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Abstract

We propose a multimodal data fusion framework to systemati-
cally analyze human behavioral data from specialized domains
that are inherently dynamic, sparse, and heterogeneous. We de-
velop a two-tier architecture of probabilistic mixtures, where
the lower tier leverages parametric distributions from the ex-
ponential family to extract significant behavioral patterns from
each data modality. These patterns are then organized into a
dynamic latent state space at the higher tier to fuse patterns
from different modalities. In addition, our framework jointly
performs pattern discovery and maximum-margin learning
for downstream classification tasks by using a group-wise
sparse prior that regularizes the coefficients of the maximum-
margin classifier. Therefore, the discovered patterns are highly
interpretable and discriminative to support downstream clas-
sification tasks. Experiments on real-world behavioral data
from medical and psychological domains demonstrate that
our framework discovers meaningful multimodal behavioral
patterns with improved interpretability and prediction perfor-
mance.

Introduction

Analyzing human behavior is an important and broad re-
search topic in various areas, including decision science,
economics, sociology, and many more (Pantic et al. 2007).
Human behavioral data usually involves multiple modali-
ties (Barros et al. 2018; Rasouli, Kotseruba, and Tsotsos
2017), such as verbal communications, gestures, eye gazes,
and facial expressions. The research of human behaviors has
significantly benefited from the technological advances in
multimodal data fusion (Song, Morency, and Davis 2012).
Data fusion can capture the complex relationship across
modalities and provide predictive information for understand-
ing the data. For example, factorization-based models de-
compose the data into the shared factor matrix and the ma-
trix capturing the uniqueness of each modality (Correa et al.
2010; Sorber, Van Barel, and De Lathauwer 2015). Bayesian
graphical models capture the joint probability of multiple
modalities, or conditional probability of cross-modal rela-
tions (Velivelli and Huang 2008; Nakamura et al. 2011). In
recent years, deep neural networks (DNN) have been devel-
oped for data fusion, aiming to model complicated relation-
ships among modalities through multi-level feature extraction
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and integration (Hori et al. 2017; Zhou et al. 2019), reduce
noise through a multi-feature autoencoder (Ma et al. 2016),
and effectively handle missing data through a generative
variational module (Seo et al. 2018). With a deep network,
multimodal feature vectors can be concatenated for fusion
purposes (Baltrusaitis, Ahuja, and Morency 2018).

However, applying data fusion models to human behav-
ioral studies still faces fundamental challenges in specialized
domains, such as psychology and health. One primary reason
is that data collection is usually based on rigorously designed
experiments involving human subjects, which is difficult to
conduct on a large scale. The limited behavioral data may
hinder the application of the existing data-driven models that
require massive training data (Wu and Goodman 2018; Tsai
et al. 2019; Kumar et al. 2021). Besides data scarcity, there
are several critical requirements of behavioral analytics that
may not be simultaneously satisfied by existing data-driven
models: 1) Human behavioral data is inherently dynamic
and multimodal, while behavioral research in psychology
and health domains usually requires discovering interpretable
patterns from complex behavior. 2) Aside from pattern dis-
covery, research in those specialized domains may involve
classification tasks, such as predicting which social group a
person belongs to based on the observed behaviors. However,
if pattern discovery (unsupervised) and classification (super-
vised) are conducted in isolation, some discovered patterns
may not contribute to classification and may cause model
overfitting. 3) Some modalities of human behavioral data may
be highly noisy or exhibit no easily distinguishable patterns.
Directly using such data for downstream domain research
without systematic feature selection will negatively impact
the final decision-making process.

To address the fundamental challenges and meet all critical
requirements simultaneously, we propose Sparse Maximum
Margin learning from Multimodal Recurrent States (SM2-
MRS) of human behavioral patterns. The MRS model ex-
tracts significant patterns from the observed human behav-
ioral data and uses a latent state space to dynamically fuse
the patterns from different modalities. In particular, MRS
formulates a two-tier probabilistic mixture model. The lower
tier models the observations from each modality as a mixture
of component distributions from the exponential family (EF).
Mixtures of EF distributions are adopted due to the following
reasons. First, most behavioral data are low-dimensional in
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Figure 1: Overall architecture. For modeling human behaviors, our framework uses mixture of patterns to discover interpretable
behavioral patterns from each modality; nested GRU to capture temporal dependency; max-margin classifier to learn a robust
decision boundary and classify sequential behavioral data; sparse max-margin learning to identify important patterns to avoid

overfitting. Please refer to the Experiment section for use cases.

their original forms (e.g., eye gazes and motions) or with
a higher dimension but very sparse (e.g., verbal narrations
with one-hot encoding). For the former, EF distributions are
suitable to directly model low-dimensional data; for the latter,
the parametric forms of EF usually lead to a good (approxi-
mate) distribution by learning only a few natural parameters.
So it can balance the bias and variance to avoid overfitting
on sparse data. Second, by linking the sufficient statistics
of EF distributions and the observed data samples, the dis-
covered mixture components (i.e., low-level patterns) can be
conveniently interpreted.

To fuse multimodal behavioral data, we further introduce
high-level patterns, which are a mixture of low-level patterns.
Each high-level pattern can be explained using a subset of
representative low-level patterns from different modalities.
Furthermore, we build a nested gated recurrent unit (GRU)
to organize the patterns into a state space, and capture the
temporal dynamics in human behaviors.

To support downstream classification tasks and decision-
making, we propose to jointly perform dynamic data fusion
and sparse maximum-margin learning (SM?) from the space
of multimodal behavioral patterns. The joint learning aims
to extract interpretable patterns that can explain human be-
haviors and have sufficient discriminative power to support
classification. We ensure the sparsity of useful patterns using
aunique hierarchical group-wise Laplace prior. The inference
process is developed to tackle the complex (non-conjugate)
interactions between the sparse Laplace prior of the SM?
coefficients and the latent variables in the MRS. As part of
the inference process, we derive a key property of a Laplace
distribution (see Theorem 1). It ensures an analytical form of
the (approximate) posterior of the SM? coefficients, which
allows us to solve a constrained quadratic dual problem (see
Theorem 2) for efficient posterior inference.

Figure 1 shows the overall architecture of the proposed
SMZ2-MRS. Our main contributions include:

* a dynamic multimodal fusion framework to jointly per-
form data fusion and maximum-margin learning from hu-
man behavioral data in specialized domains,

* a two-tier probabilistic mixture model that leverages EF
distributions to discover low-level behavioral patterns,
which are then dynamically fused at the high level to
accommodate data sparsity, heterogeneity, and temporal
dynamics simultaneously,

* a group-wise sparse prior that automatically selects dis-
criminative patterns with improved interpretability and
reduced risk of overfitting,
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* an efficient algorithm to solve the max-margin posterior
inference via quadratic programming with a theoretical
guarantee.

We conduct experiments on two real-world datasets from
medical and psychological domains. Our model extracts in-
terpretable multimodal behavioral patterns and provides in-
sights to benefit the research in those domains. Meanwhile,
the proposed model also achieves the best prediction perfor-
mance on supervised learning tasks, which indicates that it
has the potential to assist domain experts in human-machine
collaborative decision-making.

Related Works

Data fusion. Data fusion models leverage multiple modal-
ities of the observed data to capture complementary infor-
mation and make robust predictions. For probabilistic mod-
els, matrix decomposition methods factorize the data into a
matrix capturing shared factors and a matrix capturing the
uniqueness (Sorber, Van Barel, and De Lathauwer 2015).
However, the inferred feature representations are usually con-
tinuous vectors that may not have an understandable interpre-
tation.Bayesian graphical models fuse data by using a joint
pattern to govern multiple modalities (Nakamura et al. 2011).
However, those models may end up with too many patterns,
especially when data modalities are just loosely coupled. For
deep learning models, deep belief networks transfer the rep-
resentations from individual modalities into the semantic fea-
tures in the shared space (Srivastava and Salakhutdinov 2012;
Al-Waisy et al. 2018). Autoencoder-based models use the
encoder-decoder architecture to extract modality-specific rep-
resentations and shared representations (Wu and Goodman
2018; Tsai et al. 2019; Kumar et al. 2021). Recurrent neu-
ral network-based models capture the temporal dependency
from sequential data by fusing recurrent hidden units (Tsai
et al. 2019; Sano et al. 2018). In summary, DNN models
capture cross-modal interaction through joint representation
learning. However, for many specialized domains such as
psychology and health, limited annotated training data is
a common issue, and DNNs may suffer from deteriorated
performance due to overfitting. In addition, DNNs may not
be easily interpretable (Gao et al. 2020). Existing methods
provide interpretability by introducing feature importance or
attention weights (Hsu, Zhang, and Glass 2017; Heo et al.
2018). However, they are based on latent representations with
high-dimensional vectors, which are still difficult to interpret
due to a lack of semantic meanings. In contrast, our model
uses EF distributions to model behavioral patterns, and those



patterns can be visualized and interpreted by domain experts.

Maximum margin models. Maximum margin learning
finds a hyperplane to classify data points so that the distance
to the nearest data point on each side is maximized. It can
be integrated with probabilistic pattern discovery to train
Markov networks (Zhu and Xing 2009). Extensions include
single-modal data analysis on text analytics, image under-
standing, and representation learning (Zhu, Ahmed, and Xing
2012; Wang and Mori 2011; Tu et al. 2016), and multiview
subspace learning that assumes weak conditional indepen-
dence among heterogeneous observations (Chen et al. 2012).
However, existing models may not work well on behavioral
data with complex cross-modal interactions. In addition, the
maximum margin classifier for multi-class classification re-
quires training several scoring functions, one for each class.
Conventional feature selection techniques such as vanilla /; -
regularization and sparse priors do not work well, because
removing a feature requires its corresponding coefficients in
all scoring functions shrunk to 0. In contrast, our group-wise
sparse prior addresses the above issues.

The Proposed Framework

We aim to discover informative and interpretable patterns
from human behavioral data, and leverage the patterns to
support downstream classification. In specialized domains,
behavioral data is usually collected from experiments with
a group of participants. The data is usually multimodal and
sequential. We first introduce the concepts.

* Modality: Behavioral data is usually in multiple hetero-
geneous types (e.g., language and action). Each type is
considered a modality, indexed by m, where 1 < m < M.

* Data instance: In experiments, participants may be in-
structed to perform different tasks. For example, in an
experiment that studies children’s behavior, a group of chil-
dren is invited to play several specifically designed video
games. The behavioral data collected from one participant
(i.e., a child) and one task (i.e., a game) is considered a
data instance, indexed by [, where 1 <[ < L.

* Time step: Behavioral data is usually temporal. We parti-
tion the timeline of each data instance into multiple slices
with equal duration, each treated as a time step, indexed
by t, where 1 <t <T.

* Observation: In each time step, we have one observa-
tion for each modality of the behavioral data. We de-

note the observation for data instance ! modality m at

(l’m), and the whole sequence of data as

time ¢ as z;
X = gl o m)),

* Class label: Each data instance corresponds to one class
label that describes the nature of the data instance. In the
previous example (behavioral experiment), the class label
could be the psychological group of the child. We denote
the label for data instance [ as y(!).

Data Fusion Using Multimodal Behavioral Patterns

Following the notations introduced in previous section, we
consider a dataset with M/ modalities and L data instances.
Each data instance has T" observations and one correspond-
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Figure 2: Graphical illustration of the framework. Observed
data instances, behavioral patterns, and high-level patterns,
are denoted by x, z, and h, respectively. Data instances and
time steps are indexed by [ and ¢, respectively. Assume data
instance [ has two modalities (denoted by (1) 2(52)). Class
labels are denoted by y. Other variables are introduced along
with the prior distributions (see next sections for details)
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ing response variable, e.g., the class label. We assume the
observations are generated from the exponential family (EF):

l,m l,m m
plag™ | = ko)
(I,m) (m) (m)\T (I,m) M
= h(z; " )g(py") exp((py,”) (™))
where 2{""™ is low-level pattern assignment, z\""™ is obser-
vation. p,(cm) is the natural parameter for pattern & in modality

m. h(-), g(-) and 7(-) are known functions corresponding to
a specific distribution (e.g., Gaussian or Multinomial). We
place a conjugate prior on each pattern k as:

(m))

p(p X" vy

o g(pi™

m 2
)Ul(c ) exp(v,(cm)(

Py,
where chm) and v,(cm) are the parameters of the conjugate

prior. Here we use a general form of EF distributions, while
the specific forms (e.g., Gaussian or Dirichlet) depend on the
nature of the data and prior domain knowledge. Please refer
to the experiment section for some examples.

For each timestep, we further introduce a high-level pattern
that describes the joint distribution of low-level patterns from

each modality. The conditional dependency between low-
level pattern 2™ and high-level pattern hgl) is modeled

with a categorical distribution parameterized by #(™).

(m))TX(m))

k

p"™ |h" = j) ~ cat(8™), 6™ ~ Dir(og)  (3)
where hgl) is high-level pattern assignment for data instance
[ at timestep ¢, j is the index of high-level pattern. Dir(op) is
a global Dirichlet prior.

We use a nested single-layer gated recurrent unit (GRU) to
model the transition of high-level patterns over time. GRU is
a variant of the widely-used long-short term memory network
(LSTM) for modeling temporal data, while it lacks an output
gate and thus has fewer parameters.

DITRC l
p(h|1y ) ~ Cat(GRU(A ;) )
The output of GRU (after softmax transformation) is a proba-

bility vector, which is considered the parameter of categori-
cal distribution to generate the high-level pattern sequence.



Therefore, when considered as a whole, the single-layer GRU
has a probabilistic interpretation as specified in (4).
The joint distribution of patterns and observations is:

p(X,Z, H,p,0)
m m l l
=1L I, 2@ T, o 1035 0)
m,k ’ ’
l,m l m l,m L,m
IL, pGE 00D T, e ™1 )
(%)

Integrating Maximum-Margin Learning and
Group-Wise Regularization

The latent multimodal patterns are useful for downstream
classification. We propose using maximum-margin learning
for classification. Consider R classes and denote the class
variable for each data instance as y) € {1...R}. For a class
y, We define a linear discriminant function F: F(y, z1)) =
QyTZ(l), where () = 1/T/( tzt(l’l), D zt(l’m))T is the
aggregated latent pattern assignments of data instance I’s
observations, and z() can be considered the representation
of data instance [. (, is a class-specific coefficient vector
associated with class y in the linear discriminant functions.
Given a data instance [, the discriminant functions calculate
a score for each class, and the ground-truth class’s score is
encouraged to be greater than any other class’s score by a
certain margin (empirically set to 1):

vy #yY F F(y,» 6)
Maximum margin learning has its foundation in support vec-
tor machines. Compared with alternative design choices for
classification (e.g., logistic regression), the benefit of integrat-
ing maximum margin learning with probabilistic models is to
learn an effective decision boundary with an improved gener-
alization capability (Zhu, Ahmed, and Xing 2012). Our ex-
periments also show that maximum margin learning achieves
better results than alternative designs.

Assume the length of ¢, is K, which equals to the number
of total latent patterns. For example, in a data set with 2
modalities, if the number of patterns of each modality is
2 and 3, then K = 2 + 3 = 5. Let ¢ denote a vector of
concatenating ¢, over all R classes, and let f(y, 2(1)) denote

a vector whose (yy — 1)K + 1 to y K entries are from z(") and
all others are 0. Then F' can be re-written as

F(y,20) =" f(y,2Y) (7)
In addition, we introduce a group-wise sparse prior to iden-
tify informative patterns that contribute to the classification
while discarding non-informative patterns. Those informa-
tive patterns can be used by experts for further domain-
specific analysis. Specifically, we enforce the sparsity on
coefficients (’s through a group-wise Laplace prior with
Gaussian-exponential hierarchical representation

A
(—25%:) ()

(y®, 20) — M) >1

(l)>

p(¢ls) = N(¢|0, diag(s)), p(sk) = 5 exP
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where s > 0 is a vector and s(,_1)g4r = Sk for any
y € {1...R}. The variance sy, of latent pattern k’s coefficients
is shared across the discriminant functions of all classes. With
the group-wise Laplace prior, some s; may be driven to O dur-
ing model training, forcing the corresponding (’s to approach
0 and thus deleting those latent patterns for classification. We
also provide an intuitive explanation of maximum margin
learning and group-wise regularization in the Appendix.

Posterior Inference

Exact posterior inference is intractable due to the depen-
dency among the following parts: (I) parameters p and 6,
and assignments Z and H, (II) the nested GRU, (III) the
maximum margin coefficient ¢ and parameter s in the hier-
archical group-wise Laplace prior. However, the inference
procedure can be formulated as variational inference, which
optimizes each variational distribution iteratively (Bishop and
Nasrabadi 2006). To deal with part (I), we define a variational
distribution ¢(Z, H, 0, p) that can be factorized as:

a(Z,H.0.p) = [] a(6]™ |} Hq g™
VVL,J
©)
l l 1,m) (1
[Ta"1%) IT at=t W)
It l,m,t

where w, 7, £ and ¢ are the parameters of variational distribu-
tions. An optimal ¢(Z, H, 0, p) can be obtained by minimiz-
ing the KL divergence K L(q||p) between the true posterior
and variational approximation, which is equivalent to maxi-
mizing the evidence lower bound L|q(Z, H, 0, p)]:

Lig(Z. 1,0, p)] = / / o(Z, H,0, p)(np(X, Z, 1,0, p)
~Ing(Z, H,0, p))dZdHdodp.

Inference for part (I) can be handled using standard varia-
tional inference because of the conjugacy between variables,
ensured by the design of the framework. Due to the space
limit, we provide the detailed updates rule for w, v, &, ¢ in
the Appendix. For part (II), we note that given the assign-
ments Z, the nested GRU is independent from other parts
and its parameters can be updated using stochastic gradient
descent (details are in the Appendix). For part (IIT), we need
to infer the posterior distribution of ( and s. We consider
the marginal distribution p(¢) = [ p(¢|s)p(s|\)ds, where
p(s|A) = [ p(sk|A) and p(C[s) = [I; , P(Cy—1) K +kI5K)-
Assume ¢(¢, s) = q(¢)q(s) and apply Jensen’s inequality,
we get the evidence lower bound L[q((, s)] as

//
Llg(¢; 5)]

Inference of ¢ and s needs to deal with the unique chal-
lenges due to the maximum margin constraints and the group-
wise sparse prior. The major results are summarized below:

KL(a(Ollp(C)

p(Cls)p(s|A )dst (10)
q(s)



The (approximate) posterior inference of maximum-
margin multimodal data fusion with group-wise Laplace reg-
ularization is achieved by solving:

min —Llq(Z,H,0,p)] — L s
e o [q( p)] — L[g(C, s)]

st. Viy#y®: EJTAfOy)] =10,

(1
where A fO(y) = f(y®,z0) — f(y # y®,21), and €
is the slack variable for instance [. The first two terms of
the objective function formulates the evidence lower bound
for variational approximation, while the third term is the
soft-margin penalty.

Notice that ¢(Z, H, 0, p) is irrelevant with the constraint
and is solved in part (I). Now we calculate ¢({) and g(s). In
particular, variational distribution ¢(() is assumed a conju-
gate Gaussian distribution ¢(¢) ~ N (¢|pe, X¢):

=% Y,

Ly#y®

D >0

(l) Af(l)( ),

¢ = (diag(Eq[s™]))

12)
The vV’s in (12) are Lagrangian multipliers introduced to
handle the constraints in (11). In addition, computing ¢
requires to calculate E,[s~!]. Let s5, denote k-th element of
5. To calculate v(") and E,[s; '], we introduce the following
theorems (Detailed proofs are provided in the Appendix).
Theorem 1. The variational distribution of q(sy) takes the
following form:

q(sk) oc exp (—;)\sk) Hy/\/'( Eq(C(y71)K+k)2|078k)

+C Zl e

-1

13)
In particular, the expectation of skfl is given by
E(i)iin:l (Ro+r+1 /f: Ro+r
sy’ d = rl(Ro+1—r) rI(Ro — r)1(2d)"
(14)

where d = \/)\ >, E(Cly1yxx)% and Ry = & — 1.

Theorem 2. The Lagrangian multipliers v(")’s of the primal
problem (11) can be computed by solving a dual problem:

1 T )
max 'S+ Y ()

Uoy#y®
v (y
SED

€[0,¢],
wheren =32 .0 U(l)( )AFD(y).

The dual problem is a constrained quadratic problem,
which can be solved using standard QP solvers. Once v()’s
are computed they can be plugged in (12) along with
E,(s; ") given by (14) to evaluate g(¢). The detailed infer-
ence process is summarized in the Appendix.

Once the model is trained, given some new data, the model
can predict the corresponding class labels and discover sig-
nificant latent patterns to support domain research.

s)

vW(y) >0
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Experiments

We present our experimental results on two real-world be-
havioral studies. We also collaborated with domain experts
to interpret our findings. The collection and usage of data
have received rigorous Institutional Review Board review.
The appendix and source code are presented in (Zheng, Yu,
and Zheng 2023).

Dataset I: Behavioral Study in Medical Domain

We conducted experiments where physicians work towards
a diagnosis by viewing medical images and describing the
image content and their analysis. The first modality is verbal
narrations recorded and transcribed into word tokens and
timestamps. The second modality is physicians’ eye gazes
recorded by eye-tracking. Fixations (the gazes maintained
on a location) are recorded in terms of location and duration.
A total of 1,614 data instances (narrations and eye gaze se-
quences) were collected. There are 4 classes (i.e., solitary,
symmetry, multiple morphologies, and high-density lesions),
which are annotated by a group of domain experts based
on disease morphology. Our model aims to discover latent
patterns and perform classification.

For pattern discovery of verbal narrations (first modality),
we apply the Dirichlet-Categorical conjugate distributions
from the EF family, where each narration is considered a mix-
ture of topics. The setting is widely used in topic models (Blei,
Ng, and Jordan 2003). Denote the word distribution for topic

k as Bj. For one narration [, given the topic assignment at

(

time ¢ as z;’ ), the corresponding words are drawn from

t( )~ Cat(ﬁzy,n). For eye gazes (second modality), we

preprocess the data and generate a series of 2D heatmaps to
describe the visually attended areas within a short period (Lin
et al. 2013). Then all heatmaps are reshaped as vectors agl).
Since heatmaps take continuous values, a common choice is
to use Gaussian distribution. For pattern c, assume its mean
e has a Gaussian prior p. ~ N(0,001), where I denotes

identity matrix. Given the pattern assignment zt(l 2) , the corre-

N./\/(u a 2y, 8I) (see

the Appendix for details). The occurrences of latent patterns
from both modalities are aggregated and used to perform
joint maximum margin learning for classification.

We choose representative baselines based on their pre-
diction performance and applicability to the datasets. The
baselines are from three different categories, including /)
Single-modal baselines that are relevant to some individ-
ual components in our data fusion framework: supervised
LDA (Mcauliffe and Blei 2008) (sLDA) applied to narra-
tion, Hidden Markov Topic Model with logistic regression
(HMTM) (Andrews and Vigliocco 2010) applied to narration,
Maximum entropy discriminant models (Zhu, Ahmed, and
Xing 2012) applied to the narration and gaze data respec-
tively (MED-narr and MED-gaze). 2) Probabilistic multi-
modal baselines with competitive performance: LDA-based
Multimodal Categorization (LDAM) (Nakamura et al. 2011),
Large-margin latent subspace learning (LLSL) (Chen et al.
2012). 3) Recent deep-learning based multimodal models
with competitive performance: Multimodal generative models

sponding heatmap is drawn from a
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Figure 3: Visualization of some gaze patterns (left), inferred topics (middle), and high-level patterns (right).

Method Accuracy | Method | Accuracy
Proposed | 85.5+ 2.8 | LDAM | 80.1 £3.7
sLDA 72.7£39 | LLSL | 79.8+3.5
HMTM | 604 +4.1 AF 772 £3.7
MED-narr | 73.7£34 | MGM | 774 £42
MED-gaze | 77.8 £2.9 | FMR | 76.9£4.5

Table 1: Performance on Dataset I (Accuracy %)

Figure 4: Case study of one physician making analysis on a
medical image (left), the occurrence of gaze patterns G1-G16
and topics T1-T20 and their contribution (calculated in Eq
(7)) to classification (right). It shows Switching (G1,G14) are
the most prevalent gaze pattern and the description of facial
area (T2) is the most prevalent topic. G1 and T2 contribute
to classifying disease the most.

(MGM) (Wu and Goodman 2018) which applies variational
autoencoder for weakly-supervised multimodal inference,
Factorized multimodal representations (FMR) (Tsai et al.
2019) which integrates an LSTM with an encoder-decoder
architecture, and AutoFuse (AF) (Kumar et al. 2021) which
jointly optimize multimodal autoencoders and the classifi-
cation layer. According to survey (Baltrusaitis, Ahuja, and
Morency 2019), deep learning received more attention than
probabilistic models in recent years. Therefore, probabilistic
baselines are relatively older than deep learning baselines.

We report models’ performance on classifying the disease
morphology in Table 1. Our framework achieves the highest
accuracy. Possible reasons are: single-modal baselines do
not leverage cross-modal interaction; classical multimodal
baselines are not customized to the domain requirements. Be-
sides, their model architecture may be overly simplified; deep
learning baselines are prone to overfitting; The behavioral
dataset is on a small scale because data collection is costly.
Our model can properly accommodate the data sparsity to
discover interpretable patterns and model their dynamic in-
teractions. It also learns robust decision boundaries through
maximum-margin learning.

An illustrative example in Figure 3 shows the inferred top-
ics with the most informative words, and the gaze patterns
that describe the eye gaze locations during diagnosis. Topics
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4 and 8 are about the diagnostic decision; Topics 7 and 17 are
about reasoning process; while Topics 2 to 3 mainly describe
patient demographics, body location, lesion configurations,
and distribution. Those gaze patterns can be roughly inter-
preted as concentration pattern (e.g., G5) characterized by
a small concentrated area in the heatmap, switching pattern
(e.g., G4, G11) characterized by a few concentrated areas,
and clutter pattern (e.g., G8, G13) characterized by scattered
fixation locations. The inferred high-level patterns allow us to
study the interaction between eye gazes and verbal narrations,
aiming to gain more insight into humans’ cognitive reasoning
process when performing image analysis. We visualize the
occurrence probabilities of the patterns from both modalities
in each state and have some interesting and intuitive observa-
tions: 1) Diagnosis decisions (e.g., T8) are usually associated
with the concentration patterns (e.g., G5) in state S3, imply-
ing that physicians gaze at a specific area of abnormalities
when they are trying to make diagnostic decisions. 2) De-
scriptions (e.g., T2) are usually associated with the switching
(e.g., G11) and clutter pattern (e.g., G8) in state S4. This find-
ing is consistent with the intuition that people look around
at unfamiliar images when gathering information. Figure 4
shows a case study of one physician’s behavior.

Dataset I1: Behavioral Study in Psychology

The second dataset was from a behavioral experiment that
studied sensory processing in children with and without
Autism Spectrum Disorder (ASD) (Koirala et al. 2021). A
virtual reality (VR) interactive gaming system was devel-
oped and evaluated as a tool to assess the sensory processing
patterns in children with ASD through gaming behaviors in
response to sensory stimuli embedded in the painting game.
The experiment involves 12 children with ASD and 12 typi-
cally developing children (the controlled group) as players.
The game consisted of 12 episodes. In each episode, a maze
occupied the majority of the game scene. There were also
3D objects rotating in fixed positions as visual distractions.
The player could move a painting ball in 3D using a haptic
robot. When the ball was pushed against the frontal surface
of the maze, the touched part of the maze would turn yellow.
The goal of the game was to paint the entire maze as soon as
possible. All children played 12 game episodes. Each episode
played by each player was considered a data instance. There
are 3 modalities: 1) children’s gaze position on the screen
surface; 2) the 3D trajectory of the painting balls in the virtual
space; 3) Painting Movement in Depth (PMD) which records
how hard a child press or lift the haptic robot. Due to the
presence of different sensations, participants might operate
the painting ball differently in response to the stimuli. Our
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Figure 5: Visualization of some latent patterns from three modalities: Path (left), Gaze (middle-left) and PMD (middle-right),

and the high-level patterns (right) .

Distractions

-
Painting ball

Figure 6: A game screen

Method Accuracy | Method | Accuracy
Proposed | 74.2 +4.3 | LLSL | 69.7 £4.5
MED-path | 57.7 +5.8 AF 654 +4.1
MED-gaze | 67.8 £44 | MGM | 67.1 +£4.2
LDAM 689+47| FMR | 659450

Table 2: Performance on Dataset II (Accuracy%)

model aims to discover latent patterns from 3 modalities and
perform classification of whether a child has ASD.

The ball’s position was represented in the format of z and y
coordinates of the game screen, and the eye gaze position was
represented in the format of relative = and y coordinates with
respect to the ball’s position. Then, we aggregated the eye
gaze and ball positions in each time slice, and preprocessed
data in a similar way as introduced in the previous section to
generate two heat maps, respectively. The heat maps contain
rich information about how the participants controlled the
ball in a short time period and how they visually attended
to the ball. Our goal is to extract informative positions of
gaze and ball on the screen as well as the ball’s PMD patterns
that disclose the behavioral difference between the players
with ASD and the typically developing players. We used
multivariate Gaussian priors to model the data generation
process, and used the class label as additional supervised
information to augment pattern discovery.

We report models’ performance on classification in Table 2.
The proposed framework outperforms baselines. It should be
noted that classifying behavioral data is quite challenging,
especially when the sample size is relatively small and the
subjects’ characteristics are heterogenous and noisy ( ~70%
accuracy can be considered good (Cavallo et al. 2021)).

An illustrative example in Figure 5 shows the inferred
patterns with the three modalities. Different patterns usually
correspond to distinct behaviors. For instance, the path pat-
tern P1 implies moving the ball slowly along the horizontal
direction since the heat map reveals a highlighted horizontal
line segment. Similarly, path pattern P2 implies moving the
ball around a corner, and P3 implies moving the ball fast
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Method Dataset I Dataset 11

Proposed Design 855+28 | 742+43
Single-level Probabilistic Mixture | 81.6 £ 3.2 | 71.9 £ 4.5
First-order Markov Structure 825+3.1]70.1+£45
Multinomial regression 798 £35 | 68.1 £4.3

No regularization for sparsity 82.1£29 | 720+4.1
Vanilla L1 regularization 82.7+£25 | 725+£39

Table 3: Ablation Study on Two Datasets (Accuracy%)

and horizontally. Gaze pattern G13 implies fixation on the
ball most of the time with occasional deviation, as the heat
map reveals a highlighted area at the center and some high-
lighted areas slightly away from the center. Similarly, gaze
pattern G9 implies consistent fixation on the ball, and G17
implies frequent deviations from the ball. PMD pattern was
visualized using boxplot. PMD pattern D1 indicates painting
without lifting the ball, as the depth is around 0, while pat-
tern D2 corresponds to lifting the ball far from the maze. We
also study the relationship between the high- and low-level
patterns from each modality by visualizing the normalized
occurrence of patterns in each state, as shown in Figure 5. For
instance, state (S1) is characterized by high occurrence of
gaze pattern (G17) and path pattern (P1). We provide a case
study of a player with ASD in the Appendix by analyzing
behavioral patterns and their linkages to ASD symptoms.

Ablation study We evaluate alternative model design
choices: 1) Single-level probabilistic mixture for pattern dis-
covery, 2) First-order Markov structure for temporal depen-
dency, 3) Multinomial regression for classification, 4) No
regularization or vanilla L1 for sparsity. Details of ablation
studies are provided in Appendix. We also evaluate the pro-
posed group-wise regularization and L1 regularization in
selecting discriminative patterns in the Appendix.

Conclusion

We propose a dynamic multimodal fusion framework to ana-
lyze human behavioral data from specialized domains. We
design a two-tier probabilistic mixture model to discover
interpretable behavioral patterns and dynamically fuse multi-
modal patterns. We develop maximum-margin learning with
a group-wise sparse prior to select discriminative patterns
for classification tasks. An efficient posterior inference algo-
rithm is developed with theoretical proof. Our experiments on
real-world human behavioral studies show promising results
in pattern discovery and prediction accuracy, which demon-
strate its great potential to facilitate human experts in critical
decision-making and scientific discovery.
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