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Abstract

Automatic International Classification of Diseases (ICD)
coding aims to assign multiple ICD codes to a medical note
with an average of 3,000+ tokens. This task is challenging
due to the high-dimensional space of multi-label assignment
(155,000+ ICD code candidates) and the long-tail challenge
- Many ICD codes are infrequently assigned yet infrequent
ICD codes are important clinically. This study addresses the
long-tail challenge by transforming this multi-label classifi-
cation task into an autoregressive generation task. Specifi-
cally, we first introduce a novel pretraining objective to gen-
erate free text diagnoses and procedures using the SOAP
structure, the medical logic physicians use for note docu-
mentation. Second, instead of directly predicting the high
dimensional space of ICD codes, our model generates the
lower dimension of text descriptions, which then infers ICD
codes. Third, we designed a novel prompt template for multi-
label classification. We evaluate our Generation with Prompt
(GPgoqp) model with the benchmark of all code assignment
(MIMIC-III-full) and few shot ICD code assignment evalua-
tion benchmark (MIMIC-III-few). Experiments on MIMIC-
IlI-few show that our model performs with a marco F1
30.2, which substantially outperforms the previous MIMIC-
III-full SOTA model (marco F1 4.3) and the model specifi-
cally designed for few/zero shot setting (marco F1 18.7). Fi-
nally, we design a novel ensemble learner, a cross-attention
reranker with prompts, to integrate previous SOTA and our
best few-shot coding predictions. Experiments on MIMIC-
III-full show that our ensemble learner substantially improves
both macro and micro F1, from 10.4 to 14.6 and from 58.2 to
59.1, respectively.

1 Introduction

In real-world tasks, there are often insufficient training
data for rare class labels (Atutxa et al. 2019; Koh et al.
2021). Taking automatic international classification of dis-
eases (ICD) coding (Larkey and Croft 1996) as an example,
given a discharge note as input, the task is to assign multiple
ICD disease label codes associated with each note. The ICD
coding task in MIMIC-III dataset (Johnson et al. 2016) con-
tains 4,075 unique ICD-9-CM codes in 3,372 testing data,
among which 1,285 (31.5%) codes occur less than 11 times
in the training split. In the clinical domain, rare codes may
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be as clinically important as common codes for a patient.
Therefore, a multi-label classifier is required to perform with
high precision and recall for every ICD code, including in-
frequent ones.

Many recent studies tried self-attention BERT-based mod-
els on ICD coding (Zhang, Liu, and Razavian 2020; i,
Holtta, and Marttinen 2021; Pascual, Luck, and Wattenhofer
2021; Dai et al. 2022). Most existing BERT-based models
follow a common design choice: each ICD code is associ-
ated with a unique entity representation and the coding can
be transformed into a multi-label classification across ICD
codes. Specifically, previous models use bi-encoder to cal-
culate a low-dimensional dense vector representation for an
ICD code and for a note text separately. Later, they take dot
product of the two to build a note-aware code representa-
tion for each ICD code. This design enables a multi-label
classification with binary cross-entropy loss on all code rep-
resentations. However, such a design has several limitations.

First, bi-encoder may miss fine-grained interactions be-
tween target ICD codes and candidate mentions in discharge
note texts (Mullenbach et al. 2018). A discharge note con-
tains hundreds of different candidate mentions. Take an ICD
code left heart cardiac catheterization in Figure 1 as an
example, their note encoder aims to capture two candidate
mention phrases cardiac catheterization and left heart. The
encoder also needs to repeat this process for every code and
condenses the note text into a single low-dimensional dense
vector. When pooling thousands of tokens from a note text
into a single representation, it is possible that some detailed
level of information would be lost. This detail-lost represen-
tation of note text would then miss fine-grained interactions
when cross attend to target code descriptions.

Second, note-aware code representation from cross-
attention is unable to generate from missing mention, be-
cause language model contains limited amount of medical
knowledge (Meng et al. 2022; Yao et al. 2022). Take ICD
code Acute posthemorrhagic anemia in Figure 1 as an ex-
ample, there is no mention of anemia in this discharge note
texts. However, the model is required to infer from lab re-
sults such as low level of RBC, Hgb, Hct, which leads
to anemia. In order to fill in this knowledge gap, previ-
ous researches use additional information such as hierarchi-
cal code ontology (Tsai, Chang, and Chen 2019; Cai et al.
2022), code co-occurrence (Cao et al. 2020), code frequency



ICD codes to assign:

37.22 left heart cardiac catheterization

V58.61 long-term (current) use of anticoagulants

272.4 Other and unspecified hyperlipidemia

414.01 Coronary atherosclerosis of native coronary artery
285.1 Acute posthemorrhagic anemia

Major Surgical or Invasive Procedure:
[**2144-12-15**] - Cardiac cath, diagnostic
[**2144-12-21**] - Cardiac cath with PCI;
catheterization x 2 s/p 2 DES to LAD, 1 DES to RCA

Cardiac

History of Present lliness:

84F with HTN, HLD, DM2, newly diagnosed atrial fibrillation
in [**11/2144**] who was transferred to [**Hospital1l 18**]
from [**Hospital **] hospital for cardiac catheterization after
presentation there with syncopal episode. In summary, she
has history of syncope & presyncope, and was recently
diagnosed with afib on [**2144-12-4**], CHADS2 score of 3,
and was started on a beta-blocker (metoprolol 50mg daily)
and coumadin. Persantine thalium stress test showed
severe apical reversible perfusion defect consistent with
ischemia (LAD) for Left heart.

Admission labs:
[**2144-12-15**] 09:00PM BLOOD WBC-5.9 RBC-3.64*
Hgb-10.9* Hct-31.7*

(Current) Discharge Medications:
13. warfarin 1 mg Tablet Sig: Three (3) Tablet PO Once Daily
at4 PM.

FINAL DIAGNOSIS:
1. Three vessel coronary artery disease.
2. Left ventricular diastolic dysfunction.

Figure 1: An example of EHR note from the MIMIC-III
dataset, which includes ICD code gold label (top) and the
discharge note text (bottom). We colored each code and its
corresponding candidate mentions/evidence in the note text.

(Zhou et al. 2021), signs and symptoms section in Wikipedia
(Wang et al. 2020a, 2022) as an additional input source, and
use the same binary cross-entropy objective on codes. How-
ever, few research design a specific training objective to dis-
till knowledge into their model.

Besides the accuracy challenge from the long tail distribu-
tion, such a high number of ICD codes also increases their
model’s memory demand. As stated previously, for the ICD-
9 testing data from MIMIC-III, the model needs to assign
from 4,075 unique diagnosis and procedure codes. In real-
ity, ICD-9 has a total of 14,000 and 3,900 unique diagno-
sis and procedure codes, respectively. The number of unique
ICD codes is also increasing because more and more dis-
eases are being refined or added. The up-to-date ICD-10,
which replaces ICD-9, contains 68,000 diagnosis codes and
87,000 procedure codes (Eisfeld 2014). Most previous meth-
ods require building a note-aware code representation for
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each code as shown in Figure 2. The number of code repre-
sentations stored in memory increases linearly as the number
of candidate codes to assign increases. The significant in-
crease in memory makes it hard to deploy in the real-world
auto ICD classification setting (Ziletti et al. 2022; Yan et al.
2022).

In this paper, we present a simple and yet effective au-
toregressive Generation with Prompt (GP) framework for
ICD coding. We have made major contributions to ICD cod-
ing. Specifically, we designed a novel mask objective for
the clinical language model. Our pretraining objective uti-
lizes the unique clinical knowledge inherited by the structure
of EHR notes. Specifically, physicians write notes follow-
ing the subjective, objective, assessment, and plan (SOAP)
structure, where the assessment and plan sections can be in-
ferred from the subjective and objective sections (Bodenrei-
der 2004; Yang and Yu 2020). Our GPy,,p is a longformer
encoder-decoder (LED) pretrained with assessment & plan
generation loss, which infers diagnoses and procedures from
symptoms and lab results by generating the assessment and
plan sections from the subjective and objective sections.
This pretraining can mitigate the missing mention challenge.

In addition, unlike all previous approaches which directly
predict ICD codes, we fine-tune GPg,, to first generate code
descriptions with a prefix prompt and then assign the de-
scriptions to the corresponding ICD codes. Code descrip-
tion generation only requires a fixed vocab of 4,501 can-
didate word tokens, a substantial reduction in dimensional
space. Unlike all previous models that build cross-attention
on a single pooled representation of input note texts, we per-
form an autoregressive cross-attention on every single token
of EHR notes to avoid the problem of missing fine-grained
interactions.

Experiments on the public ICD coding benchmark
(MIMIC-III-full) show that our model GPyy,, outperforms
the state-of-the-art (SOTA) MSMN on MIMIC-III-full us-
ing the macro evaluation metrics. In order to verify its few-
shot capability, we also show that our model substantially
outperforms both MSMN (Yuan, Tan, and Huang 2022) and
AGMHT (Song et al. 2020). Last but not least, we show that
an ensemble learner which simply reranks the predictions of
our model and MSMN achieves the new SOTA on MIMIC-
II-full. Our codes are attached in supplementary material
and will be publicly available upon publication.

2 Methods
2.1 Task Definition

ICD coding is typically formulated as a multi-label clas-
sification task (McCallum 1999). Specifically, considering
thousands of words from an input discharge summary note
text t (green as shown in Figure 2), the task is to assign a bi-
nary label y; € {0, 1} for the ith ICD code in the label space
Y, where 1 means that note is positive for an ICD diagnosis
or procedure. Each candidate code has a short code descrip-
tion phrase c; in free text. For instance, code 250.1 has de-
scription diabetes with ketoacidosis. Code descriptions c is
the set of N, number of ¢; where N, = 4,075 is the number
of total ICD codes unless otherwise specified.
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Figure 2: An illustration of (a) standard training method and (b) our proposed generative fine-tuning. The number of candidate
code is 3 for illustration in (a). Solid lines represent attention in step 3 and dash lines represent previous steps in (b).

2.2 Pretraining to Learn Clinical Inference

Besides token-level masked language modeling (MLM) ob-
jective, which has shown to be limited in biomedical tasks
(Moradi et al. 2021; Gutierrez et al. 2022), our GPyu,p
model is also pretrained with a paragraph-level autoregres-
sive encoder-decoder objective. Specifically, given subject
and object (SO) sections including symptoms and lab re-
sults, the task is to generate free-text assessment&plan (AP)
including diagnoses and procedures (refer to figure 1 of
Yang and Yu (2020) for an example'). The SOAP is iden-
tified using the document section classification tool (Kwon,
Yang, and Yu 2022). Similar to PEGASUS (Zhang et al.
2020), we masked selected sentences in assessment&plan
section with [MASK1] for target generation text (GSG). The
selected sentences include diagnoses and procedures entities
found using biomedical named entity recognition and link-
ing (NER+L) tool MedCAT (Kavuluru, Rios, and Lu 2015).
The other sentences in subject and object section remain al-
most the same as input, but with some phrases randomly
masked by [MASK2] for MLM. This pretraining objective
is similar compared to ICD coding task, which aims to as-
sign ICD diagnoses and procedures codes, but differs from
ICD coding in that it generates sentences other than the spe-
cific code. ICD coding also has the whole medical note as
input, but our GSG only includes part of clinical notes with-
out diagnoses and procedures. Hence, our GPy,, could learn
such inferences from symptoms and lab results to diagnoses
and procedures.

"https://aclanthology.org/2020.findings-emnlp.336.pdf
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2.3 Generative Fine-tuning

Our generative fine-tuning is different from standard fine-
tuning. We use autoregressive encoder-decoder model to as-
sign ICD codes to a note by first generating unique code
descriptions. An example to assign the ICD code 250.1 with
the corresponding text description diabetes with ketoacido-
sis is illustrated in Figure 2 (b). This step is repeated NV times
for each code description to generate, and PLM implicitly
decides N by generating the end of text token. In this way,
we transfer a downstream multi-label classification task into
a sequence to sequence task like pretraining. Specifically, we
design a free text prompt template as input:

x; = t. diagnoses and procedures : ¢1 ; ¢ ; ... ;
Given ith prompt, the next ¢ + 1th code label probability
would be calculated as:

C; .

L.

117

P(Civilzi) = (ujlu<y, ;) (1

where u is the sequence of L. tokens in ¢ 4+ 1th code de-
scription ;41 to generate. Finally, we grouped the gener-
ated tokens as a code description phrase ¢; 1, which is then
mapped to the corresponding ICD code. During prediction,
the ICD code is assigned with the binary label of y = 1,
and use the same code to evaluate and compare to stan-
dard fine-tuning. Notice that this decoding step would cross-
attend each token of code descriptions and note text in every
layer of PLM decoder. Generative fine-tuning reuses all pa-
rameters during pretraining, and does not introduce new ran-
domly initialized parameters, making the whole model easy
to fine-tune in a few-shot setting.



2.4 Inference with Clinical Vocab Constraint

Ideally, the generated tokens would match to a valid code.
However in reality, PLM would hallucinate and generate
random tokens that do not match to any code descrip-
tions, especially given that code description is usually a
long phrase of average 9.81 tokens. Hence, we exploit beam
search (Sutskever, Vinyals, and Le 2014) with vocab con-
straint, which forces to only generate valid code descrip-
tions. Similar to previous research on entity retrieval (De
Cao et al. 2021), we applied a trie structure to efficiently
limit the vocab. Since beam search only examines one step
forward during decoding, we only limit the generation of
one future token given the preceding tokens. Hence, we con-
struct the trie by the following rule: for each node in the trie,
its children are allowed next tokens to formulate into a valid
code description. While querying the allowed next tokens
for a sub phrase, we simply traverse from root node using
tokens in sub phrase to find the children. An illustrative ex-
ample is shown in Figure 3.

By querying this trie, we are able to generate a valid de-
scription for a single code. In order to generate multiple
codes, we design 2 different ending tokens for each code de-
scription: [EOS] (end of text token) or ; (semicolon), where
[EOS] means this is the last code to assign to this note text,
and semicolon means continue generating other codes. We
let decoder decide how many codes to assign.

2.5 Code Reranking

Instead of generative prompt intended for few-shot learning,
we propose a novel cloze style prompt to rerank predicted
code candidates generated from different models. The con-
cept of 2nd stage reranker originates from information re-
trieval (Dang, Bendersky, and Croft 2013; Nogueira and Cho
2019). This reranker serves as a fine-grained coding model.
Specifically, we reformulate multi-label classification tasks
with free text prompt template as input:

zp =t.c1 : [MASK], ¢z : [MASK], ..., cn, : [MASK] .
where ¢; is the descriptions of code candidates generated
from previous step models. We use KEPTLongformer (Yang
et al. 2022b) to decide if code is positive (or negative) for a
note by filling [MASK] with vocab token yes (or no). This
step is very similar to generative fine-tuning but differs in the
design of the prompt. Instead of using the prompt to autore-
gressively generate the next code description, our reranker
formulates the prompt with the code description given as the
candidate, and verifies if the code should be assigned to the
discharge note texts or not.

3 Experiments
3.1 Dataset

To reduce potential bias with small cohort(Weber et al.
2017), we pretrain on a large cohort containing 3.6 million
clinical notes following SOAP structure. The pretraining co-
hort is from US Veterans Health Administration Corporate
Data Warehouse. We collect every patient progress notes
from calendar year 2016 to 2020. The average number of
tokens for SO section and AP section is 1456 and 175 re-
spectively.
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[ Diabetes mellitus without mention of complication, ]

2

type ~ o

@

Figure 3: Anillustration of trie constraint beam search which
forces to decode only valid code descriptions. Full valid de-
scription is Diabetes mellitus without mention of complica-
tion, type 1 juvenile type, not stated as uncontrolled.

apple

'

juvenile unspecified

The fine-tuning dataset (Johnson et al. 2016) contains
clinical data from real patients. It contains data instances
of de-identified discharge summary note texts with expert-
labeled ICD-9 codes. We applied the following text pre-
processing steps before tokenization: (1) removing all de-
identification tokens; (2) replacing characters other than
punctuation marks and alphanumerical into white space (e.g.
/m); (3) stripping extra white spaces. The average number of
documents per label is 12.6, and the average labels per doc-
ument is 15.8.

For all codes prediction tasks (MIMIC-III-full), we used
the same splits as the previous work (Mullenbach et al. 2018;
Yuan, Tan, and Huang 2022). Previous work truncated dis-
charge summaries at 4,000 words. Since longformer used
tokens instead of words, we truncated discharge summaries
at 8,192 tokens unless otherwise specified.

To benchmark ICD coding task on few shot learning, we
also created a few-shot codes prediction dataset (MIMIC-
III-few), which is a subset of the MIMIC-III-full dataset.
Following previous works on few-shot classification (Lu
et al. 2020; Song et al. 2020), among 4,075 different types of
ICD-9 codes in test set, we collect those which occur within
5 times (but occur at least 1 time) in the training set. We
found a total of 685 (16.8%) unique ICD-9 codes under the
few-shot setting.

3.2 Baselines

MSMN (Yuan, Tan, and Huang 2022) use synonyms with
adapted multi-head attention, which achieved SOTA perfor-
mance on the MIMIC-III-full dataset.

AGMHT (Song et al. 2020) use adversarial generative
model to generate feature for zero/few shot labels, which
achieved SOTA performance on zero-shot MIMIC-III task.
GPyiki use our GP framework (without GSG pretraining ob-
jective in section 2.2). During fine-tuning, it is initialized
from LED pretrained on Wikipedia and Book corpus in Belt-
agy, Peters, and Cohan (2020).

GPpyubmea use our GP framework but initialized from LED
pretrained on the Pubmed dataset.



F1 Prec Recall

Model

Mac Mic Mac Mic Mac Mic P@15 R@15 P@50 R®@50
Standard 77 472 7.6 424 77 534 47.2 43.2 24.9 76.1
MSMN 104 58.1 104 61.2 105 554 59.6 55.8 27.0 78.4
AGMHT 1.3 0.6 1.2 36.6 1.5 0.3 - - - -
GPpubmed 83 442 10.1 54.7 7.1 370 - - - -
GPyoap 134 498 13.2 537 13.7 464 - - - -
Reranker Oracle 28.8 67.9 282 637 294 727 63.6 59.0 359 99.8
Reranker (MSMN+AGMHT) 119 59.7 125 653 122 575 614 57.4 27.0 78.6
Concater MSMN+AGMHT) 116 582 114 61.0 119 556 - - - -
Reranker (MSMN+GPpypmeq) 117 572 122 579 112 56.5 58.7 55.5 27.0 78.5
Concater MSMN+GPpupmed) 114 548 11.0 526 126 594 - - - -
Reranker (MSMN+GP;oqp) 146 59.1 143 583 149 599 60.5 56.8 27.8 80.2
Concater (MSMN+GPg,p) 14.0 550 12.0 502 17.6 60.8 - - - -

Table 1: Results on the MIMIC-III-full set, compared between GP and baselines (top), reranking from combination of different
baselines (down). Standard is standard fine-tuning with longformer as encoder. AGMHT is only built for zero/few-shot.

3.3 Maetrics

We report both macro and micro scores of precision, recall,
f1, and accuracy. Given the predicted text code pair, macro-
averaged values are calculated by first computing metric
for each ICD code and then taking the average among all
classes. Micro-averaged values are calculated by treating
each pair as a separate prediction and average among all
predictions. Take precision as an example, the metrics are
distinguished as follows:

S TP
MacroP = 1/N.S  ———"__ 2
acro / ’;Tprﬁ-FPi )
N,
Ne Tp,
MicroP = 2iz1 3)

S\Ne TP, + FP,

where T'P; is True Positives for code label i, and F'P; is
False Positives for code label ¢. This shows Macro metrics
place much more emphasis on rare code prediction.

We also report precision or recall at K. This is inspired
by the need of clinical decision support tool when applied
to real world, in which a doctor is given a certain number of
anticipated codes to examine. We select X = 15 which is
roughly the average number of codes in MIMIC-III per note
texts, and K = 50 as this is the maximum candidate our
largest GPU memory support as a reranker.

3.4 Implementation Details

We order ICD codes to generate by its SEQ_.NUM (pri-
ority ranking for diagnoses and perform order for proce-
dures) labeled by medical experts from DIAGNOSES_ICD
PROCEDURES_ICD table in MIMIC-III. For punctuation
semicolons in ICD code descriptions, we replace them to
punctuation commas. Pretraining on SOAP data took about
140 hours with 4 NVIDIA RTX 6000 GPU with 24 GB
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memory. Fine-tuning took about 40 hours with 4 NVIDIA
RTX 6000 GPU with 24 GB memory. Our reranker train-
ing took about 12 hours with 2 NVIDIA A100 GPU with 40
GB memory. During pretraining, we used warmup ratio of
0.1, learning rate 5¢~5, dropout rate 0.1, L2 weight decay
le~? and batch size of 64 with fp16. During fine-tuning, we
grid searched learning rate [1le~°, 2e %, 3e~°], dropout rate
[0.1,0.3,0.5], with batch size of 4. Best hyper-parameters
set is bolded. The random seed is 42. For each evaluation
on generation models, we run generation once with a beam
search size of 2. We set the number of candidate code to
rerank N, = 50 as this is the maximum candidate our largest
GPI; memory support. Our evaluation code is publicly avail-
able”.

3.5 Results

Results show that our generation with prompt framework
pretrained on clinical SOAP data (GPs,p) migrates the long-
tail issue compared to the previous SOTA model MSMN.
For the all disease code assignment (MIMIC-III-full) task,
our GPyp achieves macro F1 of 13.4 (+3.0), macro preci-
sion of 13.2 (+2.8), and macro recall of 13.7 (+3.2). The
number in parentheses shows the improvements compared to
MSMN. For the rare disease code assignment (MIMIC-III-
few) task, our GPg,p, achieves macro F1 of 30.2 (+25.9), mi-
cro F1 of 35.3 (+26.8), macro recall of 32.9 (+28.7), micro
recall of 32.6 (+28.1), macro accuracy of 25.1 (+21.3), micro
accuracy of 21.4 (+17.0). This further confirms the strong
advantage of our GPy,, for long-tail codes. Finally, by com-
bining the prediction of GPg,,, and MSMN, our reranker
with code descriptions as prompt shows SOTA performance
for both macro and micro evaluations.

*https://github.com/whaleloops/KEPT



Model F1 Prec Recall
Mac Mic Mac Mic Mac Mic
MSMN 43 8.5 45 1709 4.2 4.5
AGMHT 187 292 17.6 494 199 20.7
GPyiki 2.9 4.9 3.0 o6l.1 2.7 2.6
GPpubmed 73 123 79 473 6.8 7.1
GPyoap 30.2 353 279 385 329 326

Table 2: Results on the MIMIC-III-few set, compared be-
tween baselines and different pretraining of GP.

4 Discussions

Our final model is a combination of 1) autoregressive gen-
eration; 2) SOAP pretraining objective; 3) reranker with
prompt. We will discuss details in the following paragraphs:
Are autoregressive coding models few-shot learners?
Our autoregressive model GPgy,, outperforms non-
autoregressive auto coding model MSMN in few-shot
coding task as shown in Section 3.5. Moreover, our GPy,p
also significantly outperforms AGMHT which is specifi-
cally designed for few/zero-shot ICD coding. Compared
to AGMHT, our GPy,,, improves macro and micro F1 by
+11.5 and +6.1, macro and micro precision by +10.3, -10.9,
macro and micro recall by +13.0, +11.9, macro and micro
accuracy by +9.2, +4.3. Our findings support that clinical
PLMs are few shot learners (Taylor et al. 2022; Lewis et al.
2020; Yang et al. 2022a). From a network architecture
perspective, our autoregressive ICD generation model uses
cross-attention to capture note aware code representations,
whereas previous traditional ICD coding studies use dot
product label attention (Zhang, Liu, and Razavian 2020; Ji,
Holtta, and Marttinen 2021; Pascual, Luck, and Wattenhofer
2021; Dai et al. 2022). A dot product label attention is
required to aggregate many tokens from note into a single
note representation before a final label cross-attention layer
to build note aware code representations. Such a selection
of which tokens best represent note is training intensive and
does not generalize well in out-of-domain or zero/few-shot
setting (Wang et al. 2020c; Thakur et al. 2021). Traditional
methods avoid this by using a label attention when creating
note aware code representations (Mullenbach et al. 2018;
Bai and Vucetic 2019; Ji, Cambria, and Marttinen 2020;
Wang et al. 2020b; Zhou et al. 2021; Liu et al. 2021; Kim
and Ganapathi 2021; Luo et al. 2021; Sun et al. 2021;
Wang et al. 2022; Yuan, Tan, and Huang 2022; Ren et al.
2022). However, the majority of them used unpretrained
LSTM or CNN. This increased the number of unpretrained
parameters and has shown to limit its ability in few-shot
setting (Brown et al. 2020; Schick and Schiitze 2021; Gao,
Fisch, and Chen 2021). In contrast, our model combines the
merit of both PLM and traditional ICD coding model. Our
model is pretrained without introducing new unpretrained
parameters during fine-tuning and also cross-attend code
with every token in the note like traditional label attention.
Such cross-attention has shown to be effective (compared
to a typical bi-encoder network) in combining query and
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MIMIC-III-few F1 Prec Recall

GP Mentioned 17.3 17.9 17.9
pubmed  yhMentioned 7.0 8.6 6.7
GP Mentioned 21.3 17.2 35.5
soap UnMentioned 17.1 15.0 25.2

Table 3: The impact of whether diagnoses are mentioned (or
not) in discharge summaries. GPyoyp, is pretrained with GSG
objective while GPpypmeq is not.

document in information retrieval passage ranking (Zhou
and Devlin 2021), but has not yet been deployed for
multi-label classification tasks.

Comparison among different pretraining objectives in

adding clinical knowledge into PLM.
In-domain pretraining is important for clinical PLM to per-
form well in few-shot setting. Hence, we designed a new
training objective on the clinical notes. Instead of the tra-
ditional masked language model which captures linguistic
features, we designed a novel assessment&plan generation
objective that focuses on predicting clinical outcomes in
tokens. Our GPy,, outperforms GPpupmeq in recall and F1
scores in both MIMIC-III-few and MIMIC-III-full. This is
mainly due to the learned inference ability during pretrain-
ing where the diagnosis may be missing. We want to know
if GPyyyp is able to assign ICD codes when a missing men-
tion occurs (e.g. anemia in Figure 1.). We annotate the dis-
charge summaries with ICD-9 diagnosis codes with Med-
Cat (Kavuluru, Rios, and Lu 2015). We then evaluate on
codes that are explicitly mentioned in the text and those that
are not. Table 3 shows that the accuracy on unmentioned
diagnoses does not drop significantly from mentioned di-
agnoses using our GPy,p, especially when it is compared
t0 GPpypmea Without assessment&plan generation objective.
The accuracy differences between the two models indicate
that assessment&plan generation objective helps learn more
clinical inference ability.

From the view of pretraining objective, our work is most
similar to gap sentences generation objective such as PEGA-
SUS (Zhang et al. 2020), which has shown to be effective in
medical paper summarization (Guo et al. 2022) and health-
care question summarization (Yadav, Gupta, and Demner-
Fushman 2022). Wan and Bansal (2022) augment the sen-
tence selection strategy when pretraining and shows im-
provement in the factuality of the generated summary. Sim-
ilarly, instead of random text format on MIMIC-III, we se-
lect paragraphs following the SOAP format from real-world
data, because assessment and plan paragraphs in SOAP con-
tain key clinical information of a patient encounter (Stupp
et al. 2022).

From the view of adding medical knowledge into lan-
guage models, besides applying masked language model-
ing which captures linguistic features in the medical do-
main (Li et al. 2019; Rongali et al. 2020), previous work has
integrated knowledge from unlabelled clinical documents
through clinical outcome pretraining (van Aken et al. 2021),
patient journey prediction (Peng et al. 2020), amplified vo-



cabulary (Wada et al. 2020), and medical entity retrieving
(Meng et al. 2022) in non-autoregressive BERT. Here we
provide an alternative way of incorporating clinical infer-
ence knowledge into an autoregressive model.

Combining few-shot and non-few-shot using cross-
attention reranker with prompt.

Since AGMHT and our pretrained generation model GPy,p
improve the accuracy in rare codes but not for com-
mon codes, we further collect the ICD prediction of
these models and rerank them with cross-attention prompt
based fine-tuning. Compared to MSMN only model, our
MSMN+GPj,, reranker achieves the best macro F1 of 14.6
(+4.2), marco precision of 14.3 (+3.9), macro recall of 14.9
(+4.5), and micro recall of 59.9 (+4.6). MSMN+AGMHT
reranker achieves the best micro F1 of 59.7 (+1.5) and mi-
cro precision of 62.0 (+0.7). Both models achieve the new
SOTA macro and micro F1 on MIMIC-III coding bench-
mark. We also compare our reranker to a simple concater
which directly concatenates predictions of two models. As
shown at the bottom of Table 1, all rerankers outperform the
corresponding concaters in terms of F1. Finally, our final
result with reranker shows better F1 micro and macro score
compared to RAC (Kim and Ganapathi 2021), which already
reached past the human-level coding baseline.

5 Related Work
5.1 Prompt-based Fine-tuning

Prompt-based fine-tuning has been shown to be effective in
few-shot tasks (Le Scao and Rush 2021; Gao, Fisch, and
Chen 2021), even when PLM is relatively small (Schick
and Schiitze 2021) because they introduce no new parameter
during few shot fine-tuning. However, most previous works
focus on single-label multi-class classification task such as
sentiment classification (Gao, Fisch, and Chen 2021), clin-
ical ICD-9 triage (Taylor et al. 2022), disease phenotyping
(Sivarajkumar and Wang 2022). To the best of our knowl-
edge, our GP is the first work that applies prompting to
multi-label classification task.

5.2 Autoregressive Entity Linking

ICD coding is similar to entity linking, as it is the task of
assigning a unique textual entity identifier (i.e. entity name)
to an entity mention given context. In contrast, ICD cod-
ing assigns multiple codes to whole discharge note docu-
ment. De Cao et al. (2021) first addresses entity linking
by using autoregressive sequence-to-sequence transformer
to generate identifier, and experiments show high micro F1
score on both in-domain and out-of-domain entity linking
benchmarks. Yuan, Yuan, and Yu (2022) further enhance au-
toregressive entity linking using biomedical knowledge base
guided pretraining, and achieve SOTA results on biomedical
entity linking such as BC5CDR. Instead of pretraining us-
ing a pair of entities within a sentence, we used a pair of
subjective-objective paragraphs and assessment-plan para-
graphs within SOAP notes each containing multiple entities.
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6 Limitations

Our best MSMN+GPy,,,, has limited accuracy in candidate
code assignment, and still has room for improvement com-
pared to oracle. An oracle candidate code assigning model is
able to include all ground truth labels within its top-50 pre-
dictions (R@50 is 100). If such a near oracle model exists,
then our reranker is able to achieve macro F1 of 28.8 and
micro F1 of 67.9, where our current SOTA only has R@50
of 80.2 and thus achieves lower macro F1 of 14.6 and micro
F1 of 59.7. One potential exploration is to change MSMN
into more recent ICD coding works like PLM-ICD (Huang,
Tsai, and Chen 2022) which shows higher micro.

Our GPg4p is pretrained on 3.6 million proprietary clinical
notes under SOAP format. We cannot pretrain on publicly
available dataset mimic, because mimic discharge summary
contains less than 1,000 notes under SOAP format, and thus
is not suitable for pretraining. GP is an autoregressive gen-
eration method, and hence, slow as it generates one token
at a time. In ICD coding task, our generative fine-tuning is
about 24 times slower than the non-autoregressive standard
fine-tuning.

7 Conclusions

In this paper, we investigate a pretrained clinical language
model on ICD coding task for both full and rare codes.
Adapted from recent advances in autoregressive entity link-
ing, our SOAP pretrained autoregressive model achieves a
competitive performance over SOTA systems in rare ICD
coding task. This autoregressive model also preserves the
order of the code. In contrast, previous auto ICD coding
models neglect this potential error source but are actually
common in the real world. (O’malley et al. 2005). We fur-
ther propose a cross-attention reranker to combine best pre-
diction from common ICD coding task and rare ICD coding
task. Experiments show that our reranker model significantly
outperforms the previous SOTA model on full ICD coding
task. Our reranker can be easily plugged-in to rerank predic-
tions generated from any model.
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