concepts
The incompatibility of PROP-Max-1 with negative valua-
tions in Proposition 7.3 motivates us to propose a new fair-
ness concept called general fair share (GFS). For agent i and
issue a, let V min

i (a) = minat∈aT Vi(a
t).

Definition 7.4 (General Fair Share). The general fair share
of agent i (GFSi) is defined as

GFSi =
1

n

∑
a∈A

V max
i (a) +

n− 1

n

∑
a∈A

V min
i (a)

=
∑
a∈A

V min
i (a) +

1

n

∑
a∈A

(V max
i (a)− V min

i (a)).

1In their paper, this concept is simply called proportionality, but
we refer to it as PROP-Max to distinguish it from another variant
of proportionality that we will discuss later.

1 2 3 4

minimum
GFS

maximum

Figure 1: Illustration of GFS with four agents. Bottom lines
and top lines denote the minimum and the maximum val-
ues each agent can receive among all possible allocations.
Middle lines denote the GFS for each agent, and the colored
region in each bar equals one-fourth of the difference be-
tween the maximum value and the minimum value of that
agent.

An allocation π satisfies general fair share (GFS) if Vi(π) ≥
GFSi for all i ∈ N .

We next illustrate the intuition of GFS. Consider a
GFS allocation π. For any agent i, the improvement
that π offers upon agent i’s worst allocation is at least
1
n

∑
a∈A(V

max
i (a)−V min

i (a)), i.e., 1/n of agent i’s largest
possible improvement—the improvement required by GFS
is shown in the colored regions of Figure 1. That is, if we
subtract

∑
a∈A V min

i (a) from Vi(π), then we have

Vi(π)−
∑
a∈A

V min
i (a) ≥ GFSi −

∑
a∈A

V min
i (a)

=
1

n

∑
a∈A

(V max
i (a)− V min

i (a)).

Similarly to PROP-Max, GFS is too strong to guarantee
corresponding allocations, so we relax it in the same manner
as PROP-Max-1. We refer to this concept as general fair
share up to one item (GFS1).
Definition 7.5 (General Fair Share up to One Item). An al-
location π satisfies general fair share up to one item (GFS1)
if for all i ∈ N , there exists a ∈ A such that

Vi(π)− Vi(π(a)) + V max
i (a) ≥ GFSi.

In other words, an allocation π satisfies GFS1 if for each
agent i, there exists an item a such that changing the assign-
ment of a from π(a) to agent i’s best assignment yielding
V max
i (a) ensures that the value that agent i receives is at

least her general fair share GFSi.
With positive valuations, our GFS/GFS1 concepts are

stronger than PROP-Max/PROP-Max-1.
Proposition 7.6. For public decision making with posi-
tive valuations, GFS implies PROP-Max, and GFS1 implies
PROP-Max-1.

Proof. Given a GFS allocation π, for any agent i we have

Vi(π)−
1

n

∑
a∈A

V max
i (a) ≥ n− 1

n
V min
i (a) ≥ 0,
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where we use the assumption of positive valuations for the
latter inequality. Thus, GFS implies PROP-Max. The proof
that GFS1 implies PROP-Max-1 is similar.

We next show that a GFS1 allocation always exists. Com-
bined with Propositions 7.3 and 7.6, this means that GFS1
is a more suitable concept in public decision making than
PROP-Max-1, both when valuations are only positive and
when negative valuations are allowed.

7.3 Max-Min Round Robin
In this subsection, we present a polynomial-time algorithm
“Max-Min Round Robin” that computes a GFS1 allocation
for public decision making.

We give here a brief description of Max-Min Round
Robin. For agent i ∈ N and issue a ∈ A, let βi(a) =
V max
i (a) − V min

i (a) denote the difference between the
maximum and minimum value that agent i can receive from
issue a. The Max-Min Round Robin algorithm works as fol-
lows: First, fix a round robin sequence of agents. Then, for
each agent i’s turn, let i determine the choice of some is-
sue a in her favor such that βi(a) is the largest among all
remaining issues. Repeat this procedure until there are no
issues left. The details are described in Algorithm 1.

Algorithm 1: Max-Min Round Robin
Require: an instance of public decision making
Ensure: a GFS1 allocation

1: Let βi(a) = V max
i (a)− V min

i (a), ∀i ∈ N, a ∈ A.
2: Fix a round robin sequence of agents, say 1, 2, . . . , n.
3: π ← ∅, j ← 1
4: while A ̸= ∅ do
5: For agent j’s turn, find an issue a and a choice at such

that
• ∀a′ ∈ A, βj(a) ≥ βj(a

′)
• V max

j (a) = Vj(a
t)

6: π ← π ∪ {at} {Choose at for issue a}
7: A← A \ {a} {Remove a from A}
8: j ← (j mod n) + 1 {Move on to the next agent}
9: end while

10: return an allocation π

Theorem 7.7. Max-Min Round Robin returns a GFS1 allo-
cation for public decision making in polynomial time.

We reiterate that Theorem 7.7 works for both positive and
negative valuations; its proof is provided in the full version
of our paper (Aziz et al. 2022c).

8 Taxonomy of Fairness Concepts
In this section, we present a taxonomy of fairness con-
cepts for fair allocation with externalities including existing
and newly proposed ones (Figure 2). Formal definitions and
proofs are provided in the full version of our paper (Aziz
et al. 2022c).

Besides PROP-Max, another extension of proportionality
is PROP-Ave, proposed by Seddighin, Saleh, and Ghodsi

EF

EFX

EF1

EFk

2-P-PROP

n-P-PROP

PROP-Ave

GFS GFS1

PROP-Max

EMMS

positive

Figure 2: Relationships among fairness concepts for fair al-
location with externalities. An arrow from A to B denotes
that A implies B. EF, EMMS, PROP-Ave, and PROP-Max
under externalities were proposed in previous work.

(2021).2 Maximin Share (MMS) is a relaxation of propor-
tionality for fair division of indivisible items, introduced by
Budish (2011). Seddighin, Saleh, and Ghodsi (2021) pro-
posed Extended Maximin Share (EMMS) which generalizes
MMS to the case of externalities.

For fair division without externalities, EF implies propor-
tionality. However, we show that EF implies neither PROP-
Max nor PROP-Ave when externalities exist. We propose a
new notion k-Partial-Proportionality (k-P-PROP) that con-
nects both EF and PROP-Ave. The intuition is that for any
subset of agents N ′ ⊆ N with |N ′| ≤ k, each agent i ∈ N ′

should receive at least 1/|N ′| of the total value she can re-
ceive from all items assigned to the group N ′.

Note that Aziz et al. (2018) considered a general frame-
work called H-HG-PROP for defining fairness concepts
when allocating indivisible items in the presence of a so-
cial graph. If there are no externalities and H contains all
subsets of size at most k of the agents as hyperedges, then
k-P-PROP is equivalent toH-HG-PROP.

9 Conclusion
In this paper, we proposed several fairness concepts for
fair division of indivisible items under externalities includ-
ing EF1, EFX and GFS. We presented efficient algorithms
for finding the corresponding fair allocations. An important
open question that remains from our work is whether there
always exists an EF1 allocation among three or more agents.
Note that a positive answer to this question would general-
ize the corresponding result of Aziz et al. (2022a) for goods
and chores without externalities. On the other hand, if the
answer is negative, it would be reasonable to ask for the
optimal relaxation EFk that can be attained. Finally, it will
be interesting to consider more general valuation functions
that are not necessarily additive. While the existence of EF1
and EFX allocations is known beyond additive valuations in
certain settings (Lipton et al. 2004; Plaut and Roughgarden
2020), it remains to be seen whether these guarantees can be
extended to incorporate externalities.

2These authors called the notion average-share.
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