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Abstract

Modeling dynamics in the form of partial differential equa-
tions (PDEs) is an effectual way to understand real-world
physics processes. For complex physics systems, analyt-
ical solutions are not available and numerical solutions
are widely-used. However, traditional numerical algorithms
are computationally expensive and challenging in handling
multiphysics systems. Recently, using neural networks to
solve PDEs has made significant progress, called physics-
informed neural networks (PINNs). PINNs encode physical
laws into neural networks and learn the continuous solutions
of PDEs. For the training of PINNs, existing methods suf-
fer from the problems of inefficiency and unstable conver-
gence, since the PDE residuals require calculating automatic
differentiation. In this paper, we propose Dynamic Mesh-
based Importance Sampling (DMIS) to tackle these prob-
lems. DMIS is a novel sampling scheme based on impor-
tance sampling, which constructs a dynamic triangular mesh
to estimate sample weights efficiently. DMIS has broad ap-
plicability and can be easily integrated into existing methods.
The evaluation of DMIS on three widely-used benchmarks
shows that DMIS improves the convergence speed and accu-
racy in the meantime. Especially in solving the highly non-
linear Schrödinger Equation, compared with state-of-the-art
methods, DMIS shows up to 46% smaller root mean square
error and five times faster convergence speed. Code is avail-
able at https://github.com/MatrixBrain/DMIS.

Introduction
Modeling the dynamics of real-world physics systems has
important guiding significance for production activities,
such as fluid mechanics and heat transfer. These physics sys-
tems are usually described by partial differential equations
(PDEs). Due to the highly nonlinear of these PDEs, in most
cases, analytical solutions are not available.

In the past decades, numerical algorithms for solving
PDEs have been greatly developed. Although classical nu-
merical algorithms significantly promoted the development
of related fields, these algorithms are computationally ex-
pensive and face severe challenges in multiphysics and mul-
tiscale systems. With the improvement of data acquisition
capability, it is an important issue to use data to modify
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Figure 1: Comparison with stat-of-the-art methods (PINN-
O, PINN-N). DMIS achieves faster convergence speed and
better prediction accuracy.

simulation results. In general, data assimilation is the pri-
mary method to combine classical numerical algorithms and
observation data, but data assimilation introduces additional
uncertainties and seriously affects convergence.

Recently, with the rapid development of machine learn-
ing, the ability to extract features and mine information
from observation data has been dramatically improved.
(Krizhevsky, Sutskever, and Hinton 2012; He et al. 2016).
As an effective supplement to classical numerical meth-
ods, Physics-informed Neural Networks (PINNs) formulate
the problem of solving PDEs into a parameter optimization
problem (Raissi, Perdikaris, and Karniadakis 2019). PINNs
encode PDEs into the loss function of neural networks. In
addition, boundary conditions and initial conditions are also
integrated into the loss function as soft constraints. PINNs
are mesh-free and learn continuous solutions of PDEs. Prac-
tices show that PINNs can be applied to solve different types
of PDEs(Raissi, Perdikaris, and Karniadakis 2019; Pang, Lu,
and Karniadakis 2019; Zhang, Guo, and Karniadakis 2020).
Since partial derivative terms of PDE residuals require au-
tomatic differentiation to calculate, the training of PINNs
is computationally expensive and unstable. Especially for
solving PDEs with high order partial derivative terms, these
defects are more prominent. Therefore, in the studies of
PINNs, it is a critical issue to design schemes to stabilize
training and improve training efficiency.
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Three mainstream improvement directions are deeply
studied for the training of PINNs, including weights of loss
terms, parallel computation, and sampling. The loss func-
tion of PINNs contains multiple loss terms, and methods of
weight allocation are mainly to balance these terms. These
methods usually need to be customized according to physics
systems, which limits the applications. The efficient paral-
lel computation of PINNs can be realized by decompos-
ing the whole domain into several subdomains. Neverthe-
less, domain decomposition involves additional subdomain
boundary conditions and affects the convergence efficiency
and model accuracy. The last mainstream improvement di-
rection, sampling, improves training efficiency and model
accuracy by changing the sampling probability of data. Due
to broad applicability, it attracts increasing attention.

The training of PINNs involves two sampling processes.
The first sampling process is to build a training dataset from
the whole domain, and the second is to sample mini-batch
data in each iteration for parameter optimization. In order to
distinguish, in this paper, we refer to the first sampling pro-
cess as generating collocation points. Currently, the progress
in sampling mainly focuses on the generation of collocation
points. These collocation points generation approaches im-
prove the training efficiency by constructing a better train-
ing dataset without incurring additional computational costs.
The mini-batch sampling significantly impacts convergence
speed and model accuracy, which has been verified in other
fields (Shrivastava, Gupta, and Girshick 2016; Kang et al.
2019; Mildenhall et al. 2020; Lei et al. 2021). However, the
mini-batch sampling for PINNs has not been fully studied.
In uniform sampling, the training spends most of computa-
tion on data points that are not helpful for optimization.

In our previous research, we found that training efficiency
and model accuracy can be improved by introducing well-
designed weighting algorithm in other fields(Qiu et al. 2019,
2020; Wang et al. 2021; Qiu et al. 2022). In this paper,
we introduce additional weighting algorithm and propose a
novel sampling scheme, called Dynamic Mesh-based Impor-
tance Sampling (DMIS), to speed up the training of PINNs.
To guarantee the sampling method theoretically, we intro-
duce the concept of importance sampling into DMIS. How-
ever, importance sampling requires calculating the sampling
probability of each point, which leads to high computational
costs. To reduce the computational cost, we propose a novel
sampling weight estimation method, called Dynamic Mesh-
based weight estimation (DMWE), which constructs a dy-
namic triangular mesh to estimate the weight of each data
point efficiently. The mesh constructed by DMWE is up-
dated dynamically according to the loss distribution in the
whole domain during training. DMIS efficiently integrates
importance sampling into the training of PINNs, and has a
low computational cost and broad applicability. As shown
in Figure 1, DMIS achieves faster convergence speed and
better accuracy compared with the state-of-the-art methods.

Our contributions can be summarized as follows:
• We propose an efficient importance sampling scheme

for training PINNs, which improves the training con-
vergence speed and the model accuracy without signif-
icantly increasing computational cost.

• We propose a method to calculate sample weights in
PINNs efficiently. In addition to be used in our impor-
tance sampling scheme, this method is also suitable for
other approaches that need to calculate sample weights.

• The extensive experiments on three widely-used bench-
marks demonstrate the superior performance of our im-
portance sampling scheme.

Related Work
Physics-Informed Neural Networks In recent years, ben-
efited from the significant progress of deep learning, the
method of solving PDEs based on neural networks has been
dramatically developed. According to the method of embed-
ding physics laws, all of these methods based on neural net-
works for solving PDEs can be grouped into three types,
including observational bias (Umetani and Bickel 2018), in-
ductive bias (Cai, Li, and Liu 2020; Dong and Ni 2021)
and learning bias (Sirignano and Spiliopoulos 2018; Raissi,
Perdikaris, and Karniadakis 2019). Among these methods,
physics-informed neural networks attract increasing atten-
tion, owing to excellent augment ability (Niaki et al. 2021;
Raissi, Yazdani, and Karniadakis 2020; Wandel et al. 2022).

The training of PINNs is computationally expensive and
unstable. To alleviate these defects of PINNs, allocation of
loss weights (Wang, Teng, and Perdikaris 2021; Wang, Yu,
and Perdikaris 2022; Krishnapriyan et al. 2021), parallel
computation methods (Meng et al. 2020; Jagtap and Karni-
adakis 2020) and sampling schemes (Lu et al. 2021; Nabian,
Gladstone, and Meidani 2021; Daw et al. 2022; Wu et al.
2022) have been widely discussed and improve the conver-
gence efficiency and prediction accuracy of PINNs. Gradient
control methods are also studied (Kim et al. 2021).

Importance Sampling Importance sampling is an effec-
tive method to accelerate Monte Carlo Integration, which
has been applied to train neural networks (Schaul et al.
2015; Chen, Ma, and Xiao 2018; Meng et al. 2022). It has
been proved theoretically that the SGD has the fastest con-
vergence speed if the mini-batch is sampled according to
a unique distribution that the sampling probability of each
point is proportional to the 2-norm of loss gradient with re-
spect to parameters (Needell, Ward, and Srebro 2014; Zhao
and Zhang 2015). The computational cost of the theoreti-
cal optimal method is prohibitive. Follow-up works mainly
focus on finding approximation methods (Loshchilov and
Hutter 2015; Canévet, Jose, and Fleuret 2016; Johnson
and Guestrin 2018; Katharopoulos and Fleuret 2018). To
our best knowledge, only Nabian, Gladstone, and Meidani
(2021) preliminary explores the combination of importance
sampling and the training of PINNs.

Optimization Problem of PINNs
PINNs learn a approximate solution û(t,x;θ) to fit the la-
tent solution u(t,x) of the following PDE:

∂u

∂t
+Nx[u] = 0,x ∈ Ω, t ∈ [0, T ],

u(t,x)|t=0 = u0(x),x ∈ Ω,

u(t,x) = g(t,x), x ∈ ∂Ω, t ∈ [0, T ],

(1)
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applied to compute the initial conditions loss Li, boundary conditions loss Lb, and PDE residuals loss Lf . DMIS reweights
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where θ is the parameter of PINNs, Nx denotes a differ-
ential operator consisted of spatial derivatives, u0(x) is the
initial condition, g(x) is the boundary condition, x is a D-
dimensional position vector, and Ω is a subset of RD with
boundary ∂Ω. For the convenience of subsequent discussion,
the input vector composed of time t and space vector x is
denoted as x. The optimization goal of PINNs is to mini-
mize the residual of PDEs with the constraints of satisfying
boundary conditions and initial conditions:

θ∗ = argmin
θ

rf (θ),

s.t. ri(θ) = 0, rb(θ) = 0,
(2)

where rf (θ), ri(θ) and rb(θ) are the residuals of PDEs, ini-
tial conditions, and boundary conditions, respectively.

Equation (2) is difficult to solve. PINNs regard constraints
as penalty terms and formulate the constrained optimization
problem into an unconstrained optimization problem:

θ∗ = argmin
θ

rf (θ) + λ1ri(θ) + λ2rb(θ), (3)

where λ1 and λ2 are weights. The common practice of
PINNs is to fit θ by Monte Carlo approximation. PINNs gen-
erate collocation points from spatial-temporal domains uni-
formly, and mini-batch stochastic gradient descent method
(SGD) is employed to optimize parameters. Focusing on
data points helpful for parameter optimization is a more ef-
ficient sampling strategy. Monte-Carlo approximation has
provided the mathematical tools, called importance sam-
pling, to design such a sampling method.

Method
Sampling approaches significantly impact training effi-
ciency. Recent works mainly focus on the generation of col-
location points, while the mini-batch sampling is neglected.

Motivated by the theoretical completeness of importance
sampling and the non-negligible impact of mini-batch sam-
pling, we design a novel sampling approach for mini-batch
sampling based on importance sampling to improve the con-
vergence speed and model accuracy of PINNs.

Importance Sampling for PINNs PINNs generate collo-
cation points from domain and domain boundary. Equation
(3) can be approximated as a loss function of data points:

θ∗ ≈ argmin
θ
Lf + λ1Li + λ2Lb, (4)

where Lf , Li, and Lb are the losses of PDE residuals, initial
conditions, and boundary conditions, respectively.

Datasets for PDE residuals, initial conditions and bound-
ary conditions are denoted by Nf , Ni and Nb, respectively.
In general, mini-bitches are uniformly sampled from Nf ,
Ni, and Nb, respectively. According to the Monte Carlo ap-
proximation, we can introduce a more efficient sampling
method. Because boundary conditions and initial conditions
are penalty terms, we only introduce importance sampling
into the sampling of Nf . The loss of PDE residuals Lf com-
bined with importance sampling is shown as:

Lf =
1

|Nf |

|Nf |∑
i=1

αiℓf (xi;θ), αi =
pi
qi
, (5)

where |Nf | is the size of Nf , ℓf is the PDE residual of each
data point, αi, pi and qi are sample weight, sampling prob-
ability and alternative sampling probability of data point
xi, respectively. Considering mini-batches are obtained by
uniform sampling in general, pi equals to 1/|Nf | for i ∈
{1, 2, · · · , |Nf |} and the calculation of αi is shown as:

αi =
1

|Nf |qi
, i ∈ {1, 2, · · · , |Nf |}, (6)
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Simplified Calculation & Reweighting The critical is-
sue of importance sampling is to determine qi for i ∈
{1, 2, · · · , |Nf |} and we hope to find the best alternative
sampling distribution to make the convergence rate fastest.
Suppose convergence rate is defined as:

C(t) = −Ef [∥θ(t+1) − θ∗∥22 − ∥θ(t) − θ∗∥22], (7)

where C(t) is the convergence rate at step t, θ(t) and θ(t+1)

are parameters at step t and t+ 1, respectively.
With the definition of convergence rate shown in Equa-

tion (7), Needell, Ward, and Srebro (2014); Zhao and Zhang
(2015) have demonstrated that the best sampling probability
of collocation points is determined by q∗ ∝ ∥∇θℓf (x,θ)∥2.

However, the computational cost of this theoretical opti-
mal sampling method is unacceptable, and it is necessary
to find alternative methods. Inspired by Katharopoulos and
Fleuret (2017), an approximation calculation of the theoret-
ical optimal formula is employed in DMIS.

q
(t)
i =

ℓf (xi,θ
(t))∑Nf

j=1 ℓf (xj ,θ
(t))

, i ∈ {1, 2, · · · , |Nf |}, (8)

where q
(t)
i is the sampling probability of xi at step t.

Katharopoulos and Fleuret (2017) also demonstrate that
Equation (8) does not change the rank of sampling probabil-
ity. ∀i, j ∈ {1, 2, · · · , |Nf |}, if q∗i < q∗j , we can obtain that

q
(t)
i < q

(t)
j . Therefore, Equation (8) is a reasonable approx-

imation. However, we find that sample weights calculated
by Equation (8) lead to unstable training in the initial stage.
This problem is caused by data points with high loss, which
lead to sharp local gradients. To fix this problem, we intro-
duce a super parameter β to adjust α. With β > 1, greater
penalties are applied to data points with high loss and the
result is denoted as α′:

α′
i = (

1

|Nf |qi
)β , β ∈ [1,+∞), i ∈ {1, 2, · · · , |Nf |}. (9)

DMWE Since Equation (8) reduces the computational
cost of each data point, the sampling probability still needs
to be calculated point by point, and it is an enormous burden
in solving complex PDEs. To further reduce the computa-
tional cost, we propose dynamic mesh-based weight estima-
tion (DMWE) to calculate sample weight by interpolation.

In DMWE, interpolation based on Delaunay Triangula-
tion is employed. Specifically, We dynamically generate a
subset S from Nf to construct a triangular mesh. DMWE
only calculated the sample weights of points in S exactly,
and the weights of other points are obtained by interpola-
tion. S is generated according to Equation (10).

g
(t)
i ∝ ∥q

(t)
i − q

(t−1)
i ∥, i ∈ {1, 2, · · · , |Nf |}, (10)

where g
(t)
i is the selection probability of point xi at step t.

Equation (10) reduces the number of mesh points in the in-
active region to reduce the computational cost. Meanwhile,
Equation (10) also ensures high-precision interpolation in
the active region.

Algorithm 1: Sampler with DMIS
Input: batch size of PDE residuals |Mf |.
Parameter: set size of mesh points |S|, reweighting param-
eter β, mesh update threshold γ, dataset of PDE residuals
Nf , iteration step t.
Output: mini-batch Mf , vector of sample weights α′.
Initialization

1: t0 ← 0

2: q
(t0)
i ← 1/|Nf |, i ∈ {1, 2, · · · , |Nf |}

3: g
(t0)
i ← 1/|Nf |, i ∈ {1, 2, · · · , |Nf |}

4: S ← |S| points sampled with g
(t0)
i from Nf

5: Build triangular mesh by Delaunay Triangulation
Mini-batch Sampling

1: Compute {ℓf (xi,θ(t−1))}xi∈S

2: Estimate score of other points in Nf by interpolation
3: Compute q

(t)
i according to Equation (8)

4: Mf ← |Mf | points sampled with q
(t)
i from Nf

5: Compute α
(t)
i according to Equation (6)

6: Compute α
′(t)
i according to Equation (9)

7: Compute Sim(v(t0),v(t)) according to Equation (11)
8: if Sim(v(t0),v(t)) < γ then
9: g

(t)
i ∝ ∥q

(t−1)
i − q

(t0)
i ∥, i ∈ {1, 2, · · · , |Nf |}

10: q
(t0)
i ← q

(t)
i , i ∈ {1, 2, · · · , |Nf |}

11: S ← |S| points sampled with gi from Nf

12: t0 ← t
13: Update mesh by Delaunay Triangulation
14: end if
15: return Mf , α′

The interpolation based on Delaunay is time-consuming
and it is also unnecessary to update the triangular mesh
in each iteration step. Therefore, we introduce the cosine
similarity-based evaluation method to decide whether to re-
select S and rebuild the triangular mesh.

Sim(v(t0),v(t)) =
v(t0) · v(t)

||v(t0)|| · ∥v(t)∥
, (11)

where v(t0) and v(t) are vectors composed of the sample
weight of data points in S at step t0 and step t, respectively.
If the cosine similarity is smaller than the threshold γ, S will
be re-selected from Nf , and the mesh will be updated.

DMIS The pseudo-code of a sampler with DMIS is shown
as Algorithm 1. In each iteration, the PDE residual of data
points in S are computed first, and then the sample weights
of other points are estimated by interpolation. The training
process combined with DMIS is shown as Figure 2.

Experiments
Benchmark
We consider to solve Schrödinger equation, Viscous Burg-
ers’ equation and Korteweg-de Vries equation. PINNs have
excellent interpolation accuracy, but the extrapolation accu-
racy still needs to be further improved (Kim et al. 2021).
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PDE Network Config Optimizer Config DMIS Config Dataset Config
Depth Width Learning rate |S| γ β |Nf | |Ni| |Nb|

Schrödinger 4 64 0.001 1000 0.4 2 60000 200 200
Burgers 3 32 0.005 1000 0.4 1.5 100000 2000 2000

KdV 4 64 0.001 1000 0.4 2 60000 2000 2000

Table 1: The hyper-parameters used for each benchmark. |S| is the set size of mesh points, γ is the mesh update threshold,
and β is the hyper-parameter of reweighting. |Nf |, |Ni|, and |Nb| are the dataset size of PDE residuals, initial conditions and
boundary conditions, respectively.

Method Schrödinger Equation Burgers’ Equation KdV Equation
ME MAE RMSE ME MAE RMSE ME MAE RMSE

PINN-O 1.360 0.186 0.4092 0.451 0.0738 0.1100 2.140 0.363 0.520
PINN-N 0.948 0.149 0.2906 0.358 0.0579 0.0859 1.860 0.292 0.441
xPINN 0.546 0.045 0.0089 0.261 0.0099 0.0010 2.462 0.272 0.230
cPINN 0.591 0.069 0.0169 0.324 0.0084 0.0007 2.925 0.258 0.248

PINN-DMIS(ours) 0.647 0.127 0.2196 0.225 0.0294 0.0495 1.170 0.391 0.492
xPINN-DMIS(ours) 0.867 0.036 0.0129 0.420 0.0115 0.0017 2.380 0.233 0.196
cPINN-DMIS(ours) 0.358 0.025 0.0033 0.397 0.0111 0.0016 2.680 0.230 0.200

Table 2: Comparison with PINN-O (Raissi, Perdikaris, and Karniadakis 2019), PINN-N (Nabian, Gladstone, and Meidani
2021), xPINN (Jagtap and Karniadakis 2020) and cPINN (Jagtap, Kharazmi, and Karniadakis 2020) on benchmarks of the
Schrödinger Equation, the Viscous Burgers’ Equation and the KdV Equation.

For this reason, the data division method used in our work
is different from that in original PINNs (Raissi, Perdikaris,
and Karniadakis 2019). Specifically, for each solving prob-
lem, we use the similar method as Kim et al. (2021) to divide
the entire time domain [0, T ] into three segments: [0, T/2],
[T/2, 3T/4] and [3T/4, T ]. These three segments are used
for training, validating, and testing.

Schrödinger Equation Schrödinger equation is a funda-
mental equation in quantum mechanics. Schrödinger equa-
tion with an initial condition u(0, x) = 2sech(x) and peri-
odic boundary conditions is considered:

i
∂u

∂t
+0.5

∂2u

∂x2
+ |u|2u = 0, x ∈ [−5, 5], t ∈ [0, π/2]. (12)

Viscous Burgers’ Equation The Burgers’ equation sim-
ulates shock wave propagation and reflection. We consider
the Burgers’ equation with an initial condition u(0, x) =
− sin(πx) and a boundary condition u(t, x) = 0, x ∈
{−1, 1}, which is shown as follows:

∂u

∂t
+ u

∂u

∂x
=

0.04

π

∂2u

∂x2
, x ∈ [−1, 1], t ∈ [0, 1]. (13)

Korteweg-de Vries Equation Korteweg-de Vries (KdV)
equation describes the waves on shallow water surfaces.
The KdV equation, which involves third-order derivatives,
is suitable to evaluate the efficiency of DMIS in solving
partial differential equations with higher-order derivatives.
We consider the KdV equation with an initial condition
u(0, x) = cos(πx) and periodic boundary conditions:

∂u

∂t
+u

∂u

∂x
+0.0025

∂3u

∂x3
= 0, x ∈ [−1, 1], t ∈ [0, 1]. (14)

Experimental Setting
Baseline We evaluate the performance of DMIS based on
original PINN(Raissi, Perdikaris, and Karniadakis 2019),
xPINN(Jagtap and Karniadakis 2020) and cPINN(Jagtap,
Kharazmi, and Karniadakis 2020). The original PINN is de-
noted by PINN-O. PINN with importance sampling scheme
of Nabian, Gladstone, and Meidani (2021) is denoted by
PINN-N. PINN, xPINN and cPINN with our approach,
DMIS, are denoted by PINN-DMIS, xPINN-DMIS and
cPINN-DMIS, respectively.

Hyper-parameter Table 1 summarizes hyper-parameters
of networks, optimizers, datasets, and DMIS for each bench-
mark. Collocation points are uniformly generated from the
domain and domain boundary. The Adam optimizer is em-
ployed on all benchmarks. For PINN-N, we uniformly sam-
ple 10,000 seeds within the domain. For cPINN and xPINN,
the spatial is equally decomposed into three subdomains.

Evaluation Metrics We choose the maximum error (ME),
mean absolute error (MAE), and root mean square error
(RMSE) as evaluation metrics of prediction accuracy. The
exact numerical solutions are obtained by Py-PDE (Zwicker
2020). We introduce the calculation time and the number
of iteration steps required for convergence, denoted by TC
and NC, respectively, to evaluate the impact of sampling
methods on convergence behavior. The subscript indicates
the convergence level. For example, NC5 is the minimum
iteration steps required when the training loss is stable be-
low 1e-5 for 1000 iterations. Considering that the conver-
gence behavior is challenging to measure, NC and TC are
only used to evaluate the convergence behavior in this paper
roughly. It is more intuitive to observe convergence behavior
through convergence curves.
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Figure 3: The Schrödinger Equation. (a, b, c) The prediction
errors. (d) Convergence curves. (e, f, g) show the prediction
(red) and ground-truth (blue).

TC2/s TC3/s NC2 NC3

PINN-O 151 2005 4740 61984
PINN-N 466 5968 5681 72959

PINN-DMIS(ours) 34 399 847 10219

Table 3: Evaluation results of convergence behavior for solv-
ing the Schrödinger Equation

Experimental Result
Schrödinger Equation Figure 3(a, b, c) report the predic-
tion error by PINN-O, PINN-N, and PINN-DMIS for solv-
ing Schrödinger Equation. Compared with other methods,
PINN-DMIS has better performance. The snapshots in Fig-
ure 3 show that PINN-DMIS has the lowest maximum er-
rors. Table 2 summarizes the results of prediction accuracy
for solving Schrödinger Equation. DMIS can significantly
improve the accuracy. Figure 3(d) reports that PINN-DMIS
converges fastest and has the lowest training error. Table 3
compares the convergence behavior. PINN-DMIS shows up
to five times faster convergence speed than PINN-O.

Viscous Burgers’ Equation Figure 4(a, b, c) report the
prediction errors for solving the Burgers’ Equation. PINN-
DMIS has lower prediction error in the extrapolation seg-
ment. Figure 4(e, f, g) report the snapshots of prediction at
t=0.9182s. PINN-O and PINN-N fail to predict u(t, x), and
PINN-DMIS still has perfect prediction performance. Table
2 summarizes the evaluation results for solving the Viscous
Burgers’ Equation. PINNs-DMIS has the lowest maximum
error. The convergence curves for solving the Viscous Burg-
ers’ Equation are reported in Figure 4(d). PINN-DMIS has a
slender lead convergence speed. Table 4 reports the conver-
gence behavior of PINN-O, PINN-N, and PINN-DMIS for
solving the Viscous Burgers’ Equation. These three methods
have similar convergence behavior in the initial stage, but in
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Figure 4: The Burgers’ Equation. (a, b, c) The prediction
errors. (d) Convergence curves. (e, f, g) show the prediction
(red) and ground-truth (blue).

TC2/s TC3/s NC2 TC3

PINN-O 15 97 1218 7308
PINN-N 83 417 1218 6032

PINN-DMIS(ours) 20 89 1160 5336

Table 4: Evaluation results of convergence behavior for solv-
ing the Viscous Burgers’ Equation

the following stage, PINN-DMIS converges fastest.

Korteweg-de Vries Equation Figure 5(e, f, g) report the
snapshots of prediction at t=0.8347s. all methods fail to pre-
dict u(t, x). By contrast, PINN-DMIS has lower maximum
error. Table 2 reports prediction accuracy and DMIS can
effectively improve the accuracy of various PINNs. Figure
5(d) reports the convergence curves for solving the KdV
Equation. PINN-DMIS converges faster than other methods.
Table 7 reports the evaluation results of convergence behav-
ior for solving the KdV Equation. The results indicate that
PINN with DMIS has noticeable convergence acceleration.

Ablation Study
DMWE Figure 6 reports meshes constructed by DMWE
and the corresponding changes of L in adjacent updates.
During training, mesh points gradually gather in the region
with a drastic change of L, and samples in these regions sig-
nificantly impact the parameter optimization in the current
stage. DMWE aims to arrange more mesh points in the ac-
tive region to achieve a high-precision estimation of sam-
ple weight and arrange fewer mesh points in the inactive re-
gion to reduce the computational cost. The dynamic meshes
shown in Figure 6 meet our expectations.

Our approach without DMWE is denoted by PINN-
BasicIS. Table 5 reports evaluation results of PINN-O,
PINN-BasicIS, and PINN-DMIS. Compared with PINN-
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Method Schrödinger Equation Burgers’ Equation KdV Equation
ME MAE RMSE ME MAE RMSE ME MAE RMSE

PINN-O 1.360 0.186 0.409 0.451 0.074 0.110 2.140 0.363 0.520
PINN-BasicIS(ours) 0.965 0.140 0.279 0.273 0.025 0.044 1.460 0.376 0.526
PINN-DMIS(ours) 0.647 0.127 0.220 0.225 0.029 0.049 1.170 0.391 0.492

Table 5: Ablation Study of DMWE for solving the Schrödinger Equation, the Viscous Burgers’ Equation and the KdV Equation.

|S| γ
Schrödinger Equation Burgers’ Equation KdV Equation

ME MAE RMSE ME MAE RMSE ME MAE RMSE
1000 0.2 0.762 0.120 0.233 0.593 0.039 0.085 1.460 0.376 0.526
1000 0.4 0.647 0.127 0.220 0.225 0.029 0.049 1.170 0.391 0.492
1000 0.6 0.838 0.111 0.208 0.919 0.057 0.147 1.760 0.351 0.518

10000 0.4 0.913 0.132 0.262 0.392 0.033 0.075 1.280 0.366 0.475
20000 0.4 1.100 0.163 0.332 0.620 0.046 0.105 1.730 0.452 0.600

Table 6: Ablation studies of the set size |S| and the mesh update threshold γ for solving the Schrödinger Equation, the Viscous
Burgers’ Equation and the KdV Equation.
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Figure 5: The KdV Equation. (a, b, c) The prediction errors.
(d) Convergence curves. (e, f, g) show the prediction (red)
and ground-truth (blue).

BasicIS, PINN-DMIS has better performance in most cases.
Especially for solving Schrödinger Equation, PINN-DMIS
has the best performance on all evaluation metrics.

Hyper-parameter Table 6 reports the ablation studies of
mesh update threshold γ and set size |S|. When |S| is too
tiny, the estimation deviation of sample weights increases
dramatically. On the other hand, when |S| is too large, the
weights of samples are unstable, which also leads to a de-
cline of model performance. Similarly, when γ is too tiny,
DMWE fails to update mesh. When γ is too large, the mesh
is frequently updated, leading to a severe decrease of train-
ing efficiency. Fortunately, γ = 0.4 is always appropriate
and we recommend setting γ to 0.4.
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Figure 6: Dynamic mesh. (a, b, c) Meshes constructed by
DMWE. (d, e, f) The corresponding changes ofL in adjacent
updates.

TC2/s TC3/s NC2 NC3

PINN-O 476 1812 12631 48401
PINN-N 794 4001 9855 49912

PINN-DMIS(ours) 288 1046 6954 25029

Table 7: Evaluation results of convergence behavior for solv-
ing the KdV Equation

Conclusion
In this paper, we propose a novel importance sam-
pling scheme, Dynamic Mesh-based Importance Sampling
(DMIS). DMIS constructs a dynamic triangular mesh to
estimate sample weights and effectively integrates impor-
tance sampling into the training of PINNs. Experiments on
three widely-used benchmarks show that DMIS significantly
improves the convergence speed and accuracy of PINNs
without significantly increasing computational cost. We also
evaluate the performance of DMIS on three different PINNs
models and results verify effectiveness and excellent gener-
alization ability of DMIS.
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