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Abstract

Two-player zero-sum graph games are a central model, which
proceeds as follows. A token is placed on a vertex of a graph,
and the two players move it to produce an infinite play, which
determines the winner or payoff of the game. Traditionally,
the players alternate turns in moving the token. In bidding
games, however, the players have budgets and in each turn,
an auction (bidding) determines which player moves the to-
ken. So far, bidding games have only been studied as full-
information games. In this work we initiate the study of
partial-information bidding games: we study bidding games
in which a player’s initial budget is drawn from a known
probability distribution. We show that while for some bid-
ding mechanisms and objectives, it is straightforward to adapt
the results from the full-information setting to the partial-
information setting, for others, the analysis is significantly
more challenging, requires new techniques, and gives rise to
interesting results. Specifically, we study games with mean-
payoff objectives in combination with poorman bidding. We
construct optimal strategies for a partially-informed player
who plays against a fully-informed adversary. We show that,
somewhat surprisingly, the value under pure strategies does
not necessarily exist in such games.

Introduction
We consider two-player zero-sum graph games; a funda-
mental model with applications, e.g., in multi-agent systems
(Alur, Henzinger, and Kupferman 2002). A graph game is
played on a finite directed graph as follows. A token is
placed on a vertex and the players move it throughout the
graph to produce an infinite path, which determines the pay-
off of the game. Traditional graph games are turn-based: the
players alternate turns in moving the token.

Bidding games (Lazarus et al. 1996, 1999) are graph
games in which an “auction” (bidding) determines which
player moves the token in each turn. The concrete bidding
mechanisms that we consider proceed as follows. In each
turn, both players simultaneously submit bids, where a bid
is legal if it does not exceed the available budget. The higher
bidder “wins” the bidding and moves the token. The mech-
anisms differ in their payment schemes, which are classi-
fied according to two orthogonal properties. Who pays: in
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first-price bidding only the higher bidder pays the bid and in
all-pay bidding both players pay their bids. Who is the re-
cipient: in Richman bidding (named after David Richman)
payments are made to the other player and in poorman bid-
ding payments are made to the “bank”, i.e., the bid is lost. As
a rule of thumb, bidding games under all-pay and poorman
bidding are respectively technically more challenging than
first-price and Richman bidding. More on this later. In terms
of applications, however, we argue below that poorman bid-
ding is often the more appropriate bidding mechanism.

Applications. A central application of graph games is re-
active synthesis (Pnueli and Rosner 1989): given a specifica-
tion, the goal is to construct a controller that ensures correct
behavior in an adversarial environment. Synthesis is solved
by constructing a turn-based parity game in which Player 1
is associated with the controller and Player 2 with the envi-
ronment, and searching for a winning Player 1 strategy.

Bidding games extend the modeling capabilities of graph
games. For example, they model ongoing and stateful auc-
tions in which budgets do not contribute to the players’ utili-
ties. Advertising campaigns are one such setting: the goal is
to maximize visibility using a pre-allocated advertising bud-
get. By modeling this setting as a bidding game and solv-
ing for Player 1, we obtain a bidding strategy with guaran-
tees against any opponent1. Maximizing visibility can be ex-
pressed as a mean-payoff objective (defined below).

All-pay poorman bidding is particularly appealing since
it constitutes a dynamic version of the well-known Colonel
Blotto games (Borel 1921). Rather than thinking of the bud-
gets as money, we think of them as resources at the disposal
of the players, like time or energy. Then, deciding how much
to bid represents the effort that a player invests in a competi-
tion, e.g., investing time to prepare for a job interview, where
the player that invests more wins the competition.

Prior work – full-information bidding games. The cen-
tral quantity in bidding games is the initial ratio between
the players’ budgets. Formally, for i ∈ {1, 2}, let Bi be
Player i’s initial budget. Then, Player 1’s initial ratio is
B1/(B1+B2). A random-turn game (Peres et al. 2009) with
parameter p ∈ [0, 1] is similar to a bidding game only that in-

1A worst-case modelling assumes that the other bidders coop-
erate against Player 1.
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stead of bidding, in each turn, we toss a coin with probability
p that determines which player moves the token. Formally,
a random-turn game is a special case of a stochastic game
(Condon 1992).

Qualitative objectives. In reachability games, each player
is associated with a target vertex, the game ends once a
target is reached, and the winner is the player whose tar-
get is reached. Reachability bidding games were studied in
(Lazarus et al. 1996, 1999). It was shown that, for first-price
reachability games, a threshold ratio exists, which, infor-
mally, is a necessary and sufficient initial ratio for winning
the game. Moreover, it was shown that first-price Richman-
bidding games are equivalent to uniform random-turn games
(and only Richman bidding); namely, the threshold ratio in a
bidding game corresponds to the value of a uniform random-
turn game. All-pay reachability games are technically more
challenging. Optimal strategies might be mixed and may
require sampling from infinite-support probability distribu-
tions even in extremely simple games (Avni, Ibsen-Jensen,
and Tkadlec 2020).

Mean-payoff games. Mean-payoff games are infinite-
duration quantitative games. Technically, each vertex of the
graph is assigned a weight, and the payoff of an infinite
play is the long-run average sum of weights along the path.
The payoff is Player 1’s reward and Player 2’s cost, thus
we refer to them respectively as Max and Min. For exam-
ple, consider the “bowtie” game G./, depicted in Fig. 1. The
payoff in G./ corresponds to the ratio of bidding that Max
wins. Informally G./ models the setting in which in each
day a publisher sells an ad slot, and Max’s objective is to
maximize visibility: the number of days that his ad is dis-
played throughout the year. Unlike reachability games, intri-
cate equivalences between mean-payoff bidding games and
random-turn games are known for all the mechanisms de-
scribed above (Avni, Henzinger, and Chonev 2019; Avni,
Henzinger, and Ibsen-Jensen 2018; Avni, Henzinger, and
Žikelić 2021; Avni, Jecker, and Žikelić 2021).
Example 1. We illustrate the equivalences between full-
information bidding games and random-turn games. Con-
sider the “bowtie” game G./ (see Fig. 1). For p ∈ [0, 1], the
random-turn game RT(G./, p) that uses a coin with bias p is
depicted in Fig. 2. Its expected payoff is p.

Suppose that the initial ratio is r ∈ (0, 1). Under first-
price Richman-bidding, the optimal payoff in G./ does not
depend on the initial ratio: no matter what r is, the opti-
mal payoff that Max can guarantee is arbitrarily close to
0.5, hence the equivalance with RT(G./, 0.5). Under first-
price poorman bidding, the optimal payoff does depend on
the initial ratio: roughly, the optimal payoff that Max can
guarantee is r, hence the equivalence with RT(G./, r). For
all-pay bidding, pure strategies are only “useful” in all-pay
poorman bidding and only when r > 0.5, where Max can
guarantee an optimal payoff of 2r−1

r . The results extend to
general strongly-connected games (see Thm. 3). 4

Our contributions – partial-information bidding games.
In most auction domains, bidders are not precisely informed
of their opponent’s budget. Bidding games, however, have
only been studied as full-information games. We initiate the
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Figure 1: The mean-payoff
game G./ with the weights
in the vertices.
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Figure 2: The simpli-
fied random-turn game
RT(G./, p), for p ∈ [0, 1].

study of bidding games in which the players are partially
informed of the opponent’s budget. Specifically, we study
bidding games in which the two players’ budgets are drawn
from a known probability distribution, and the players’ goal
is to maximize their expected utility. We first show that the
results on qualitative objectives as well as first-price Rich-
man bidding transfer to the partial-information setting.

We turn to study mean-payoff poorman-bidding games,
which are significantly more challenging. We focus on one-
sided partial-information games in which only Player 2’s
budget is drawn from a probability distribution. Thus,
Player 1 is partially informed and Player 2 is fully informed
of the opponent’s budget. We argue that one-sided partial-
information games are practically well-motivated. Indeed,
one-sided partial information is a worst-case modelling: the
utility that an optimal strategy for Player 1 guarantees in the
game, is a lower bound on the utility that it will guarantee
when deployed against the concrete environment. We illus-
trate our results in the following example.

Example 2. Consider the bowtie game G./ (Fig. 1), where
Max (the partially-informed player) starts with a budget ofB
and Min (the fully-informed player) starts with a budget that
is drawn uniformly at random from supp(γ) = {C1, C2}.
We describe an optimal strategy for Max under first-price
poorman bidding. Max carefully chooses an x ∈ [B · C1

C2
, B]

and divides his budget into two “wallets”; the first with bud-
get x and the second with budget B − x. He initially uses
his first wallet to play an optimal full-information strategy
assuming the initial budgets are x and C1, which guaran-
tees a payoff of at least p1 = x

C1+x
. If Player 2 spends

more than C1, i.e., her initial budget was in fact C2, then
Player 1 proceeds to use his second wallet against Player 2’s
remaining budget, which guarantees a payoff of at least
p2 = B−x

B−x+C2−C1
. Thus, the expected payoff is at least

0.5 ·(p1+p2), and Max simply chooses an x that maximizes
this expression. Note that the constraint that x ≥ B · C1

C2
im-

plies that p1 ≥ p2, thus Min has an incentive to play so
that Max proceeds to use his second wallet. We show that
this strategy is optimal, and extend the technique to obtain
optimal strategies in general strongly-connected games for
first-price and all-pay poorman bidding.

Finally, we show that the optimal payoff that Min can
guarantee in G./, is obtained by a surprisingly simple strat-
egy. We show that the following Min strategy is optimal:
when her initial budget is Ci, for i ∈ {1, 2}, Min follows
an optimal full-information strategy for ratio B/(B + Ci).
That is, she “reveals” her true budget in the first round and
cannot gain utility by hiding this information. The technical
challenge is to show that this strategy is optimal. 4
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Our results show that contrary to turn-based, stochastic
games, and full-information bidding games, there is a gap
between the optimal payoffs that the players can guarantee
with pure strategies. Thus, the value does not necessary ex-
ist in partial-information mean-payoff bidding games under
pure strategies.

Related work. The seminar book (Aumann, Maschler,
and Stearns 1995) studies the mean-payoff game G./ un-
der one-sided partial-information with a different seman-
tic to the one we study. Let L or R denote the two ver-
tices of G./. Min has partial information of the weights of
L and R, which, before the game begins, are drawn from
a known probability distribution. Max, the fully-informed
player, knows the weights. In each turn, Max chooses L or
R, followed by Min who either “accepts” or “rejects” Max’s
choice, thus both players can affect the movement of the
token. The value in the game is shown to exist. Interest-
ingly and similar in spirit to our results, there are cases in
which Max cannot use his knowledge advantage and his op-
timal strategy reveals which of the two vertices he prefers.
One-sided partial information have also been considered in
turn-based graph games, e.g., (Reif 1984; Raskin et al. 2007;
Wulf, Doyen, and Raskin 2006).

Discrete bidding games were studied in (Develin and
Payne 2010); namely, budgets are given in coins, and the
minimal positive bid a player can make is a single coin. Tie-
breaking is a significant factor in such games (Aghajohari,
Avni, and Henzinger 2021). Non-zero-sum bidding games
were studied in (Meir, Kalai, and Tennenholtz 2018). See
also the survey (Avni and Henzinger 2020).

Preliminaries
Strategies in bidding games. A bidding game is played
on a directed graph 〈V,E〉. A strategy in any graph game
is a function from histories to actions. In bidding games, a
history consists of the sequence of vertices that were vis-
ited and bids made by the two players. We stress that the
history does not contain the current state of the budgets.
Rather, a player can compute his opponent’s current bud-
get based on the history of bids, if he knows her initial bud-
get. We formalize the available budget following a history.
For i ∈ {1, 2}, suppose the initial budget of Player i is
Bi. For a history h, we define the investments of Player i
throughout h, denoted Invi(h). In all-pay bidding, Invi(h)
is the sum bids made by Player i throughout h, and in first-
price bidding, it is the sum only over the winning bids. We
denote by Bi(h) Player i’s available budget following h.
Under Richman bidding, winning bids are paid to the op-
ponent, thus Bi(h) = Bi − Invi(h) + Inv3−i(h). Under
poorman bidding, winning bids are paid to the bank, thus
Bi(h) = Bi − Invi(h).

Given a history, a strategy prescribes an action, which in
a bidding game, is a pair 〈b, u〉 ∈ R × V , where b is a bid
and u is the vertex to move to upon winning. We restrict
the actions of the players following a history h so that (1)
the bid does not exceed the available budget, thus following
a history h, a legal bid for Player i is a bid in [0, Bi(h)],
and (2) a player must choose a neighbor of the vertex that

the token is placed on. We restrict attention to strategies that
choose legal actions for all histories. Note that we consider
only pure strategies and disallow mixed strategies (strategies
that allow a random choice of action).

Definition 1. For i ∈ {1, 2}, we denote by Si(Bi) the set of
legal strategies for Player iwith an initial budget ofBi. Note
that with a higher initial budget, there are more strategies to
choose from, i.e., for B′i > Bi, we have Si(Bi) ⊆ Si(B′i).

The central quantity in bidding games is the initial ratio,
defined as follows.

Definition 2. Budget ratio. When Player i’s budget is Bi,
for i ∈ {1, 2}, we say that Player i’s ratio is Bi

B1+B2
.

Plays. Consider initial budgets B1 and B2 for the two
players, two strategies f ∈ S1(B1) and g ∈ S2(B2),
and an initial vertex v. The triple f , g, and v gives rise to
a unique play, denoted play(v, f, g). The construction of
play(v, f, g) is inductive and is intuitively obtained by al-
lowing the players to play according to f and g. Initially,
we place the token on v, thus the first history of the game
is h = v. Suppose a history h has been played. Then, the
next action that the players choose is respectively 〈u1, b1〉 =
f(h) and 〈u2, b2〉 = g(h). If b1 > b2, then Player 1 wins the
bidding and the token moves to u1, and otherwise Player 2
wins the bidding and the token moves to u2. Note that we
resolve ties arbitrarily in favor of Player 2. The play con-
tinues indefinitely. Since the players always choose neigh-
boring vertices, each play corresponds to an infinite path in
〈V,E〉. For n ∈ N, we use playn(v, f, g) to denote its finite
prefix of length n. We sometimes omit the initial vertex from
the play when it is clear from the context.

Objectives. We consider zero-sum games. An objective
assigns a payoff to a play, which can be thought of as
Player 1’s reward and Player 2’s penalty. We thus sometimes
refer to Player 1 as Max and Player 2 as Min. We denote by
payoff(f, g, v) the payoff of the play play(f, g, v).

Qualitative objectives. The payoff in games with quali-
tative objectives is in {−1, 1}. We say that Player 1 wins
the play when the payoff is 1. We consider two qualitative
objectives. (1) Reachability. There is a distinguished target
vertex t and a play is winning for Player 1 iff it visits t.
(2) Parity. Each vertex is labeled by an index in {1, . . . , d}
and a play is winning for Player 1 iff the highest index that is
Parity objectives are important in practice, e.g., reactive syn-
thesis (Pnueli and Rosner 1989) is reducted to the problem
of solving a (turn-based) parity games.

Mean-payoff games. The quantitative objective that we
consider is mean-payoff. Every vertex v in a mean-
payoff game has a weight w(v) and the payoff of an
infinite play is the long-run average weight that it tra-
verses. Formally, the payoff of an infinite path v1, v2, . . .
is lim infn→∞

1
n

∑
1≤i<n w(vi). Note that the definition fa-

vors Min since it uses lim inf .

Values in full-information bidding games. We are inter-
ested in finding the optimal payoff that a player can guar-
antee with respect to an initial budget ratio. Let c ∈ R and
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initial budgets B1 and B2. We say that Player 1 can guar-
antee a payoff of c, if he can reveal that he will be play-
ing according to a strategy f ∈ S1(B1), and no matter
which strategy g ∈ S2(B2) Player 2 responds with, we have
payoff(f, g) ≥ c. Player 1’s value is the maximal c that he
can guarantee, and Player 2’s value is defined dually. Note
that there might be a gap between the two players’ values.
When Player 1’s value coincides with Player 2’s value, we
say that the value exists in the game.

Partial Information Bidding Games
A partial-information bidding game is G =
〈V,E, α, γ1, γ2〉, where 〈V,E〉 is a directed graph, α
is an objective as we elaborate later, and the budget
distribution γi is a probability distribution from which
Player i’s initial budget is drawn, for i ∈ {1, 2}. The
support of a probability distribution γ : Q → [0, 1] is
supp(γ) = {x ∈ Q : γ(x) > 0}. We restrict attention to
finite-support probability distributions. For i ∈ {1, 2}, the
probability that Player i’s initial budget is Bi ∈ supp(γi) is
γi(Bi).
Definition 3. One-sided partial information. We say that a
game has one-sided partial information when |supp(γ1)| =
1 and |supp(γ2)| > 1. We then call Player 1 the partially-
informed player and Player 2 the fully-informed player.

We turn to define values in partial-information games. The
intuition is similar to the full-information case only that each
player selects a collection of strategies, one for each possible
initial budget, and we take the expectation over the payoffs
that each pair of strategies achieves. The δ in the follow-
ing definition allows us to avoid corner cases due to ties in
biddings and the ε is crucial to obtain the results on full-
information mean-payoff bidding games.
Definition 4. (Values in partial-information bidding
games). Consider a partial-information bidding game
G = 〈V,E, α, β, γ〉. Suppose supp(β) = {B1, . . . , Bn}
and supp(γ) = {C1, . . . , Cn}. We define Player 1’s
value, denoted val↓(G, β, γ), and Player 2’s value, de-
noted val↑(G, β, γ), is defined symmetrically. We define that
val↓(G, β, γ) = c ∈ R if for every δ, ε > 0,

• There is a collection
(
fB ∈ S1(B + δ)

)
B∈supp(β)

of Player 1 strategies, such that for every collection(
gC ∈ S2(C)

)
C∈supp(γ) of Player 2 strategies, we have∑

B,C β(B) · γ(C) · payoff(fB , gC) ≥ c− ε.
• For every collection

(
fB ∈ S1(B)

)
B∈supp(β) of

Player 1 strategies, there is a collection
(
gC ∈

S2(C + δ)
)
C∈supp(γ) of Player 2 strategies such that∑

B,C β(B) · γ(C) · payoff(fB , gC) ≤ c+ ε.

Note that val↓(G, β, γ) ≤ val↑(G, β, γ) and when there
is equality, we say that the value exists, and denote it by
val(G, β, γ).

The value in mean-payoff games is often called the mean-
payoff value. In mean-payoff games we use MP↓,MP↑, and
MP instead of val↓, val↑, and val, respectively. When G is

full-information and the budget ratio is r, we use MP(G, r)
instead of writing the two budgets.

Partial-Information Qualitative First-Price
Bidding Games

In this section, we focus on first-price bidding and show that
the value exists in partial-information bidding games with
qualitative objectives. The proof adapts results from the full-
information setting, which we survey first.
Definition 5. (Threshold ratios in full-information
games). Consider a full-information first-price bidding
game with a qualitative objective. Suppose that the sum of
initial budgets is 1 and that the game starts at v. The thresh-
old ratio in v, denoted Th(v), is a value t such that for every
ε > 0:
• Player 1 wins when his ratio is greater than Th(v);

namely, when the initial budgets are t+ ε and 1− t− ε.
• Player 2 wins when Player 1’s ratio is less than Th(v);

namely, when the initial budgets are t− ε and 1− t+ ε.
Existence of threshold ratios for full-information reacha-

bility games was shown in (Lazarus et al. 1996, 1999) and
later extended to full-information parity games in (Avni,
Henzinger, and Chonev 2019; Avni, Henzinger, and Ibsen-
Jensen 2018).
Theorem 1. (Lazarus et al. 1996, 1999; Avni, Henzinger,
and Chonev 2019; Avni, Henzinger, and Ibsen-Jensen 2018)
Threshold ratios exist in every vertex of a parity game.

The following theorem, whose proof can be found in the
full version, extends these results to the partial-information
setting.
Theorem 2. Consider a partial-information parity first-
price bidding game G = 〈V,E, α, β, γ〉 and a vertex
v ∈ V . Let W = {〈B,C〉 : B ∈ supp(β), C ∈
supp(γ), and Th(v) < B

B+C }. Then, the value of G in v

is
∑
〈B,C〉∈W β(B) · γ(C).

Partial-Information Mean-Payoff Bidding
Games

In this section we study mean-payoff bidding games.
Throughout this section we focus on games played on
strongly-connected graphs. We start by surveying results on
full-information games. The most technically-challenging
results concern one-sided partial-information poorman-
bidding games. We first develop optimal strategies for the
partially-informed player, and then show that the value does
not necessary exist under pure strategies.

Full-Information Mean-Payoff Bidding Games
We show equivalences between bidding games and a class of
stochastic games (Condon 1992) called random-turn games,
which are define formally as follows.
Definition 6. (Random-turn games). Consider a strongly-
connected mean-payoff bidding game G. For p ∈ [0, 1],
the random-turn game that corresponds to G w.r.t. p, de-
noted RT(G, p), is a game in which instead of bidding, in
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each turn, we toss a (biased) coin to determine which player
moves the token: Player 1 and Player 2 are respectively cho-
sen with probability p and 1− p. Formally, RT(G, p) is con-
structed as follows. Every vertex v in G, is replaced by three
vertices vN , v1, and v2. The vertex vN simulates the coin
toss: it has an outgoing edge with probability p to v1 and an
edge with probability 1 − p to v2. For i ∈ {1, 2}, vertex vi
simulates Player i winning the coin toss: it is controlled by
Player i and has an outgoing edge to uN , for every neigh-
bor u of v. The weights of vN , v1, and v2 coincide with the
weight of v. The mean-payoff value of RT(G, p), denoted
MP
(
RT(G, p)

)
, is the optimal expected payoff that the two

players can guarantee, and it is known to exist (Puterman
2005). Since G is strongly-connected, MP

(
RT(G, p)

)
does

not depend on the initial vertex.

For a full-information game G and a ratio r ∈ (0, 1), re-
call that MP(G, r) denotes the optimal payoff that Max can
guarantee with initial ratio r. We state the equivalences be-
tween the two models.

Theorem 3. Let G be a strongly-connected full-information
mean-payoff bidding game.

• First-price Richman bidding (Avni, Henzinger, and
Chonev 2019). The optimal payoff that Max can guar-
antee with a pure strategy does not depend on the ini-
tial ratio: for every initial ratio r, we have MP(G, r) =
MP
(
RT(G, 0.5)

)
.

• First-price poorman bidding (Avni, Henzinger, and
Ibsen-Jensen 2018). The optimal payoff that Max can
guarantee with pure strategy and ratio r coincides with
the value of a random-turn game with bias r: for every
initial ratio r, we have MP(G, r) = MP

(
RT(G, r)

)
.

• All-pay poorman bidding (Avni, Jecker, and Žikelić
2021). The optimal payoff that Max can guarantee with
a pure strategy and ratio r > 0.5 coincides with the
value of a random-turn game with bias (2r − 1)/r:
for every initial ratio r > 0.5, we have MP(G, r) =
MP
(
RT(G, (2r − 1)/r)

)
.

Since the optimal payoff under first-price Richman bid-
ding depends only on the structure of the game and not
on the initial ratios, the result easily generalizes to partial-
information games. Consider two budget distributions β and
γ for Min and Max, respectively. Indeed, when Min’s ini-
tial budget is B ∈ supp(β), playing optimally against any
C ∈ supp(γ) results in the same payoff, and similarly for
Max. We thus conclude the following.

Theorem 4. Consider a strongly-connected first-price Rich-
man mean-payoff bidding game G. For any two bud-
get distributions β and γ for the two players, we have
MP↓(G, β, γ) = MP↑(G, β, γ) = MP

(
RT(G, 0.5)

)
.

Remark 1. (All-pay Richman bidding). It was shown in
(Avni, Jecker, and Žikelić 2021) that in all-pay Richman bid-
ding games, pure strategies are “useless”: no matter what the
initial ratio is, Max cannot guarantee a positive payoff with
a pure strategy. The study of mean-payoff all-pay Richman-
bidding games is thus trivial in the partial-information set-
ting as well.

The Value of the Partially-Informed Player
We turn to study partial-information mean-payoff bidding
games under poorman bidding, where we focus on one-sided
partial information. We arbitrarily set Max to be partially-
informed and Min to be fully-informed.

First-price bidding. Fix a strongly-connected mean-
payoff game G. Suppose that Max’s budget is B and Min’s
budget is chosen from a finite probability distribution γ with
supp(γ) = {C1, . . . , Cn} and Ci < Ci+1, for 1 ≤ i < n.
We generalize the technique that is illustrated in Example 2.
Max carefully chooses increasing x1, . . . , xn, where xn =
B. He maintains two “accounts”: a spending account from
which he bids and a savings account. Initially, the spend-
ing account has a budget of x1 and the savings account,
a budget of B − x1. Max plays “optimistically”. He first
plays in hope that Min’s budget is C1 with a budget of x1. If
Min does not spend C1, the payoff is as in full-information
games, namely at least p1 = MP

(
RT(G, x1

x1+C1
)
)
. Oth-

erwise, Min spends at least C1 and Max transfers budget
from his savings account to his spending account so that the
saving account has B − x2 and the spending account has
at least x2 − x1. Note that if Min’s initial budget was in-
deed C2, at this point she is left with a budget of at most
C2 − C1. If Min does not spend C2 − C1, by following a
full-information optimal strategy, Max can guarantee a pay-
off of at least p2 = MP

(
RT(G, x2−x1

x2−x1+C2−C1
)
)
. The defi-

nition of p3, . . . , pn is similar. Max chooses x1, . . . , xn so
that p1 ≥ . . . ≥ pn. Thus, when Min’s initial budget is Ci,
she has an incentive to play so that Max’s spending account
will reach xi and the payoff will be at least pi. We call such
a choice of x1, . . . , xn admissible and formally define it as
follows.
Definition 7. Admissible sequences. Let G be a poorman
mean-payoff bidding game. Let B be a budget of Max and
γ be a finite budget distribution of Min with supp(γ) =
{C1, . . . , Cn}. A sequence (xi)1≤i≤n of budgets is called
admissible with respect to B and γ if 0 ≤ x1 ≤ x2 ≤ · · · ≤
xn = B and p1 ≥ p2 ≥ . . . ≥ pn, where

pi = MP
(

RT
(
G, xi − xi−1
xi − xi−1 + Ci − Ci−1

))
(1)

for each 1 ≤ i ≤ n, with x0 = 0 and C0 = 0. We denote by
ADM(B, γ) the set of all admissible sequences with respect
to B and γ.

We state our main result and the proof can be found in the
full version.
Theorem 5 (Mean-payoff value of the partially-informed
player). Consider a strongly-connected first-price poorman
mean-payoff bidding game G. Let B be the initial budget
of Max and γ be a finite budget distribution of Min with
supp(γ) = {C1, . . . , Cn}. Then

MP↓(G, β, γ) = max
(xi)1≤i≤n∈ADM(B,γ)

Val(x1, . . . , xn), (2)

where Val(x1, . . . , xn) =
∑n
i=1 γ(Ci) ·

MP
(

RT
(
G, xi−xi−1

xi−xi−1+Ci−Ci−1

))
with x0 = 0 and

C0 = 0.
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We point to some interesting properties of Max’s value:

Remark 2. Consider the bowtie game (Fig. 1) and assume
Max’s budget is fixed to B = 1 and Min’s budget is drawn
uniformly at random from {C1, C2}.
• When C1 = 1 and C2 = 2, the maximum is ob-

tained at x = 0.5, thus Max’s optimal expected payoff is
1
3 = B

B+C2
. We note that Max has a very simple optimal

strategy in this case: “assume the worst” on Min’s initial
budget. That is, play according to an optimal strategy for
initial budgets B and C2.

• When C1 = 1, and C2 = 5, the maximum is obtained at
x = 0. This is the dual of the case above. Max can “as-
sume the best” on Min’s initial budget and play according
to an optimal strategy for budgetsB andC1. When Min’s
budget is C1, this strategy guarantees a payoff of B

B+C1
.

But when Min’s budget is C2, the strategy cannot guar-
antee a payoff above 0. Thus, the strategy guarantees an
expected payoff of 1

4 = 1
2 ·

B
B+C1

.
• There are cases in which Max’s optimal strategy is not

one of the trivial cases above. When C1 = 1 and C2 = 3,
Max’s optimal payoff is 1

8 (5− 2 ·
√
2) ≈ 0.271, which is

strictly larger than both 1
4 = 1

2 ·
B

B+C1
and 1

4 = B
B+C2

.4

All-pay poorman bidding We extend the technique in
the previous section to all-pay poorman bidding. In order
to state our results formally, we need to redefine the no-
tion of admissible sequences since the optimal payoff that
Max can guarantee under all-pay bidding differs from the
payoff that he can guarantee under first-price bidding. Anal-
ogously to Def. 7 but now under all-pay bidding, we say
that a sequence (xi)1≤i≤n of budgets is called admissible
with respect to a budget B of Max and a budget distribu-
tion γ of Min if 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn = B and
p1 ≥ p2 ≥ . . . ≥ pn, where now

pi = MP
(

RT
(
G,
(
1− Ci − Ci−1

xi − xi−1

)
·

I
(
xi − xi−1 > Ci − Ci−1

)))
for each 1 ≤ i ≤ n, with x0 = 0 and C0 = 0. Here, I is
an indicator function that evaluates to 1 if the input logical
formula is true, and to 0 if it is false. We are now ready
to state our result on all-pay poorman mean-payoff bidding
games.

Theorem 6 (Mean-payoff value of the partially-informed
player). Consider a strongly-connected all-pay poorman
mean-payoff bidding game G. Let B be the initial budget
of Max and γ be a finite budget distribution of Min with
supp(γ) = {C1, . . . , Cn}. Then

MP↓(G, β, γ) = max
(xi)1≤i≤n∈ADM(B,γ)

Val(x1, . . . , xn), (3)

where Val(x1, . . . , xn) =
∑n
i=1 γ(Ci) · MP

(
RT
(
G,
(
1 −

Ci−Ci−1

xi−xi−1

)
·I
(
xi − xi−1 > Ci −Ci−1

)))
with x0 = 0 and

C0 = 0 and I an indicator function.

The Mean-Payoff Value of the Fully-Informed
Player Under First-Price Poorman Bidding
In this section we identify the optimal expected payoff that
the fully-informed player can guarantee in the bowtie game
(Fig. 1) under first-price bidding. Suppose that Max’s initial
budget is B and Min’s initial budget is drawn from a distri-
bution γ. Consider the following collection of naive strate-
gies for Min: when her initial budget is C ∈ supp(γ), Min
plays according to an optimal full-information strategy for
the ratio B

B+C .
We find it surprising that this collection of strategies is

optimal for Min in the bowtie game. The technical chal-
lenge in this section is the lower bound. This result comple-
ments Thm. 5: we characterize both Min and Max’s values
in the bowtie game when the players are restricted to use
pure strategies. We show, somewhat unexpectedly, that the
two values do not necessarily coincide.

In order to state the result formally, we need the following
definition. Intuitively, the potential of 〈B, γ〉 is the optimal
expected payoff when Min plays according to the collection
of naive strategies described above.

Definition 8. (Potential). Given a budget B ∈ R of
Max and a budget distribution γ with support supp(γ) =
{C1, C2, . . . , Ck} of Min, we define Pot(B, γ) =∑k
j=1 γ(Cj) ·

B
B+Cj

.

The main result in this section is given in the following
theorem, whose proof follows from Lemmas 8 and 9.

Theorem 7 (Mean-payoff value of the fully-informed
player). Consider the bowtie game G./. Let B be the ini-
tial budget of Max and γ be a finite budget distribution of
Min with supp(γ) = {C1, C2, . . . , Ck}. Then,

MP↑(G, B, γ) = Pot(B, γ) =
k∑
j=1

γ(Cj) ·
B

B + Cj
. (4)

Before proving the theorem, we note the following.

Remark 3. (Inexistence of a value). Our result implies
that the value in partial-information mean-payoff first-price
poorman bidding games under pure strategies is not guaran-
teed to exist. Indeed, consider G./ with B = 1 and γ that
draws Min’s budget uniformly at random from {1, 2}. By
Thm. 5, one can verify that the optimal choice of x is 1, thus
MP↓(G./, B, γ) = 1

3 . On the other hand, by Thm. 7, we have
MP↑(G./, B, γ) = 5

12 . 4
The upper bound is obtained when Min reveals her true

budget immediately and plays according to the strategies de-
scribed above. The following lemma follows from results on
full-information games (Thm. 3).

Lemma 8 (Upper bound). For every ε > 0, Min has a
collection of strategies ensuring an expected payoff smaller
than Pot(B, γ) + ε.

We proceed to the more challenging lower bound and
show that there are no Min strategies that perform better than
the naive strategy above.
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Lemma 9 (Lower bound). For every ε > 0 and for every
collection (gj ∈ SMin(Cj))1≤j≤k of Min strategies, Max
has a strategy ensuring an expected payoff greater than
Pot(B, γ)− ε.

Proof. Let ε > 0, and let (gj ∈ SMin(Cj))1≤j≤k be a collec-
tion of Min strategies. We construct a counter strategy f of
Max ensuring an expected payoff greater than Pot(B, γ)−ε.
The proof is by induction over the size k of the support of
γ. Obviously, if k = 1, Max has perfect information and
can follow a full-information optimal strategy to guarantee
a payoff of Pot(B, γ) = B

B+C1
(Thm. 3). So suppose that

k > 1, and that the statement holds for every budget distri-
bution of Min with a support strictly smaller than k.

Max carefully chooses a small part x ≤ B of his budget
and a part y ≤ C1 of Min’s budget. He plays according to a
full-information strategy f for initial budgets x and y. This
can result in three possible outcomes: (O1) Min never uses
more than y: the payoff is x

x+y as in full-information games;
(O2) Min reveals her true initial budget, thus Max can dis-
tinguish between the case that Min’s budget is Ci and Cj ,
and by the induction hypothesis he can ensure an expected
payoff of Pot(B − x, γ) using his remaining budget; (O3)
Min does not reveal her true initial budget and spends more
than y: Max’s leftover budget is greater than B − x and, for
1 ≤ j ≤ k, when Min’s budget is Cj , she has Cj − y, and
Max re-starts the loop by selecting a new x.

We show that Max can choose x and y in a way that guar-
antees that the payoffs obtained in the first two outcomes are
greater than the desired payoff Pot(B, γ) − ε. Also, when
outcome O3 occurs, the potential does not decrease, and
eventually either O1 or O2 occur.

Formally, we describe a sequence (πi, Bi, γi)0≤i≤m of
configurations comprising of a history πi consistent with
every strategy (gj)1≤j≤k, the budget Bi of Max after πi,
and the budget distribution γi of Min with supp(γi) =
{Ci1, Ci2, . . . , Cik} following πi. Tuple i represents the bud-
get and budget distribution of the players following i − 1
choices of outcome O3. Let λ = 1− ε

2 and ρ = 1
Pot(B,γ) −1.

We start with (π0, B0, γ0) = (v,B, γ) with v an ini-
tial vertex, and we show recursively how Max can update
this tuple while ensuring that the following four properties
are satisfied: (P1) The history πi is consistent with every
(gj)1≤j≤k; (P2) Max spends his budget sufficiently slowly:
Bi ≥ λiB; (P3) Min spends her budget sufficiently fast:
Cij ≤ Cj − ρ · (1 − λi)B for every 1 ≤ j ≤ k; (P4) The
potential never decreases: Pot(Bi, γi) ≥ Pot(B, γ).

Note that for the initial tuple (π0, B0, γ0) = (v,B, γ),
these are trivially satisfied. Moreover, Property P3 implies
an upper bound on i, that is, outcome O3 can happen only
finitely many times: limi→∞ Ci1 ≤ limi→∞ C1 − ρ · (1 −
λi)B = C1 − ρ · B = B + C1 − B

Pot(B,γ) = 1
1

B+C1

−
1∑k

j=1 γ(Cj)· 1
B+Cj

which is negative since C1 < C2 < . . . <

Ck, yet a negative Ci1 means that Min illegally bids higher
than her available budget.

We now define the choices xi and yi for each i ∈ N, and
show that they satisfy the properties described above. Let

xi = ε
2 · λ

iB and yi = ρ · xi. For initial budgets xi and
yi, let fi be a Max strategy whose payoff is greater than
xi

xi+yi
− ε. Max follows fi as long as Min spends at most yi.

Let (ψj)1≤j≤k be plays such that for each 1 ≤ j ≤ k (1) the
play πiψj is consistent with the strategy gj ; (2) Max plays
according to fi along ψj ; (3) ψj stops when Min spends
more than yi, and is infinite if she never does.

In the full version, we consider three possible cases, de-
pending on whether the paths ψj are finite or infinite, and
whether they are distinct or identical. If they are all infinite,
or there are at least two distinct ones, we show that Max im-
mediately has a way to obtain the desired payoff. If they are
all identical and finite, we show that, while Max cannot im-
mediately get the desired payoff, he can go to the next step
by setting φi+1 = φiψ1, and restarting.

Discussion and Future Work
We initiate the study of partial-information bidding games,
by studying games with partially-observed budgets. For
mean-payoff games, we show a complete picture in strongly-
connected games for the partially-informed player, which is
the more important case in practice. By identifying the value
for the fully-informed player in the bowtie game, we show
that the value in mean-payoff bidding games does not nec-
essarily exist when restricting to pure strategies.

We discuss open problems in this model. First, we fo-
cus on games played on strongly-connected graphs. Reason-
ing about such games is the crux of the solution to general
full-information bidding games. We thus expect that our re-
sults will be key in the solution of partial-information bid-
ding games on general graphs. This extension, however, is
not straightforward as in the full-information setting, and we
leave it as an open question. Second, we identify the value of
the fully-informed player in the bowtie game G./. Reasoning
about G./ was the crux of the solution to general strongly-
connected full-information bidding games. In fact, the same
technique was used to lift a solution for G./ to general
strongly-connected games under all the previously-studied
bidding mechanisms. In partial-information games, how-
ever, this technique breaks the intricate analysis in the proof
of Thm. 7. Again, we expect a solution to the bowtie game
to be a key ingredient in the solution to general strongly-
connected games, and we leave the problem open. Finally,
we showed that the value does not necessarily exist under
pure strategies. We leave open the problem of developing
optimal mixed strategies for the players.

This work is part of a research that combines formal
methods and AI including multi-agent graph games (Alur,
Henzinger, and Kupferman 2002), logics to reason about
strategies (Chatterjee, Henzinger, and Piterman 2010; Mo-
gavero et al. 2014) and in particular, their application
in auctions (Mittelmann et al. 2022), enhancing network-
formation games with concepts from formal methods
(e.g., (Avni, Kupferman, and Tamir 2016)), and many more.
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