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Abstract

Drug-drug interactions (DDIs) could lead to various unex-
pected adverse consequences, so-called DDI events. Predict-
ing DDI events can reduce the potential risk of combinato-
rial therapy and improve the safety of medication use, and
has attracted much attention in the deep learning community.
Recently, graph neural network (GNN)-based models have
aroused broad interest and achieved satisfactory results in the
DDI event prediction. Most existing GNN-based models ig-
nore either drug structural information or drug interactive in-
formation, but both aspects of information are important for
DDI event prediction. Furthermore, accurately predicting rare
DDI events is hindered by their inadequate labeled instances.
In this paper, we propose a new method, Multi-Relational
Contrastive learning Graph Neural Network, MRCGNN for
brevity, to predict DDI events. Specifically, MRCGNN inte-
grates the two aspects of information by deploying a GNN on
the multi-relational DDI event graph attributed with the drug
features extracted from drug molecular graphs. Moreover, we
implement a multi-relational contrastive learning with a de-
signed dual-view negative counterpart augmentation strategy,
to capture implicit information about rare DDI events. Exten-
sive experiments on two datasets show that MRCGNN out-
performs the state-of-the-art methods. Besides, we observe
that MRCGNN achieves satisfactory performance when pre-
dicting rare DDI events.

Introduction

The combinatorial therapy with a concurrent use of multi-
ple drugs is a promising strategy to treat patients with com-
plicated diseases (Bansal et al. 2014). However, drug-drug
interactions (DDIs) could bring about unexpected adverse
consequences such as the reduction in efficacy or the in-
creased toxicity of the drugs, and thus incur injuries and
huge medical costs (Vilar et al. 2014; Lyu et al. 2021). Iden-
tifying DDIs has been deeply concerned in public health se-
curity and medicine safety surveillance.

In the past decade, plenty of computational prediction
methods have been widely developed for a binary prediction
task that determines whether interactions exist in pairwise
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drugs or not (Kastrin, Ferk, and Leskosek 2018; Zhang et al.
2019). In reality, DDIs lead to different types of biological
consequences, so-called DDI events. Compared to the bi-
nary DDI prediction, predicting the event types of DDIs (we
called predicting DDI events in following text for simplic-
ity) is more helpful for investigating the mechanism hid-
den behind the consequences of polypharmacy. However,
the binary prediction methods can hardly be generalized
to multi-type DDI event prediction without a loss of accu-
racy. Recently, researchers have paid more attention to DDI
event prediction and developed a number of specialized deep
learning-based prediction methods. For example, Ryu, Kim,
and Lee (2018) and Deng et al. (2020) utilized one or mul-
tiple drug biochemical features to build DNN models; Jin
et al. (2017) formulated the DDI event data as tensors, and
built the tensor factorization-based model; Lin et al. (2021)
integrated multi-source data and drug features to build the
transformer-based model.

Recent years have witnessed the strong power of graph
neural networks (GNNs) in graph representation learning.
GNNs have also been utilized for DDI event prediction
in two implementation ways. Some works applied GNNs
to learn drug structural information from drug molecular
graphs with atoms as nodes and bonds as edges (Nyam-
abo, Yu, and Shi 2021; Nyamabo et al. 2021), and others
are devoted to learning drug interactive information from
drug association graphs that represent relationships among
biological entities including drugs (Ma et al. 2018; Zitnik,
Agrawal, and Leskovec 2018; Yu et al. 2021; Lyu et al.
2021). Although these methods have achieved satisfactory
results, most of them consider either structural information
or interactive information. Moreover, there exist some DDI
events with a extremely low occurrence, called rare events.
Since rare events involve exceedingly inadequate labeled in-
stances that fail to provide sufficient supervisory signals, it
remains challenging for most models to predict rare DDI
events.

To alleviate the above limitations, we propose a novel
DDI event prediction method, named MRCGNN (Multi-
Relational Contrastive learning Graph Neural Network). In
order to integrate drug structural information and drug in-
teractive information, we apply R-GCN (Schlichtkrull et al.
2018) on the multi-relational DDI event graph attributed



with the drug features extracted from drug molecular graphs,
which is inspired by (Wang et al. 2020, 2021). Moreover, we
consider contrastive learning over the DDI event graph to
handle the challenge of predicting rare DDI events. Despite
many advances in graph contrastive learning, there are still
few studies on deploying contrastive learning over multi-
relational graphs like the DDI event graph. For this work, we
enable the multi-relational contrastive learning with a dual-
view negative counterpart augmentation strategy under the
mutual information maximization scheme (Velickovic et al.
2019), in which node features and edge relations are ran-
domly shuffled in the DDI event graph respectively to form
two views of negative counterparts.

In summary, the main contributions of this paper are de-
scribed as follows:

* We integrate drug structural information from the drug
molecular graphs and drug interactive information from
the DDI event graph hierarchically to improve the DDI
event prediction.

* We enable the multi-relational contrastive learning on
the DDI event graph with a dual-view negative counter-
part augmentation strategy, to capture implicit informa-
tion about rare events.

» Extensive experiments on two datasets show that the pro-
posed MRCGNN outperforms state-of-the-art baselines,
and more importantly enhances the performance in pre-
dicting rare DDI events.

Related Work
Graph Neural Networks for DDI Event Prediction

In the DDI event prediction, GNNs are targeted at drug fea-
ture learning from two types of graph structure data: drug
molecular graphs and drug association graphs.

A line of works apply GNNs to generate drug features
by learning drug chemical structures from drug molecular
graphs with atoms as nodes and bonds as edges. SSI-DDI
(Nyamabo, Yu, and Shi 2021) employs the graph attention
network (GAT) (Velickovic et al. 2018) on drug molecu-
lar graphs and integrated different combinations of mul-
tiple GAT layers from a pair of drugs by a co-attention
mechanism to obtain prediction of the drug pair. Nyam-
abo et al. (2021) proposed a novel gated message passing
neural network for drug feature extraction. MUFFIN (Chen
et al. 2021) obtains two types of drug features from GNN on
drug molecular graphs and KG embeddings, and develops
a multi-scale fusion model to integrate the drug features for
DDI event prediction. These models only take DDI events as
supervised labels, but overlook rich interactive information
in DDI event data.

The other line of works employ GNNs to extract drug
features from drug association graphs, which represent the
relationship among biological entities including drugs. The
model in (Ma et al. 2018) learns multiple drug-drug similar-
ity graphs through attentive multi-view graph auto-encoders
with graph convolutional networks (Kipf and Welling 2017)
as the backbones. Zitnik, Agrawal, and Leskovec (2018)
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developed a graph convolutional neural network for multi-
relational link prediction in a multi-modal graph which con-
tains interactions among drugs and target proteins. Feeney
et al. (2021) considered an extension of the R-GCN on
drug association graphs to model the importance of rela-
tion types for neighborhood sampling. Yu et al. (2021) and
Lyu et al. (2021) built GNNs on drug association knowl-
edge graphs (KGs) to extract knowledge-enriched drug fea-
tures for predicting DDI events. However, in these drug as-
sociation graphs, GNNs could not provide sufficiently high-
quality representations for those drugs with relatively weak
links to their neighbors, and thus it will influence the perfor-
mances of prediction models on the rare events.

Different from above methods, we integrate both aspects
of information from drug molecular graphs and the DDI
event graph hierarchically to predict DDI events.

Contrastive Learning on Graphs

Contrastive learning is a kind of self-supervised learning
paradigm that allows models to learn meaningful knowledge
from pseudo labels generated from data themselves. Recent
advances in graph contrastive learning, such as maximizing
mutual information between local representations and global
representation (Velickovic et al. 2019), have achieved the
state-of-the-art results in unsupervised graph representation
learning. Most graph contrastive learning methods are built
on the underlying graphs, and few studies focus on multi-
relational graphs. Generally, it is pivotal to construct pos-
itive and negative sample pairs in graph contrastive learn-
ing, which is commonly implemented by graph augmenta-
tion strategies, including but not limited to global-view aug-
mentation by corrupting graph structure or shuffling initial
node features (You et al. 2020) and local-view augmentation
by subgraph sampling (Qiu et al. 2020; Hassani and Khasah-
madi 2020). Here, we design a dual-view negative counter-
part augmentation strategy with a modification on (Velick-
ovic et al. 2019), in which two views of negative counter-
parts of DDI event graph are generated by shuffling edge
relations and node features.

Method

In this section, we first formulate the DDI event prediction
problem. After that, we elaborately enumerate all compo-
nents of the proposed method MRCGNN that is shown in
Figure 1. At last, we provide an exposition of model train-
ing.

Problem Formulation

DDI event data can be formulated as a multi-relational DDI
event graph G = (V, &, R), where V is the set of nodes rep-
resenting drugs, R is the set of relations representing event
types, and £ is the set of relational edges among drugs rep-
resenting DDI events. Each node v in V can be viewed as a
drug molecular graph, which is denoted as M, with atoms
as nodes and bonds as edges. Based on G and { M, },ev,
our goal is to learn a model which predicts the specific DDI
event of each drug pair.
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Figure 1: Overview of the proposed MRCGNN.

Drug Molecular Learning

For each drug molecular graph M,,, we utilize TrimNet (Li
et al. 2020), an advanced variant of the generic message
passing neural network (Gilmer et al. 2017), to extract drug
feature. TrimNet operates in two phases: a message passing
phase and a readout phase.

More specifically, the message passing phase includes T’
(®

iterations. In each iteration ¢, hidden state s;’ associated
with each atom ¢ of M, is updated by:
(t+1) _ (t) (t+1)
5; =Ul(s; 723‘@\& ij )
m{ = M(s{”, sl ef}). (1)
(t+1)

Note that N; represents the neighbors of atom i, m;;
is the message from atom j to 1, el(-;) denotes the hidden
state of the edge between 7 and j, and the update function
U, a gated recurrent unit (Chung et al. 2014) followed by
a layer normalization, aggregates neighborhood messages.
The message function M is defined by a multi-head atten-
tion mechanism:

K _k k E
M(si, ), €i5) = |[k=107; © Wis; © W ey
T
a;; = Softmax(o(u” [Wys;||Wee;;||Wss; ), (2)
where || represents vector concatenation operation, © is the
element-wise product, o is the LeakyReLU nonlinear func-
tion, oy is a scalar measuring attention, and the vector u as

well as all feature transformation matrices W and W, are
learnable parameters.
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In the readout phase, TrimNet summarizes all atom em-
beddings after the former phase into a drug feature, denoted
as x,, by using a readout function named Set2Set (Vinyals,
Bengio, and Kudlur 2016). Thereafter, we obtain drug fea-
tures X € RIVIXF,

Drug-drug Interaction Event Graph Learning

Due to the simplicity yet considerable effectiveness
of the relational graph convolutional network (R-GCN)
(Schlichtkrull et al. 2018) in modeling multi-relational
graphs, we employ an R-GCN encoder to learn represen-
tations of drugs from the DDI event graph G with the drug
features X as node attributes. Concretely, at the {-th layer of

R-GCN, the intermediate embedding th) of each drug v is
updated by:

W+ =0 [ 3050 LwOn® - wihnd |, )
reRueNy Cor

where o(-) denotes an activation function, such as ReLU,
N denotes the set of neighbor nodes of v under relation
r € R, cyr is a problem-specific normalization constant
that can either be learned or chosen in advance (such as
Cor = [NTD, hE,O) = x, and Wﬁl) and Wf,l) denote train-
able weight matrices. Considering that the embeddings at
different layers of R-GCN contain interactive information of
different levels from the DDI event graph, we utilize a layer-



attention mechanism to combine these embeddings and ob-
tain the final representation of each drug v:

L
hU = Z alhq()l)a
=1

where ¢ is a trainable parameter as the adaptive contribu-
tion of the [-th layer embedding to the final drug represen-
tation h,, € R?. We denote the representations for all drugs
as H € RIVIX€Q,

“

Multi-Relational Contrastive Learning

Constructing positive and negative sample pairs by data aug-
mentation is commonly crucial for contrastive learning. DGI
(Velickovic et al. 2019) treats the ‘fake’ graphs generated
by corrupting the original graph as negative counterparts,
and provides several optional corruption operations such as
shuffling initial node features and dropping some edges. Dif-
ferent from DGI that focuses on underlying graphs, for the
multi-relational DDI event graph G = (V,&,R), we de-
sign a dual-view negative counterpart augmentation strategy
that creates two views of corrupted graphs respectively by
shuffling nodes features and shuffling edge relations. Then,
we implement the multi-relational contrastive learning on
G under the local-global mutual information maximization
scheme (Velickovic et al. 2019).

In detail, we corrupt G to obtain two views of corrupted
graphs G, and G, by: C,, : G = V,E,R) — G,
(V,&,R) that shuffles the drug features X, and C, : G =
WV, E,R) — G, = (V,&,R) that shuffles the edge rela-
tions. We employ the shared R-GCN encoder on G,, and G,.,
and obtain the corresponding ’fake’ drug representations H"
and H". Given the original drug representations H, we use
a readout function T to get global representation g € R?
formulated by g = I'(H). Then, the training objective of
contrastive learning is to maximize the consistency between
H and g, and the difference between H"/H" and g, which
can be formulated as the following loss functions:

1
by = ———= Ev.er)llogD(h,, g)]
V| + V| (Zv
+ 3 Epenllog(l - D(, g))]
uEfJ
1
by = — 5 E log D(h,,,
V| + V| (g} (v.&,»)[log D(hy, g)]

+ Z E(V,S,ﬁ) UOg(l - D(fl;, g))]) ) (5)

uey

where D(h,,g) = c(hIWg) and W is a trainable param-
eter matrix.

DDI Event Prediction

For each drug pair (u,v), we now have their features x,,
and x,, and their final representations h, and h,. Then,
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we concatenate them to form the drug pair representation
he, .y = hy|[xu||/hy|x,. After that, h, ) is fed into a
Multi-Layer Perceptron (MLP) followed by a Softmax func-
tion to get the multi-class prediction of the drug pair:

y(%’“) = Softmax(MLP(h(u,U))), (6)

where $(,,,,) € RIRI. The training objective of DDI event
prediction is to minimize the loss function:

= D D Vw108 T

(u,w)EQTER

Le

(7

where € is the training set, gj(ru ) indicates the predicted

probability that the drug pair (u, v) belongs to relation type
r and y(rum) is the corresponding true label.

Model Training

For training our model MRCGNN, we optimize the total loss
that combines Eq.(5) and Eq.(7):

C="Le+al, + By, ®)

where « and 3 are hyper-parameters which balance the con-
tributions of different tasks.

Experiments

In this section, we first introduce the experimental settings,
and then compare our model MRCGNN with baselines on
DDI event prediction, prediction for rare DDI events and
representation visualization. After that, we investigate the
effectiveness of each component and conduct the hyper-
parameter sensitivity analysis in our model. Besides, we also
conduct a case study which can be found in the Appendix.C.

Experimental Settings

Datasets. We evaluate our method MRCGNN on two
datasets: (1) Deng’s dataset (Deng et al. 2020) contains a to-
tal of 37,264 DDIs between 570 drugs with 65 types of DDI
events. (2) Ryu’s dataset (Ryu, Kim, and Lee 2018) contains
a total of 191,570 DDIs between 1,700 drugs with 86 types
of DDI events. Specifically, we count the number of DDI
instances involving each DDI event, called event frequency,
and then we classify DDI events into five groups based on
their frequencies. Table 1 lists the proportion of events in
each group to all events. It is worth mentioning that there are
a number of events with extremely limited labeled instances,
as indicated by the group [1,10]. In our subsequent experi-
ments, we take the events in the group [1,10] as rare events,
and we evaluate the performances of prediction models on
all the events and the rare events.

Five groups

Datasets

[1,10] (10,50] (50,100] (100,300] (300,+00)
Deng’s 20.0% 21.5% 24.6% 15.4% 18.5%
Ryu’s 5.8% 21.0% 11.6% 14.0% 47.6%

Table 1: Proportions of events in five groups to all events.



Deng’s dataset

Ryu’s dataset

Methods
Acc. Macro-F1 Macro-Rec. Macro-Pre. Acc. Macro-F1 Macro-Rec. Macro-Pre.

DeepDDI 0.7807 0.6055 0.5839 0.6611 0.9323 0.8643 0.8512 0.8928
SSI-DDI 0.7866 0.4216 0.3896 0.5139 0.9008 0.6663 0.6287 0.7507
TrimNet-DDI 0.8570 0.6548 0.6363 0.7046 0.9353 0.8288 0.8128 0.8627
MUFFIN 0.8269 0.5245 0.4844 0.6204 0.9510 0.8566 0.8339 0.8980
R-GCN 0.8695 0.7026 0.6878 0.7500 0.9284 0.8487 0.8291 0.8881
GoGNN 0.8766 0.6938 0.6841 0.7316 0.9424 0.8589 0.8451 0.8949
MRCGNN 0.8979 0.7791 0.7688 0.8101 0.9567 0.8894 0.8727 0.9221

Table 2: Results of MRCGNN and baselines for DDI event prediction on two datasets.

Baselines. We compare our model with several baselines,
which can be categorized as follows.

* DeepDDI (Ryu, Kim, and Lee 2018) is the first event
prediction method, which uses drug structural similarity
as input and builds a deep neural network to predict the
interaction types of drug pairs.

e SSI-DDI (Nyamabo, Yu, and Shi 2021) employs a GAT
on drug molecular graphs, and combines embeddings
from multiple GAT layers with a co-attention mechanism
to obtain the predictions of drug pairs .

* TrimNet-DDI learns drug features from drug molecular
graphs through a TrimNet (Li et al. 2020), and feeds the
concatenated features of two drugs into a MLP to yield
the prediction of the drug pair.

e MUFFIN (Chen et al. 2021) is a multi-scale feature
fusion deep learning model for DDI event prediction,
which fuses the drug features learned from molecular
graphs and the pre-trained KG embeddings.

¢ R-GCN (Schlichtkrull et al. 2018) is the classic GNN de-
signed for multi-relational graphs. We directly employ
R-GCN on the DDI event graph to learn drug representa-
tions, and then feed the concatenated representations of
drug pairs into a MLP to predict DDI events. ’

* GoGNN (Wang et al. 2020) models molecular interaction
network as an interaction graph of molecular graphs. It
adopts GNNSs to learn graph-level representations which
are then updated by another GNN deployed on the inter-
action graph for molecular interaction prediction.

Implementation details. For model evaluation, we split
DDIs in each dataset into training, validation and test sets
with a 7:1:2 ratio, and ensure that training/validation/test
sets contain DDIs from all types. Since predicting DDI
events is a multi-class classification task, we adopt several
evaluation metrics, including Accuracy, Macro-F1, Macro-
Recall and Macro-Precision under a multi-class setting. For
training our model, we set learning rate [r = 0.001 and the
coefficients « = 0.1 and 8 = 0.05, and the best perform-
ing models based on the Accuracy and Macro-F1 on the
validation set with a maximum epoch of 100 are selected
for model testing on test set. For each model, we conduct
five independent runs with different data splits, and the av-
erage metrics of these five independent runs are adopted as
the final results. All experiments are conducted on the same
machine with Intel(R)Core(TM)i9-7900X CPU @ 3.30GHz
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Figure 2: Results of MRCGNN and baselines on five groups
of events.

and 2 GPUs(NVIDIA GeForce 1080Ti). More details of our
model configuration can be found in the Appendix.A. Our
code, data and appendix are publicly available'.

Comparison with Baselines

Table 2 shows the performances of MRCGNN and the base-
lines on the two datasets, where the best results are bold. Ac-
cording to the results shown in Table 2, MRCGNN acquires
the best performance on both datasets. We also have the fol-
lowing observations: (1) Compared with SSI-DDI, TrimNet-
DDI and MUFFIN that only consider drug structural infor-
mation, MRCGNN makes improvements of 14.15%, 4.77%
and 8.59% on Deng’s datasets, as well as 6.19%, 2.28% and
0.59% on Ryu’s dataset in terms of Accuracy, which indi-
cates that drug interactive information benefits DDI event
prediction. (2) Compared with DeepDDI and R-GCN that
only considered drug interactive information, MRCGNN
surpasses them by 15.01% and 3.27% on Deng’s datasets,
and 2.61% and 3.04% on Ryu’s dataset in terms of Accu-
racy, which implies that considering information from drug
molecular graph is also beneficial to DDI event prediction.
(3) Among all baselines, GOGNN exhibits better perfor-
mance than most others, implying the advantage of inte-
grating both aspects of information from drug molecular
graphs and the DDI event graph. Our model MRCGNN still
makes improvements of 2.4% on Deng’s datasets and 1.5%
on Ryu’s dataset in terms of Accuracy over GoOGNN. It may
be attributed to the reason that MRCGNN can not only effec-
tively integrate drug structural information and drug interac-

"https://github.com/Zhankun-Xiong/MRCGNN
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Figure 3: Visualization on Deng’s dataset using the t-SNE. Each point represents a drug pair, and the color represents the DDI
event. Upper: 20 events with the lowest frequency. Lower: 5 events with the highest frequency.

tive information as GoGNN does, but also capture implicit
information behind the multi-relational DDI event graph by
the multi-relational contrastive learning.

To further compare MRCGNN with baselines, we inves-
tigate their Macro-F1 scores on the five DDI event groups
listed in Table 1, and especially focus on their performances
on rare events. To verify the effectiveness of multi-relational
contrastive learning in predicting rare DDI events, we ex-
tra include a variant of MRCGNN here, named MRCGNN-
MRC, which removes the multi-relational contrastive learn-
ing from MRCGNN. As shown in Figure 2, the perfor-
mances of all models prominently decline with decreasing
event frequencies, and MRCGNN outperforms all baselines
on each group of DDI events, especially on rare events
with a significant improvement, which demonstrates that
MRCGNN has considerable advantages in predicting rare
DDI events. In addition, we also have the following ob-
servations: (1) SSI-DDI, TrimNet-DDI and MUFFIN that
only use drug structural information achieve relatively un-
satisfactory performances on rare event group, likely due
to the ignorance of drug interactive information. (2) Com-
pared to DeepDDI and R-GCN that only take in drug in-
teractive information, MRCGNN-MRC has better perfor-
mance, which suggests that integrating drug structural infor-
mation and drug interactive information can effectively en-
hance the prediction for rare DDI events. (3) The superiority
of MRCGNN over GoGNN and MRCGNN-MRC illustrates
the multi-relational contrastive learning can further help the
prediction for rare DDI events. To sum up, integrating two
aspects of information and considering contrastive learning
both contribute to the best performance of our model MR-
CGNN.

To better understand the superiority of MRCGNN over
baselines, we use t-SNE (Laurens and Hinton 2008) to vi-
sualize drug pair representations. Since there are dozens
of DDI event types, we choose 20 events with the low-
est frequency and 5 events with the highest frequency for
visualization. Figure 3 shows the visualization on Deng’s
dataset (the illustration on Ryu’s dataset can be found in the
Appendix.B). We clearly observe that drug pairs are more
tightly clustered in MRCGNN compared with baselines (the
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silhouette coefficients of MRCGNN and baselines can be
found in our Appendix.B), which implies that MRCGNN
can learn more high-quality representations for drug pairs by
effectively integrating drug structural information from drug
molecular graphs and drug interactive information from the
DDI event graph. It is worth noting that more compact clus-
ters in MRCGNN on 20 events with the lowest frequency
(see the upper part in Figure 3) can well illustrate the excel-
lent ability of MRCGNN on rare DDI event prediction.

Ablation Study

To investigate the importance of various components to our
model, we consider the following variants of MRCGNN:

MRCGNN without the DDI event graph learning (w/o
DEG) removes multi-relational DDI event graph learning
and directly uses drug features learned from drug molec-
ular for prediction.

MRCGNN without drug molecular learning (w/o DM)
removes drug molecular learning and replaces drug fea-
tures with randomly generated drug features.

MRCGNN without multi-relational contrastive learn-
ing (w/o MRC) removes the multi-relational contrastive
learning from MRCGNN.

MRCGNN without shuffling node features (w/o SNF) re-
moves the view of the corrupted graph generated by shuf-
fling node features in DDI event graph.

MRCGNN without shuffling edge relations (w/o SER) re-
moves the view of the corrupted graph generated by shuf-
fling edge relations in DDI event graph.

As shown in Figure 4 (F1, Precision, Recall are also
macro-averaged), all variants of MRCGNN produce the de-
creased performances, verifying that all components can
contribute to DDI event prediction. Besides, we have the
following observations: (1) MRCGNN(w/o MRC) outper-
forms the MRCGNN(w/o DEG) and MRCGNN(w/o DM),
which demonstrates that integrating drug structural infor-
mation and drug interactive information is helpful for DDI
event prediction. Note that MRCGNN(w/o DEG) has more
decreased performance than MRCGNN(w/o DM), which
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Figure 4: Results of MRCGNN and its variants in ablation
study.

indicates drug interactive information is more pivotal for
DDI event prediction than drug structural information. (2)
The comparison of MRCGNN and MRCGNN(w/o MRC)
reveals the capability of the multi-relational contrastive
learning mining implicit information from DDI event data.
(3) MRCGNN outperforms MRCGNN(w/o SNF) and MR-
CGNN(w/o SER), which demonstrates the effectiveness
of our designed dual-view negative counterpart augmenta-
tion strategy on the DDI event graph. (4) MRCGNN(w/o
SNF) performs better than MRCGNN(w/o SER) on Deng’s
dataset, while the results are reversed on Ryu’s dataset. Note
that the proportion of rare DDI events on Deng’s dataset is
higher than that on Ryu’s dataset. The reason of this observa-
tion may be that the corrupted graph generated by shuffling
edge relations enhances multi-relational constrastive learn-
ing in mining implicit information of rare events.

Hyper-parameter Sensitivity Analysis

In this section, we conduct hyper-parameter sensitivity anal-
ysis on Deng’s dataset to study the influence of several
hyper-parameters on the performance of MRCGNN. We
choose the learning rate Ir and the coefficients o and g in
Eq.(8) for hyper-parameter sensitivity analysis here.

Effect of learning rate /7. We conduct experiments by
varying the learning rate Ir to be 0.0005, 0.001, 0.0015,
0.002 and 0.0025. Results in Figure 5 show that MRCGNN
achieves the best results when [r=0.001 and suffers from de-
grading performance after that. As a result, we set 0.001 as
default learning rate.

Effect of the coefficients o and 5. We vary the coeffi-
cients o and 3 in Eq.(8), to investigate the contribution of
different contrastive learning tasks. In particular, the coeffi-
cients « and f3 are searched in the range of {0.05, 0.10, 0.15,
0.20, 0.25}, and MRCGNN achieves the best performance
when o = 0.10 and 8 = 0.05. We summarize the results
in Figure 5 (the hyper-parameter sensitivity analysis of «
and 3 on Macro-F1, Macro-recall and Macro-precision are
provided in the Appendix), and have the following observa-
tions: (1) Larger values of « and 8 will lead to degradation of
model performance, because the high weight of the contrast
learning task will make the model pay too much attention to
the contrastive learning task during model training, and thus
make the model poorly fit the DDI event prediction task. (2)
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Figure 5: Hyper-parameter sensitivity analysis

« is greater than S when MRCGNN achieves the best per-
formance, which demonstrates that the corrupted graph gen-
erated by shuffling edge relations may be more important for
the multi-relational contrastive learning on Deng’s dataset.

Conclusion

In this paper, we propose a multi-relational contrastive
learning graph neural network (MRCGNN) to predict DDI
events. MRCGNN hierarchically integrates the drug struc-
tural information from drug molecular graphs and the drug
interactive information from the DDI event graph. To enable
the multi-relational contrastive learning on the DDI event
graph, we design a dual-view negative counterpart augmen-
tation strategy, to capture implicit information about rare
events and improve the prediction for rare events. The exper-
imental results on the two benchmark datasets show the su-
perior performances of MRCGNN over baselines, and MR-
CGNN can achieves satisfactory performance when predict-
ing rare DDI events.

In the future work, we have several directions to improve
DDI event prediction, such as incorporating more relevant
entities and relations into DDI event graphs, providing in-
terpretable DDI event prediction models and modeling 3D
structural information of drugs with geometrically equivari-
ant graph neural networks.
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