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Abstract

Choreography refers to creation of dance motions according
to both music and dance knowledge, where the created dances
should be style-specific and consistent. However, most of the
existing methods generate dances using the given music as
the only reference, lacking the stylized dancing knowledge,
namely, the flag motion patterns contained in different styles.
Without the stylized prior knowledge, these approaches are
not promising to generate controllable style or diverse moves
for each dance style, nor new dances complying with styl-
ized knowledge. To address this issue, we propose a novel
music-to-dance generation framework guided by style em-
bedding, considering both input music and stylized dancing
knowledge. These style embeddings are learnt representa-
tions of style-consistent kinematic abstraction of reference
dance videos, which can act as controllable factors to im-
pose style constraints on dance generation in a latent manner.
Hence, we can make the style embedding fit into any given
style while allowing the flexibility to generate new compati-
ble dance moves by modifying the style embedding according
to the learnt representations of a certain style. We are the first
to achieve knowledge-driven style control in dance genera-
tion tasks. To support this study, we build a large multi-style
music-to-dance dataset referred to as I-Dance. The qualitative
and quantitative evaluations demonstrate the advantage of the
proposed framework, as well as the ability to synthesize di-
verse moves under a dance style directed by style embedding.

1 Introduction
Dancers move elegantly following the rhythm of music. Be-
hind dancing is the hard labor in terms of choreography.
Consequently, automatic music-to-dance choreography has
emerged as a new topic in multimedia (Lee et al. 2019; Ye
et al. 2020; Ren et al. 2020; Siyao et al. 2022). It can enable
various real applications, such as virtual character genera-
tion, game creation, and teaching assistant. Specifically, in-
vestigations on music-to-dance synthesis give rise to a new
problem, say, machine perception of the latent knowledge
regarding dance moves as well as matching rhythm between
music and dance in terms of beat and intensity, that is, style.

Historically, most dance generation methods pay efforts
to model the relationship between music and dance in fea-
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Figure 1: The example of dances in different styles accom-
panying with the same music. All dancers’ moving rhythm
match the music well.

ture space or latent space without any stylized knowledge.
Early studies (Shiratori, Nakazawa, and Ikeuchi 2006; Ofli
et al. 2008; Fan, Xu, and Geng 2011; Asahina et al. 2016) are
mainly retrieval based, which are focused on selecting the
best matching pair from the database based on music and
dance features. Due to the retrieval nature, these methods
cannot generate new dance motions. In recent years, deep
generative models (Alemi, Françoise, and Pasquier 2017;
Tang, Jia, and Mao 2018; Lee et al. 2019; Ye et al. 2020; Ren
et al. 2020; Huang et al. 2021; Siyao et al. 2022) are intro-
duced to alleviate this problem. The temporal indexes (Tang,
Jia, and Mao 2018) and contrastive cost function (Ren et al.
2020) have been utilized to promote the model’s ability of
generation. However, such methods usually regress to de-
viating from normal dance moves, for example, remain-
ing rigid or shaking meaninglessly. To deal with this prob-
lem, (Lee et al. 2019; Ye et al. 2020) attempt to label dances
into a series of basic dance units manually and learn to com-
pose a dance by organizing multiple dancing units, which
cost tremendous manual efforts and are unable to be compat-
ible with different rhythms. Yet, machine-generated chore-
ography is far behind human works in terms of coherence to
a desired style because the professional knowledge behind
choreography, such as dance styles as well as the the motion
patterns favored by each given dance style, is not exploited
in the previous works. In view of that, this study aims to
discover from a large corpus of dance videos the basic mo-
tion patterns and how a certain dance style is subject to such
patterns so that style-controllable dance generation can be
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approached by applying such composition knowledge of a
given dance style.

In fact, human choreographers with different dance train-
ing experiences can compose dances of various styles. As
shown in Figure 1, the dance moves accompanying the same
music can be composed of sharp tuning with diverse style
variations. The previous methods struggle to establish a one-
to-one mapping for music and dance without any stylized
knowledge, which limits the model’s ability to generate di-
versely new dance moves coherent to a desired style. Pro-
vided a model can learn meaningful stylized representations
from known dance moves so as to direct the dance gener-
ation process, the generated dance should be more realis-
tic and diverse to make a style hold vividly and creatively.
So far, in the context of automatic dance generation, how to
learn representations of dance styles as well as the compo-
sition of basic dance moves has been remaining a missing
topic, which is the main target to be tackled in this study.

In order to learn aforementioned stylized dancing knowl-
edge contained in dance moves, we introduce a self-attention
vector quantized (VQ) (Oord, Vinyals, and Kavukcuoglu
2017) encoder in our dance generation framework. It learns
dance styles in a latent space spanned by a base of pro-
totypes, which form a codebook of basic motion patterns
shared by all the dance styles of interest. The stylized knowl-
edge is computed automatically as a linear combination of
such prototype vectors with variable weights to indicate
different styles, referred to as style embedding, where the
weights corresponding with a specific dance style can be
taught by realistic dance videos of this style, and alert-
ing configuration of such weights means changing to fa-
vor different basic dance moves, leading to style-governed
dance move creation as diversely as one desires. At the
dance generation stage, we design a set of transformer en-
coders (Vaswani et al. 2017) to obtain the temporal rep-
resentation of input music. Then, a long short-term mem-
ory (LSTM) module incorporates both the music represen-
tation and the style embedding to generate dance in an au-
toregressive way. Benefiting from the learnable and trans-
ferable style embedding to indicate the dance style favoring
certain prototypes, our framework is capable of creating di-
verse dance moves of any desired style by modifying the
style embedding to explore the best extent of this style.

To support this study, we construct a large music-to-dance
dataset with style annotation for training and evaluation,
referred to as I-Dance, where three modern dancing cate-
gories: Anime dance, popping dance, and locking dance, are
selected to build the dataset since they have a higher degree
of freedom in terms of choreography.

Our contributions are summarized as follows: (1) We pro-
pose a novel dance generation framework using style em-
bedding to guarantee that the generated results are coherent
to the coach in terms of style, which allows flexible style ma-
nipulation. (2) We propose a representation learning scheme
to model a dance style as a set of weights to render a lin-
ear combination of some basic dance moves, namely, pro-
totypes, which are learnt from real dances in an end-to-end
manner. Then, the latent knowledge in the form of the style-
related weighting of the prototypes is transferred to dance

generation so as to guarantee style consistency between the
real and generated dances while allowing flexible modifica-
tion of the style representation to create new dance moves
of diversity. (3) We establish a large music-to-dance dataset
that contains choreographies of three dance styles. (4) The
qualitative and quantitative results validate that the proposed
framework can generate more diverse and realistic dance
moves under a given style, adapting to the same input music.

2 Related Work
2.1 Music-to-dance Generation
The music-to-dance generation models can be roughly di-
vided into two categories: Retrieval-based methods and
learning-based methods. The previous works (Shiratori,
Nakazawa, and Ikeuchi 2006; Kim et al. 2009; Fan, Xu, and
Geng 2011; Lee, Lee, and Park 2013) on dance generation
carefully design musical features to retrieve the dance moves
from a database tied to the musical features. These retrieval-
based methods suffer from lack of machine learning to cap-
ture the generic correlation between music and dance and
cannot generate novel dances. Recently, (Alemi, Françoise,
and Pasquier 2017; Tang, Jia, and Mao 2018; Lee et al. 2019;
Ye et al. 2020; Ren et al. 2020; Sun et al. 2020; Li et al. 2021;
Huang et al. 2021; Ferreira et al. 2021) attempt to apply deep
generative models to generate more creative dances. (Yalta
et al. 2019; Tang, Jia, and Mao 2018) design two LSTM
Auto-Encoder models. However, these methods are not suit-
able for long-course dance generation due to the local atten-
tion nature, so the transformer-based methods (Huang et al.
2021; Li et al. 2021; Siyao et al. 2022) appear. Even though,
a part of these methods will regress to nonstandard poses
deviating from any known dance style, due to lack of explic-
itly spatial constraint between body parts that complies with
a style. Hereafter, (Ye et al. 2020; Lee et al. 2019) decom-
pose a dance into dance units conditional on music beats and
let the models learn to recompose them according to input
music. Being less aware of the knowledge regarding style-
related dance moves, such methods require training different
model parameters with regard to different dance styles. So-
lutions as such are not efficient, nor generic.

As all these methods fail to do dance generation under
the control of prior knowledge regarding style-related dance
move composition, such a missing topic motivates this study
to render dance generation from knowledge discovery per-
spective, that is, how to deploy learnable representation to
figure out style-favored dance moves and apply the mined
knowledge to direct style-controllable dance generation.

2.2 Vector Quantized Variational Autoencoder
The Vector Quantized Variational Autoencoder (VQ-
VAE) (Oord, Vinyals, and Kavukcuoglu 2017) adds a
vector quantization (VQ) layer in the variational autoen-
coder (VAE) (Kingma and Welling 2013) to produce a
discrete latent representation. Pairing it with an autore-
gressive prior, the model can generate high-quality im-
ages (Razavi, van den Oord, and Vinyals 2019; Peng et al.
2021), videos (Yan et al. 2021), and speech (Gârbacea et al.

5412



Reference Dance  
𝑫𝒔

𝑫𝒔𝒉𝒊𝒇𝒕𝒔

Motion
Encoder 𝐳𝐦𝐨𝐭𝐢𝐨𝐧𝐬

Prototype Codebook

𝑤!
𝑤"
𝑤#

𝑤$

…

𝑾 𝒆𝒔𝒊

0.5

0.1

0.1

0.08

…

x

attn

Style embedding

Reference Signal  

Multi-head Self-attention

Input
Music

Music Encoder

T
ransform

er
L

ayer

T
ransform

er
L

ayer

T
ransform

er
L

ayer

… 𝐳𝐦

T
ransform

er
L

ayer

Embed & Concatenate

𝒆𝒔𝒋
𝐿%

Initial Pose
𝒅𝒔

Pose
Encoder

Dance
Generator

Pose
Decoder𝐳𝐢𝐧𝐢𝐭

Recon Pose
'𝒅𝒔

Generated Dance '𝑫𝒔

Style Embedding Learner

Repeat & Add

𝑴

𝐿)*%+,

𝐿-,-.*%+,, 𝐿-,-./0

Music-to-Dance Generator

Initial Pose VAE

Figure 2: The architecture of the proposed dance generation framework with prototype codebook supported style embedding.

2019; Wang et al. 2018b), as well as high-quality speaker
conversion with unsupervised learning of phonemes. These
provide further evidence that the VQ-VAE can efficiently
capture the high-level features, yielding a meaningful rep-
resentation of the input. In this paper, inspired by VQ-VAE,
we design an improved VQ encoder with self-attention to
fit the style embedding of the reference dances in terms of
dance style, which is the first attempt to apply modified VQ-
VAE in this context.

3 Dataset and Preprocessing
The widely used music-to-dance generation dataset is
AIST++ (Li et al. 2021), which contains about 0.23M ad-
vanced dance frames (calculated in 30fps) of non-repeating
dances. It can not satisfy current complex models well.
Therefore, we build a large multi-style music-to-dance
dataset with three popular representative categories: Pop-
ping dance, anime dance, and locking dance. All dance clips
in the dataset are performed by professional dancers, with
clear high-quality music. The Dance clips are resized to
640 × 480. Our novel dataset contains 70 popping dance
videos, 150 anime dance videos, and 65 locking dance
videos, with 1.48M selected frames (30fps), much larger
than AIST++. No personally identifiable information will
include in the I-Dance dataset.

Musical feature extraction. We first normalize the music
volume according to the root mean square. Then, the musi-
cal features are extracted via an audio analysis library Li-
brosa (McFee et al. 2015), including 20-dimensional Mel
Frequency Cepstrum Coefficients (MFCC), 12-dimensional
constant-Q transform chromagram, 1-dimensional pitch, 1-
dimensional root-mean-square energy, 1-dimensional beat,
and 1-dimensional onset strength.

Motion feature acquisition. All raw videos are fed into
Openpose (Cao et al. 2017) for 2D keypoints detection. We

manually filter out the video clips whose skeletons are not
detected correctly to assure that the skeleton information in
each dance clip is of high quality. We finally choose 21 joints
most relevant to kinematic expressiveness to represent the
dance, including the nose, neck, mid-hip, left and right ears,
shoulders, elbows, wrists, hips, knees, hand, and ankles.

4 Methodology
Aside from realistic-effect dance generation, another impor-
tant but missing issue is style-controllable dance generation,
which means not only fitting well into the video teacher
in terms of dance style but also applicable to generate di-
verse moves under such style control. To realize this goal,
it contains 4 key steps: (1) Develop a learnable framework
to represent kinematic body motion in a highly abstractive
manner, namely, style embedding, which can act as a con-
trol signal to direct dance generation. (2) Let such learnable
representation figure out a dance style that favors specific
dances moves by fitting it into given coach videos through
machine learning. (3) Reuse the representation that have
been taught to be subject to the teaching videos to gener-
ate style-consistent dances. (4) Alter the style embedding to
obtain new dance moves diversely while keeping the style
embedding an inlier of the category that exerts style control.

As illustrated in Figure 2, we propose a novel end-to-end
dance generation framework with a learnable representation
referred to as style embedding to learn the prototypes cor-
responding to basic dance moves as well as how much such
prototypes are favored in the coach video of a certain style,
where the weights in association with the prototype vectors
in the linear combination of them figure out the so-called
style. As the generated dance should correspond to music
in terms of rhythm, and move continuously from the origi-
nal pose, a music-to-dance generation model to map musical
features to dance motions is deployed to work in collabora-
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tion with the style embedding. In knowledge mining phase,
the style embedding learner acts to summarize the attributes
of the reference dance motions into a vector indicating the
dance style of interest. In style-transferring phase, the la-
tent knowledge in the form of style embedding with vary-
ing configuration of the weights of prototypes can alter the
style from slightly to remarkably, visiting the extent of it.
The dance generator finally generates dances conditioned on
the music representation, the style embedding, and the ini-
tial pose resulting from a VAE model (Kingma and Welling
2013). For a task of specific-style dance generation, we can
easily apply the style embedding learnt from the coach video
to the music-to-dance generation model. Moreover, we can
alter the values of the style embedding to control the style so
as to enable diversity of dance moves, and under the control
of style embedding, the music-to-dance generation model
can generate dances of any expected style.

In the following, we first present the mechanism of style
embedding. Then, we demonstrate a contrastive loss that
forces the learnt representations of style embeddings to fall
into discriminative clusters representing different styles. Fi-
nally, the overall music-to-dance generator subject to style
embedding is described.

4.1 Prototype-equipped Dance Style Learner
In fact, human’s dance style knowledge is established in
long-term practice of perception of dance motions. Such
memory of dance styles is in general the composition of
prototype patterns. Motivated by this, we represent the style
embedding as a linear combination of a couple of prototype
patterns. The prototype patterns are learnt from the whole
corpus of real dance, and one solution of the weights in as-
sociation with such prototype patterns in terms of a linear
combination of them indicates a specific dance style, which
are solved to fit well into the video examples of a certain
style. Here, the configuration of the weights flags a dance
style in that how much each prototype is favored in this style.
This process is conceptually similar to the encoder in VQ-
VAE (Oord, Vinyals, and Kavukcuoglu 2017). Unlike the
general implementation of VQ-VAE, we replace the nearest
measure method with multi-head self-attention. In the fol-
lowing, we present how to learn the prototype patterns and
represent style embedding through the weighted sum of such
prototypes in an end-to-end manner.

As shown in the style embedding learner in Figure 2, the
reference dance is formulated as {Ds

t ∈ R2J |t = 1, . . . , T}
with a style indicator s, where J = 21 indicates all joint
locations of interest. The style embedding learner first com-
putes the shift between two sequential motion frames as
dynamic motion feature: Ds

shift = {Ds
t+1 − Ds

t }, t =
1, . . . , T , where t indicates the time. In the motion encoder, a
stack of 2-D convolutional layers and a GRU layer map the
dynamic motion feature Ds

shift into a fixed-length motion
representation zsmotion ∈ R1×dgru , which is the last state of
the GRU layer, where dgru is the hidden size of the GRU
layer. Hereafter, zsmotion encodes the reference dance mo-
tion’s spatial and temporal features in a dance clip, serving
as the reference to induce the style knowledge.

Then, we design a learnable matrix referred to as the code-
book to learn the prototype patterns from the motion rep-
resentations of the whole dance corpus including all dance
styles of interest, so as to discover though machine learn-
ing the basic dance patterns shared by all styles, namely,
prototypes. As shown in Figure 2, we feed Ds

shift to the
style embedding learner to extract the motion representa-
tion zsmotion, and based on such representation, we learn a
codebook W ∈ Rdw×dgru to memorize all prototypes in the
training phase, where dw is a hyper-parameter to determine
the size of the codebook, that is, the number of prototypes.
Here, each row of W can be regarded as a prototype vector,
which is a motion descriptor in the form of zsmotion to span a
latent space. By means of W , any given motion pattern can
be represented as a linear combination of the dw prototype
vectors stored in W with the weights of such linear combi-
nation learnable, where a solution of these weights indicates
how frequently each prototype motion pattern is favored in a
given dance style. In learning the representation of the dance
style from a coach video, we leverage the multi-head self-
attention scheme to calculate the similarity between a given
motion pattern zsmotion in the coach video and each proto-
type vector in W to demonstrate how much it is close to each
prototype vector. The multi-head self-attention can calculate
the similarity in different subspace via the fully connected
layers at different head, and we set the number of head H to
4 in practice. The weighted sum of the prototype vectors,
namely style embedding, is passed to the music-to-dance
generator module as a control signal at every time step. Here,
the style embedding es ∈ R1×dgru is calculated as follow:

attnh =
Softmax[FCh

z (z
s
motion)FCh

w(W
T )]√

dgru
,

es = Mean{
H∑

h=1

[attnhFCh
w(W )]}, (1)

where FCh
z and FCh

w are the fully connected layer imposed
on zsmotion and W , respectively, and h indicates the head.
attnh ∈ R1×dw calculated by the attention scheme func-
tions to weight the contribution of each prototype pattern.
Note that both the prototype vectors representing the basic
motion patterns and the weights to combine them into the
style embedding through linear combination are learnt end-
to-end from coach videos in framework shown in Figure 2.

4.2 Learning Representations Converging to
Style-related Clusters via a Contrastive Loss

The loss function plays an important role in learning the
prototype patterns and their weights to form the style em-
bedding. A proper loss function makes the learnt representa-
tions of dance styles fall into compact and separable clusters,
while a bad one will cause overlap of the representations be-
tween different style categories.

To enable visualization of the high-dimensional style em-
beddings {es} of all the samples in the I-Dance dataset, we
reduce the style embeddings’ dimension to 3 via principal
components analysis (PCA) in order to observe the relation-
ship between them. As shown in Figure 3 (a), without any
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Figure 3: PCA-based visualization of style embeddings:
(a) Original ones; (b) Enhanced by contrastive loss.

supervision on style embedding in the end-to-end learning
of it, the inference between different style categories is obvi-
ous. To alleviate that, we employ a contrastive loss Lc to im-
pose weak supervision on the style embedding leaner such
that the learnt representations of styles {es} will fall into
separable clusters corresponding with different style cate-
gories. Lc is defined as:

Lc(e
si , esj ) =

1

2
[(1− Y )(Dis)2+

Y {max(0,m−Dis)}2],
(2)

where (esi , esj ) is a pair of style embeddings, and i, j are
just used to identify the different style embeddings. Dis
is the Euclidean distance between esi and esj . If a pair of
style embeddings (esi , esj ) are generated from the reference
dances of an identical style, Y = 0. Otherwise Y = 1. m is
the margin, set it to 2 to enforce the two examples of differ-
ent styles far enough from each other.

Figure 3 (b) illustrates the style embeddings obtained un-
der such loss function, where they fall into different clusters
strongly coherent with their style labels, enabling us to per-
form style control more precisely in dance generation.

4.3 The Overall Music-to-dance Generator with
Style Embedding

Since the relationship between music and dance is frame-
aligned, we develop a music-to-dance generator module in
an Auto-Encoder architecture for autoregressive dance gen-
eration. As described in Figure 2, in the music-to-dance gen-
erator, we apply a set of transformer layers as music en-
coders, and the dance generator is designed as an LSTM,
followed by a fully connected layer.

Taking advantage of the special temporal structure com-
posed of fully connected layers, the music encoder can ob-
tain a long-range temporal representation from the input mu-
sical features M ∈ RT×L. For notational simplicity, we
ignore the temporal indicator t in the following. The final
output of the encoders is the music representation zm ∈
RT×dmodel , where dmodel is the dimension of the music en-
coder’s output, which should be equal to that of dgru in the
style embedding learner.

To generate dance with various initial poses, we add an
extra pre-trained initial pose VAE component. We train this

component on each dance pose in the known dance clips. We
use a reconstruction L1 loss Lrcon

init and a KL loss LKL
init to

minimize reconstruction error after encoding and decoding:

Lrcon
init = |d̂s − ds|,

LKL
init = KL(N (0, I)∥zinit), (3)

where KL(u∥v) = −
∫
u(z) log u(z)

v(z)dz, ds ∈ R2J repre-
sents the poses, and J = 21 indicates all the body joints.
The initial pose VAE can enforce the dance pose into a la-
tent distribution Zinit ∼ N (0, I) via the KL loss.

After all, the dance generator receives a music representa-
tion zm from the music encoder, an initial pose hidden vec-
tor (embedded by an FC layer) corresponding with an initial
pose from VAE, and a style embedding es from the style
embedding learner described in section 4.1. Then, the over-
all representation incorporating the 3 representations will be
passed to the dance generator for dance generation. Finally,
we supervise the generated dance D̂s by using the recon-
struction loss:

Lrcon
G = |D̂s −Ds|, (4)

Overall, we jointly train the style embedding learner and
the music-to-dance generation model by optimizing the fol-
lowing objective L:

L = Lrcon
G + λstyleLc, (5)

where λstyle is the weight of the related loss term.

5 Experiments
To evaluate our method, we conduct extensive experiments
with the LSTM-based method proposed in (Shlizerman
et al. 2018), DanceRevo (Huang et al. 2021), and Danc-
ing2Music (Lee et al. 2019), which are the most represen-
tative ones for the dance generation task. We perform exper-
iments from the following perspectives: Beat alignment be-
tween music and generated dance moves, style consistency
within a continuous piece of generated dance moves, and di-
versity under the control of style embeddings, on both the
I-Dance dataset and the AIST++ dataset (Li et al. 2021). Be-
sides, we visualize the choreography by using a realistic hu-
man rendering model (Wang et al. 2018a; Chan et al. 2019)
for a better intuitive evaluation. With regard to these differ-
ent methods, we generated 16 dances (about 72k frames) for
each dance style to calculate the quantitative scores. Code
and supplementary video are available1.

5.1 Implementation Details
In training, the style embedding learner comprises a stack of
3 × 3 kernel, 2 × 2 stride convolutional layers, followed by
a 1-layers 128-unit GRU. We use 16, 32, 64 output channels
for the convolutional stack. We apply a 4-head self-attention
in this component and W ∈ R10×128. For music-to-dance
generation, we use 4 transformer layers in the music encoder
with dmodel = 128, and the dance generator is a 3-layer 128-
unit LSTM with a fully connected layer (project 128 to 42).
The initial pose VAE is the combination of two 3-layer dense
layers, and the hidden dimensions are 42, 128, 16, 16, 128,
and 42. The weight of the contrastive loss λstyle is set to 1.

1https://github.com/WilliammmZ/GenDance
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AIST++ I-Dance
Method Beat Align Stylec Styled Beat Align Stylec Styled User Prefer Style

Score↑ ↓ ↑ Score↑ ↓ ↑ Ours % Control
Real Dance 0.265 13.93 13.93 0.244 16.75 16.75 33% -

LSTM (Shlizerman et al. 2018) 0.234 16.79 8.15 0.225 17.98 13.64 94% %

Dancing2Music (Lee et al. 2019) 0.221 13.47 9.70 0.239 17.91 14.13 61% %

DanceRevo (Huang et al. 2021) 0.238 14.01 11.50 0.202 17.61 15.68 55% %

Ours 0.245 14.06 11.80 0.230 16.80 14.73 - !

Table 1: Experiment results on I-Dance and AIST++ datasets for different dance generation methods.

5.2 Quantitative Evaluation
Beat alignment. Whether dance beats match music beats
greatly affects the quality of the generated dance in terms of
human perception. Here, we use the temporal distance be-
tween the music beat and its closest dance beat (Siyao et al.
2022) to evaluate how well they are matched, calculated as

1

|Bm|
∑

tm∈Bm

exp

{
−mintd∈Bd

∥td − tm∥2

2σ2

}
, (6)

where Bm and Bd are the sets of frame indexes (tm and
td) of music beats and dance beats, respectively. The mu-
sic beats Bm can be easily extracted from music onset fea-
tures by Librosa. For dance beats Bd, we mark each of such
frames where the movement drastically slows down as a
dance beat event (Ho et al. 2013). As shown in Table 1, our
model achieves the best score on the AIST++ dataset and
comparable performance to the Dancing2Music method on
the I-Dance dataset. We are concerned with whether intro-
ducing style embedding to the encoder may interfere with
the alignment between music beats and generative dance
beats, but the experiment proves that our model is fully ca-
pable of achieving beat alignment.

Style consistency and diversity. In general, PCA projects
the embedding to a subspace that preserves the discrimi-
nation power to the best extent, which holds also for this
study. As shown in section 4.2, the style embeddings pro-
duced by our method fall into different clusters with a strong
correlation to the style labels in PCA spanned space. So,
we compute the euclidean distances between the style em-
beddings in PCA spanned space to measure style consis-
tency and style diversity. Following the Fréchet Inception
Distance (FID) (Heusel et al. 2017) used in (Lee et al. 2019;
Siyao et al. 2022), the style distance measure is calculated
as follows:

1

N

N∑
n=1

{ 1

M

M∑
m=1

Dis[P (esjn), P (eskm
)]}, (7)

where esjn and eskm
are the style embeddings produced for

different dance examples of the same style s, while j and k
denote whether the style embedding results from the coach
dances or the generated ones. M and N are the number of
the data examples. P (·) is the PCA operation. Let esjn repre-
sent generated dance and eskm

coach dance. Then, Eq. (7) be-
comes style consistency score (stylec) to measure how well

Method Stylec ↓ Styled ↑
Real Dance 13.93 13.93
Full Model 14.06 11.80

w.o. contrastive loss 13.63 9.59

Table 2: Result of ablation study on contrastive loss.

the generator is coached to approach the peered style. Pro-
vided both esjn and eskm

correspond with generated dances,
then, Eq. (7) becomes the style diversity score (styled) to
measure whether the generated dance only contains simply
monotonous moves close to each other, just like repeating,
or diverse motions comply with this style. As depicted in Ta-
ble 1, our style consistency score is lower than those of the
baselines on the I-Dance and closes to the runner-up method
on the AIST++, which means that our model can learn the
styles of coach videos more precisely, enabling finer con-
trol on the dance generator to approach desired styles. Our
model also gains the best score on the AIST++ and a runner-
up score on the I-Dance in terms of the diversity. The base-
lines model each style of dance individually, that is, training
one model per dance style, but we use only a single model
to learn the common patterns of all the categories of dances,
which imposes a higher requirement on the generalizability
of the model. It explains why baselines could perform better
sometimes. In an overall sense, these results prove that em-
ploying the style embedding to guide generation can make
the generated dance closer to the coach dance while ensure
the diversity of dances within the same style category.

5.3 Ablation Study on Contrastive Loss
We conduct an ablation study on the contrastive loss for
the style embedding learner, and the quantitative scores are
shown in Table 2. We train two variant models without or
with the contrastive loss on the AIST++ dataset. The ”w.o.
contrastive loss” gets the best score on Stylec. However, its
score is even better than the real dance, which is abnormal
in that only fewer dance moves are learnt from the coach
videos, so the corresponding representations span a quite
tiny set with more uniform patterns included, according to
Eq. (7). At the same time, as indicated by the lower Styled
score, without contrastive loss will lose diversity in the gen-
erated dances. As shown in Figure 3, imposing contrastive
loss on style embedding learning makes the learnt patterns
discriminative to be subject to style categories while main-
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The dance generated via self-designed anime dance style embedding

The dance generated via self-designed locking dance style embedding

The dance generated via self-designed popping dance style embedding

𝒂𝒕𝒕𝒏_𝒉𝟏_𝒕𝟏 𝒂𝒕𝒕𝒏_𝒉𝟏_𝒕𝟐

𝒂𝒕𝒕𝒏_𝒉𝟏_𝒕𝟑 𝒂𝒕𝒕𝒏_𝒉𝟏_𝒕𝟒

Figure 4: The left is the statistical distribution of the attention weights on different prototypes subject to 3 dance styles, where
”h1” in ”attn h1 t1” means the first head of the multi-head self-attention and ”t1” the first prototype in the codebook. The right
displays the dances generated with the style embeddings tuned out from the statistical model in the left.

tains diversity within each category to prevent the learning
from approaching a few monotonous patterns only.

5.4 Stylized Knowledge Applied to Dance Style
Transfer and Control

The goal of this study is to mine the stylized dancing knowl-
edge from real dance videos to direct style-concentrated
dance generation. According to Figure 3, we have learnt
style-discriminative representations of dance moves, where
the learnt representations are not only style bearing but also
diverse enough to composite the complex patterns of each
style. As desired, the learnt representations in the form of
style embedding fall into clusters without obvious overlap,
nor converging to a few monotonous patterns in each cluster.
Utilizing such knowledge learnt from coach dance videos,
we can easily control the style of the generated dance by
setting the values of style embeddings complying with a
given style, that is, an inlier for the corresponding cluster.
As described in section 4.1, the style embedding is based on
the prototypes and the associated weights attn to flag each
dance style. To enable an intuitive insight into how the styles
of generated dances are subject to the weights of prototypes,
we illustrate in Figure 4 an example of the statistical dis-
tribution of the weights for each dance style as well as the
dance moves generated with the manually set style embed-
ding that comply with their statistical nature, which is mod-
eled as Gaussian to govern the random setting for dance gen-
eration. According to Figure 4, the dances of different styles
have different statistical nature to favor these prototype vec-
tors differently. Hereby, we modify the style embedding in
accordance with the corresponding statistical range of the
attention weights to compose new dances as illustrated in
Figure 4. In this way, our method can generate an infinite
number of dance moves for a specific style accompanying
the same song.

5.5 Qualitative Evaluation
Comparison to the existing methods. For qualitative
evaluation, these dances are generated with LSTM (Ofli
et al. 2008), DanceRevo (Huang et al. 2021), Danc-
ing2Music (Lee, Lee, and Park 2013), and our method,
trained on the I-Dance dataset. The visualizations are de-
tailed in the supplementary video. Simply repeated rigid mo-
tions and nonstandard poses deviating remarkably from nor-
mal ones appear in the dances generated by the LSTM based
model. Dancing2Music and DanceRevo avoid these prob-
lems by introducing the dance unit structure and the teacher-
forcing scheme in their generation process, respectively. In
contrast, the more realistic dance clips synthesized by our
method demonstrate that the style embedding can also solve
these problems.

User study. Following the previous work (Tang, Jia, and
Mao 2018), we conduct a user study using a pairwise com-
parison scheme. We invite 18 students to complete this ex-
periment. They are asked to select which one is realistic and
preferred in a pair of generated dances using two different
methods. The percentage of users who prefer the dance gen-
erated by our method is shown in Table 1. Comparing to the
baselines, over 94%, 55%, and 61% of our generated dance
is voted as the better one. However, compared with the real
dance, there is still a gap. The percentage decreases to 33%.

6 Conclusion and Limitations
This paper proposes a novel style controllable dance gener-
ation framework that can learn stylized dancing knowledge
from the reference dances and transfer them to the generated
dances in an end-to-end manner. It introduces a new large-
scale music-to-dance dataset. In terms of knowledge mining
on dance move composition related to styles, we are at the
very beginning to be aware of the 1-order knowledge figur-
ing out how each prototype movement is favored by a style.
In the future, we will explore high-order knowledge regard-
ing the state transition from one prototype to another.
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