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Abstract

Molecular dynamics (MD) has long been the de facto choice
for simulating complex atomistic systems from first princi-
ples. Recently deep learning models become a popular way to
accelerate MD. Notwithstanding, existing models depend on
intermediate variables such as the potential energy or force
fields to update atomic positions, which requires additional
computations to perform back-propagation. To waive this re-
quirement, we propose a novel model called DIFFMD by di-
rectly estimating the gradient of the log density of molecular
conformations. DIFFMD relies on a score-based denoising
diffusion generative model that perturbs the molecular struc-
ture with a conditional noise depending on atomic accelera-
tions and treats conformations at previous timeframes as the
prior distribution for sampling. Another challenge of model-
ing such a conformation generation process is that a molecule
is kinetic instead of static, which no prior works have strictly
studied. To solve this challenge, we propose an equivariant
geometric Transformer as the score function in the diffusion
process to calculate corresponding gradients. It incorporates
the directions and velocities of atomic motions via 3D spher-
ical Fourier-Bessel representations. With multiple architec-
tural improvements, we outperform state-of-the-art baselines
on MD17 and isomers of C7O2H10 datasets. This work con-
tributes to accelerating material and drug discovery.

Introductions
Molecular dynamics (MD), an in silico tool that simulates
complex atomic systems based on first principles, has ex-
erted dramatic impacts in scientific research. Instead of
yielding an average structure by experimental approaches
including X-ray crystallography and cryo-EM, MD simu-
lations can capture the sequential behavior of molecules in
full atomic details at the very fine temporal resolution, and
thus allow researchers to quantify how much various re-
gions of the molecule move at equilibrium and what types of
structural fluctuations they undergo. In the areas of molec-
ular biology and drug discovery, the most basic and intu-
itive application of MD is to assess the mobility or flexibil-
ity of various regions of a molecule. MD substantially ac-
celerates the studies to observe the biomolecular processes
in action, particularly important functional processes such
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as ligand binding (Shan et al. 2011), ligand- or voltage-
induced conformational change (Dror et al. 2011), protein
folding (Lindorff-Larsen et al. 2011), or membrane trans-
port (Suomivuori et al. 2017).

Nevertheless, the computational cost of MD generally
scales cubically with respect to the number of electronic
degrees of freedom. Besides, important biomolecular pro-
cesses like conformational change often take place on
timescales longer than those accessible by classical all-
atom MD simulations. Although a wide variety of enhanced
sampling techniques have been proposed to capture longer-
timescale events (Schwantes, McGibbon, and Pande 2014),
none of them is a panacea for timescale limitations and
might additionally cause decreased accuracy. Thus, it is an
urgent demand to fundamentally boost the efficiency of MD
while keeping accuracy.

Recently, deep learning-based MD (DLMD) models pro-
vide a new paradigm to meet the pressing demand. The
accuracy of those models stems from not only the dis-
tinctive ability of neural networks to approximate high-
dimensional functions but the proper treatment of physi-
cal requirements like symmetry constraints and the con-
current learning scheme that generates a compact train-
ing dataset (Jia et al. 2020). Despite their success, current
DLMD models primarily suffer from the following three is-
sues. First, most DLMD models still rely on intermediate
variables (e.g., the potential energy) and multiple stages to
generate subsequent biomolecular conformations. This sub-
stantially raises the computational expenditure and hinders
the inference efficiency, since the inverse Hessian scales
as cubically with the number of atom coordinates (Cran-
mer et al. 2020). Second, existing DLMD models regard
the DL module as a black-box to predict atomic attributes
and never inosculate the neural architecture with the theory
of thermodynamics. Last but not least, the majority of pre-
vailing geometric methods (Gilmer et al. 2017; Schütt et al.
2018; Klicpera, Groß, and Günnemann 2020) are designed
for immobile molecules and not suitable for dynamic sys-
tems where the directions and velocities of atomic motions
count.

This paper proposes DIFFMD that aims to address the
above-mentioned issues. First, DIFFMD is a one-stage pro-
cedure and forecasts the simulation trajectories without any
dependency on the potential energy or forces. For the sec-
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ond issue, inspired by the consistency of diffusion processes
in nonequilibrium thermodynamics and probabilistic gener-
ative models (Sohl-Dickstein et al. 2015; Song and Ermon
2019), DIFFMD adopts a score-based denoising diffusion
generative model (Song et al. 2020b) with the exploration of
various stochastic differential equations (SDEs). It sequen-
tially corrupts training data by slowly increasing noise and
then learns to reverse this corruption. This generative pro-
cess highly accords with the enhanced sampling mechanism
in MD (Miao, Feher, and McCammon 2015), where a boost
potential is added conditionally to smooth biomolecular po-
tential energy surface and decrease energy barriers. Besides,
to make geometric models aware of atom mobility, we pro-
pose an equivariant geometric Transformer (EGT) as the
score function for our DIFFMD. It refines the self-attention
mechanism (Vaswani et al. 2017) with 3D spherical Fourier-
Bessel representations to incorporate both the intersection
and dihedral angles between each pair of atoms and their
associated velocities.

We conduct comprehensive experiments on multiple stan-
dard MD simulation datasets including MD17 and C7O2H10

isomers. Numerical results demonstrate that DIFFMD con-
stantly outperforms state-of-the-art DLMD models by a
large margin. The significantly superior performance illus-
trates the high capability of our DIFFMD to accurately pro-
duce MD trajectories for microscopic systems.

Preliminaries
Background
We consider an MD trajectory of a molecule with T time-
frames.M(t) =

(
x(t),h(t),v(t)

)
denotes the conformation

x(t) at time t ∈ [T ] and is assumed to have N atoms. There
x(t) ∈ RN×3 and h(t) ∈ RN×ψh denote the 3D coordi-
nates and ψh-dimension roto-translational invariant features
(e.g. atom types) associated with each atom, respectively.
v(t) ∈ RN×3 corresponds to the atomic velocities. We de-
note a vector norm by x = ∥x∥2, its direction by x̂ = x/x,
and the relative position by xij = xi − xj .

Molecular Dynamics
MD with classical potentials. The fundamental idea be-
hind MD simulations is to study the time-dependent behav-
ior of a microscopic system. It generates the atomic trajec-
tories for a specific interatomic potential with certain ini-
tial conditions and boundary conditions. This is obtained by
solving the first-order differential equation of the Newton’s
second law:

F
(t)
i = mia

(t)
i = −

∂U
(
x(t)

)
∂x

(t)
i

, (1)

where F
(t)
i is the net force acting on the i-th atom of the

system at a given point in the t-th timeframe, a(t)
i is the cor-

responding acceleration, and mi is the mass. U (x) is the
potential energy function. The classic force field (FF) de-
fines the potential energy function in Appendix. Then nu-
merical methods are utilized to advance the trajectory over

small time increments ∆t with the assistance of some inte-
grator (see more introductions to MD in Appendix).

Enhanced sampling in MD. Enhanced sampling meth-
ods have been developed to accelerate MD and retrieve use-
ful thermodynamic and kinetic data (Rocchia, Masetti, and
Cavalli 2012). These methods exploit the fact that the free
energy is a state function; thus, differences in free energy
are independent of the path between states (De Vivo et al.
2016). Several techniques such as free-energy perturbation,
umbrella sampling, tempering, and metadynamics are in-
vented to reduce the energy barrier and smooth the potential
energy surface (Luo et al. 2020; Liao 2020).

Score-based Generative Model
Score-based generative models (Song et al. 2020b) refer to
the score matching with Langevin dynamics (Song and Er-
mon 2019) and the denoising diffusion probabilistic mod-
eling (Sohl-Dickstein et al. 2015) .They have shown effec-
tiveness in the generation of images (Ho, Jain, and Abbeel
2020) and molecular conformations (Shi et al. 2021).

Diffusion process. Assume a diffusion process {x(s)}Ss=0
indexed by a continuous time variable s ∈ [0, S], such that
x(0) ∼ p0, for which we have a dataset of i.i.d. samples, and
x(S) ∼ pS , for which we have a tractable form to generate
samples efficiently. Let ps(x) be the probability density of
x(s), and p(x(s1) | x(s0)) be the transition kernel from
x(s0) to x(s1), where 0 ≤ s0 < s1 ≤ T . Then the diffusion
process is modeled as the solution to an Itô SDE (Song et al.
2020b):

dx = f(x, s)ds+ g(s)dw, (2)
where w is a standard Wiener process, f(·, s) : Rd → Rd is
a vector-valued function called the drift coefficient of x(s),
and g(·) : R→ R is a scalar function known as the diffusion
coefficient of x(s).

Reverse process. By starting from samples of x(S) ∼ pS
and reversing the diffusion process, we can obtain samples
x(0) ∼ p0. The reverse-time SDE can be acquired based on
the result from Anderson (1982) that the reverse of a diffu-
sion process is also a diffusion process as:

dx =
[
f(x, s)− g(s)2∇x log ps(x)

]
ds+ g(s)dw, (3)

where w is a standard Wiener process when time flows
backwards from S to 0, and ds is an infinitesimal negative
timeframe. The score of a distribution can be estimated by
training a score-based model on samples with score match-
ing (Song and Ermon 2019). To estimate ∇x log ps(x), one
can train a time-dependent score-based model sϑ(x, s) via
a continuous generalization to the denoising score matching
objective (Song et al. 2020b):

ϑ∗ = argmin
ϑ

Es
{
λ(s)Ex(0)Ex(s)|x(0)

[∥∥sϑ(x(s), s)
−∇x(s) log p0s(x(s) | x(0))

∥∥2
2

]}
.

(4)

Here λ : [0, S] → R+ is a positive weighting func-
tion, s is uniformly sampled over [0, T ], x(0) ∼ p0(x)
and x(s) ∼ p0s(x(s) | x(0)). With sufficient data and
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Figure 1: The overall procedure of our DIFFMD. Starting from the conformation of the last time step, atomic locations are
sequentially updated with the gradient information from the score network.

model capacity, score matching ensures that the optimal so-
lution to Eq. 4, denoted by sϑ∗(x, s), equals ∇x log ps(x)
for almost all x and s. We can typically choose λ ∝
1/E

[∥∥∇x(s) log p0s(x(s) | x(0))
∥∥2
2

]
(Song et al. 2020b).

DIFFMD
Model Overview
Most prior DLMD studies such as Zhang et al. (2018)
rely on the potential energy U as the intermediate variable
to acquire atomic forces and update positions, which de-
mands an additional backpropagation calculation and sig-
nificantly increases the computational costs. Some recent
work starts to abandon the two-stage manner and choose
the atom-level force F as the prediction target of deep net-
works (Park et al. 2021). However, they all rely on the in-
tegrator from external computational tools to renew the po-
sitions in accordance with pre-calculated energy or forces.
None embraces a straightforward paradigm to immediately
forecast the 3D coordinates in a microscopic system con-
currently based on previously available timeframes, i.e.,
p
(
x(t+1) |

{
M(i)

}t
i=0

)
. To bridge this gap, we seek to

generate trajectories without any transitional integrator.
Several MD simulation frameworks assume

the Markov property on biomolecular conforma-
tional dynamics (Chodera and Noé 2014; Malm-
strom et al. 2014) for ease of representation, i.e.,
p
(
x(t+1) |

{
M(i)

}t
i=0

)
= p

(
x(t+1) | M(t)

)
. We

also hold this assumption and aim to estimate the gradi-
ent field of the log density of atomic positions at each
timeframe, i.e. ∇x(t+1) log p

(
x(t+1)

)
. In this setting, we

design a score network based on the Transformer archi-
tecture to learn the scores of the position distribution, i.e.,
sϑ

(
M(t+1)

)
= ∇x(t+1) log p

(
x(t+1)

)
. During the infer-

ence period, we regard the conformation of the previous
frame Mt as the prior distribution, from which xt+1 is
sampled. Note that sϑ

(
M(t+1)

)
∈ RN , we formulate

it as a node regression problem. The whole procedure of

DIFFMD is depicted in Fig. 1.

Score-based Generative Models for MD
The motivation for our extending the denoising diffusion
models to MD simulations is their resemblance to the en-
hanced sampling mechanism. Inspired by non-equilibrium
statistical physics, these models first systematically and
slowly destroy structures in distribution through an itera-
tive forward diffusion process and then reverse it, similar
to the behavior of perturbing the free energy in the system
and striving to minimize the overall energy.

Perturbing data conditionally with SDEs. Our goal is to
construct a diffusion process

{
x(t+1)(s)

}S
s=0

indexed by a
continuous time variable s ∈ [0, S], such that x(t+1)(0) ∼
p0 and x(t+1)(S) ∼ pS . There, p0 and pS are the data distri-
bution and the prior distribution of atomic positions respec-
tively, as Equation 2.

How to incorporate noise remains critical to the success
of the generation, which ensures the resulting distribution
does not collapse to a low dimensional manifold (Song and
Ermon 2019). Conventionally, pS is an unstructured prior
distribution, such as a Gaussian distribution with fixed mean
and variance (Song et al. 2020b), which is uninformative
for p0. This construction of pS improves the sample vari-
ety for image generation (Brock, Donahue, and Simonyan
2018) but may not work well for MD. One reason is corrupt-
ing molecular conformations unconditionally would trigger
severe turbulence to the microscopic system; besides, it ig-
nores the fact that molecular conformations of neighboring
frames M(t) and M(t+1) are close to each other and their
divergence is dependent on the status of the former one.
Therefore, it is necessary to formulate pS with the prior
knowledge ofM(t).

To be explicit, the noise does not constantly grow along
with s, but depends on prior states. This strategy aligns with
the Gaussian accelerated MD (GaMD) mechanism (details
are in Appendix) and serve as a more practical way to in-
ject turbulence into p0. Driven by the foregoing analysis, we
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Figure 2: Solving a reverse-time SDE yields a score-based model to predict positions. The cycles indicate the atomic locations,
and the darkness represents the noise strengths.

introduce a conditional noise in compliance with the accel-
erations at prior frames and choose the following SDE:

dx(t+1) = σsa(t)dw, s ∈ [0, 1], (5)

where the noise term σs
a(t) is dynamically adjusted as:

σsa(t) = σsησ

(∥∥∥a(t−1)
∥∥∥2
2
− ā

)2

,
∥∥∥a(t−1)

∥∥∥2
2
< ā, (6)

here ησ is the harmonic acceleration constant and ā repre-
sents the acceleration threshold. Once the system has a slow
variation trend of motion (i.e., the systematical energy is
low), it will be supplied with a large level of noise and verse
vice. Thus, the conditional noise is inversely proportional to
a(t−1) and inherits the merits of enhanced sampling.

Generating samples through reversing the SDE. Fol-
lowing the reverse-time SDE (Anderson 1982), samples of
the next timeframe x(t+1) can be attained by reversing the
diffusion process as:

dx(t+1) = g(s)dw

+
[
f
(
x(t+1), s

)
− g(s)2∇x(t+1) log ps

(
x(t+1)

)]
ds.

(7)

Once the score of each marginal distribution,
∇x(t+1) log ps

(
x(t+1)

)
, is known for all s, we can

simulate the reverse diffusion process to sample from p0.
The workflow is summarized in Fig. 2.

Estimating scores for the SDE. Intuitively, the op-
timal parameters ϑ∗ of the conditional score network
sϑ

(
M̃(t+1)

)
can be trained directly by minimizing the fol-

lowing formula:

Es
{
λ(s)Ex(t+1)(0)Ex(t+1)(s)|x(t+1)(0)

[∥∥∥sϑ(M̃(t+1)(s), s
)

−∇x(t+1)(s) log p0s

(
x(t+1)(s) | x(t+1)(0)

)∥∥∥2
2

]}
.

(8)

Here x(t+1)(0) ∼ p0
(
x(t+1)

)
and x(t+1)(s) ∼

p0s
(
x(t+1)(s) | x(t+1)(0)

)
. M̃(t+1) stands for the dis-

turbed conformation with the noised geometric position
x̃(t+1). Notably, other score matching objectives, such

as sliced score matching (Song et al. 2020a) and finite-
difference score matching (Pang et al. 2020) can also be ap-
plied here rather than denoising score matching in Eq. 8.

In order to efficiently solve Eq. 8, it is required to know
the transition kernel p0s

(
x(t+1)(s) | x(t+1)(0)

)
. When

f (., s) is affine, this transition kernel is always a Gaussian
distribution, where its mean and variance are in closed forms
by means of standard techniques (Särkkä and Solin 2019):

p0s

(
x(t+1)(s) | x(t+1)(0)

)
=

N
(
x(t+1)(s);x(t+1)(0),

1

2 log σa(t)

(
σ2s
a(t) − 1

)
I

)
.

(9)

Equivariant Geometric Score Network
Equivariance is a ubiquitous symmetry, which complies with
the fact that physical laws hold regardless of the coordinate
system. It has shown efficacy to integrate such inductive
bias into model parameterization for modeling 3D geom-
etry (Köhler, Klein, and Noé 2020; Klicpera, Becker, and
Günnemann 2021). Hence, we consider building the score
network sϑ equivariant to rotation and translation transfor-
mations.

Existing equivariant models for molecular representations
are static rather than kinetic. In contrast, along MD trajecto-
ries each atom has a velocity and a corresponding orienta-
tion. To be specific, for some pair of atoms (a, b), they for-
mulate two intersecting planes (see Fig. 3) with respective
velocities

(
v
(t)
a ,v

(t)
b

)
. We denote the angles between ve-

locities and the connecting line of two atoms by φ(t)
vaab

=

∠v̂(t)
a x̂

(t)
vbba

and φ(t)
vbba

= ∠v̂(t)
b x̂

(t)
ba . We denote the dihedral

angle between two half-phases as θ(t)vaabvb
= ∠v̂(t)

a v̂
(t)
b ⊥

x̂
(t)
ab . These three angles contain pivotal geometric informa-

tion for predicting pairwise interactions as well as their fu-
ture positions. It is necessary to incorporate them into our
geometric modeling. Unfortunately, the directions and ve-
locities of atomic motion, uniquely owned by dynamic sys-
tems, are seldom concerned by prior models.

To this end, we draw inspiration from Equivariant Graph
Neural Networks (EGNN) (Satorras, Hoogeboom, and
Welling 2021), GemNet (Klicpera, Becker, and Günnemann
2021), and Molformer (Wu et al. 2021), and propose
an equivariant geometric Transformer (EGT) as sϑ. Our
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EGT is roto-translation equivariant and leverages direc-
tional information. The l-th equivariant geometric layer
(EGL) takes the set of atomic coordinates x(t),l, veloci-
ties v(t),l, and features h(t),l as input, and outputs a trans-
formation on x(t),l+1, v(t),l+1, and h(t),l+1. Concisely,
x(t),l+1,v(t),l+1,h(t),l+1 = EGL

(
x(t),l,v(t),l,h(t),l

)
.

We first calculate the spherical Fourier-Bessel bases to in-
tegrate all available geometric information:

ẽlSBF1,omn

(
x
(t),l
ab , φ

(t),l
vaab

, θ
(t),l
vaabvb

)
=√

2

c3intj
2
o+1 (zon)

jo

(
zon
cint

x
(t),l
ab

)
Yom

(
φ
(t),l
vaab

, θ
(t),l
vaabvb

)
,

(10)

ẽlSBF2,omn

(
x
(t),l
ab , φ

(t),l
vbba

, θ
(t),l
vaabvb

)
=√

2

c3intj
2
o+1 (zon)

jo

(
zon
cint

x
(t),l
ab

)
Yom

(
φ
(t),l
vbba

, θ
(t),l
vaabvb

)
,

(11)

where o ∈ [NCBF], n ∈ [NRBF], and m ∈ [NSBF] control the
degree, root, and order of the radial basis functions, respec-
tively. cint is the interaction cutoff. jo is the spherical Bessel
functions. zon is the n-th root of the o-degree Bessel func-
tions. Yom is the real spherical harmonics with degree o and
orderm. Remarkably, 3D spherical Fourier-Bessel represen-
tations including ẽSBF1

and ẽSBF2
enjoy the roto-translation

invariant property due to their exploitation of the relative dis-
tance as well as the invariant angles. Then those directional
vectors are fed into EGL as:

qi =
[
fq

(
h
(t),l
i

)
⊕ ẽlSBF1

]
W SBF1

, (12)

ki =
[
fk

(
h
(t),l
i

)
⊕ ẽlSBF2

]
W SBF2

, (13)

mi =fm

(
h
(t),l
i

)
, aij = qik

T
j /

√
ψatt, (14)

v
(t),l+1
i =fv

(
h
(t),l
i

)
v
(t),l
i +

N∑
j=1

ϕ (aij)x
(t),l
ij , (15)

x
(t),l+1
i =x

(t),l
i +

1

L
v
(t),l+1
i , (16)

h
(t),l+1
i =fh

 N∑
j=1

ϕ (aij)mj

 . (17)

Here ⊕ denotes concatenation and L is the number of total
layers in EGT. fq , fk and fm are linear transformations. fv
and fh are velocity and feature operations, which are com-
monly approximately by multi-layer perceptrons (MLPs).
qi, ki and mi are respectively the query, key, and value
vectors with the same dimension ψatt. The weight matrix
W SBF1

and W SBF2
are learnable, transferring dimensions

of the concatenated vectors back to ψatt. aij is the attention
that the token i pays to the token j. ϕ denotes the Softmax
function. Finally, x(t),L at the last layer immediately draw
the gradient field of locations, i.e.,∇x(t) log p

(
x(t)

)
.

Note that EGL breaks down the coordinate update into
two stages. First we compute the velocity v

(t),l+1
i , and then

leverage it to update the position x
(t),l
i . The initial veloc-

ity v
(t),l
i is scaled by fv : Rψh → R that maps the feature

embedding h
(t),l
i to a scalar value. After that, the velocity

of each atom v
(t),l
i is updated as a vector field in a radial

direction. In other words, v(t),l
i is renewed by the weighted

sum of all relative differences
{
x
(t),l
ij

}N
j=1

. The weights of

this sum are provided as the attention score {aij}Nj=1. Mean-
while, those attention scores are used to gain the new feature
h
(t),l+1
i .

Analysis on E(n) equivariance. We analyze the equivari-
ance properties of our model for E(3) symmetries. That is,
our model should be translation equivariant on x for any
translation vector and it should also be rotation and reflec-
tion equivariant on x for any orthogonal matrix Q ∈ Rn×n
and any translation matrix o ∈ Rn×3. More formally, our
model satisfies (see proof in Appendix):

Qx(t),l+1 + o,Qv(t),l+1,h(t),l+1 =

EGL
(
Qx(t),l + o,Qv(t),l,h(t),l

)
.

(18)

Trajectory Sampling
After training a time-dependent score-based model sϑ, we
can exploit it to construct the reverse-time SDE and then
simulate it with numerical methods to generate molecular
conformations from p0. As analyzed before, x(t) and x(t+1)

are heavily correlated and their divergence is minor. Based
on this relationship, instead of using some Gaussian distribu-
tions (Song et al. 2020b), we leverage x(t) as a replacement
to approximate the unknown prior distribution pS

(
x(t+1)

)
.

That is, we regard x(t) as the perturbed version of x(t+1)

and seize it as the starting point of our trajectory sampling
process.

Numerical solvers provide approximate computation for
SDEs. Many general-purpose numerical methods, such as
Euler-Maruyama and stochastic Runge-Kutta methods, ap-
ply to the reverse-time SDE for sample generation. In ad-
dition to SDE solvers, we can also employ score-based
Markov Chain Monte Carlo (MCMC) approaches such as
Langevin MCMC or Hamiltonian Monte Carlo to sample
from directly, and correct the solution of a numerical SDE
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Algorithm 1: Sampling Algorithm with Predictor-Corrector.

Require: NP : Number of discretization steps for the
reverse-time SDE.

Require: NC : Number of corrector steps.
Initialize x(t+1)(NP )← x(t)

for i = NP − 1 to 0 do
x(t+1)(i)← Predictor

(
x(t+1)(i+ 1)

)
for j = 1 to NC − 1 do

x(t+1)(i)← Corrector
(
x(t+1)(i)

)
end for

end for
return x(t+1)

solver. Readers are recommended to refer to Song et al.
(2020b) for more details. We provide the pseudo-code of the
whole sampling process in Algorithm 1.

Experiments
To verify the effectiveness of our DIFFMD, we construct the
following two tasks and empirically evaluate it:

Short-term-to-long-term (S2L) Trajectory Generation.
In this task setting, models are first trained on some short-
term trajectories and are required to produce long-term tra-
jectories of the same molecule given the starting confor-
mation x(t0) as p

(
x(tn), ...,x(t1)|x(t0)

)
. This extrapolation

over time aims to examine the model’s capacity of general-
ization from the temporal view.

One-to-others (O2O) Trajectory Generation. In the
O2O task, models are trained on the entire trajectories of
some molecules and examined on other molecules from
scratch. This evaluates model’s eligibility to generalize to
conformations of different molecules, namely, the discrep-
ancy with respect to different molecular types.

Experiment Setup
Evaluation metric. We adopt the accumulative root-
mean-square-error (ARMSE) of all snapshots at a given n-
step time period {ti}ni=1 as the evaluation metric. ARMSE
evaluates the generated conformations as: ARMSE =(

1
n

∑tn
i=t1

∥∥∥x̃(i) − x(i)
∥∥∥2) 1

2

, which is roto-translational

invariant.

Baselines. We compare DIFFMD with several state-of-
the-art methods for the MD trajectory prediction. Specifi-
cally, Tensor Field Network (TFN) (Thomas et al. 2018)
adopts filters built from spherical harmonics to achieve
equivariance. Radial Field (RF) is a GNN drawn from
Equivariant Flows (Köhler, Klein, and Noé 2019). SE(3)-
Transformer (Fuchs et al. 2020) is a equivariant vari-
ant of the self-attention module for 3D point-clouds.
EGNN (Satorras, Hoogeboom, and Welling 2021) learns
GNNs equivariant to rotations, translations, reflections
and permutations. GMN (Huang et al. 2022) resorts to
generalized coordinates to impose geometrical constraints

on graphs. SCFNN (Gao and Remsing 2022) is a self-
consistent field NN for learning the long-range response of
molecular systems. The full experimental details are elabo-
rated in Appendix.

Short-term-to-long-term Trajectory Generation
Data. MD17 (Chmiela et al. 2017) 1 contains trajectories
of eight thermalized molecules, and all are calculated at a
temperature of 500K and a resolution of 0.5 femtosecond
(ft). We use the first 20K frame pairs as the training set and
split the next 20K frame pairs equally into validation and
test sets. Unfortunately, MD17 does not include velocities
of particles, for which we use v(t) = x(t) − x(t−1) as a
substitution, similarly to GMN.

Results. Table 1 documents the performance of baselines
and our DIFFMD in S2L, where the best performance is
marked bold and the second best is underlined for clear com-
parison. Note that floating overflow is encountered by RF
(denoted as NA). For all eight organic molecules, DIFFMD
achieves the lowest ARMSEs. Moreover, different organic
molecules perform in different manners during MD. Partic-
ularly, benzene moves most actively than other molecules,
which leads to the highest prediction errors.

One-to-others Trajectory Generation
Data. C7O2H10 (Brockherde et al. 2017) 1 is a dataset
that consists of the trajectories of 113 randomly selected
C7O2H10 isomers, which are calculated at a temperature of
100K and resolution of 1 fs using density functional the-
ory with the PBE exchange-correlation potential. We select
the top-5 isomers that have the largest ARMSEs out of 113
samples, using x(t0) as the prediction for all the subsequent
timeframes, as the validation targets and take the rest as the
training set. Same as the MD17 case, we compute the dis-
tance vector between neighboring frames as the velocities.

Results. Table ?? reports ARMSE of baselines and our
DIFFMD on the five isomers from C7O2H10. DIFFMD
exceeds all baselines with a large margin for all target
molecules. We plot snapshots at different timeframes in Ap-
pendix.

A closer inspection of the generated trajectories shows
that several baselines have worse generation quality because
their conformations are not geometrically and biologically
constrained. On the contrary, generated conformations by
models like EGNN and GMN are geometrically legal, but
their variations are minute. Interestingly, we discover that
conformations generated by SCFNN remain unchanged af-
ter a few timeframes, which indicates the network is stuck
in a fixed point.

Related Work
Molecular Dynamics with Deep Learning Recently, var-
ious DL models have become easy-to-use tools for fasci-

1Both MD17 and C7O2H10 datasets are available at http://
quantum-machine.org/datasets/

5326



Methods Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

TFN NA NA NA NA NA NA NA NA
RF 3.707 19.724 5.963 18.532 13.791 2.071 4.052 2.382

SE(3)-Tr. 0.813 2.415 0.678 1.183 1.834 1.230 1.312 0.691
EGNN 0.868 2.518 0.719 0.889 0.484 0.632 1.034 0.464
GMN 0.814 2.528 0.751 0.880 0.832 0.895 1.018 0.494

SCFNN 1.151 2.832 1.084 1.096 0.923 0.918 1.229 0.857

DIFFMD 0.648 2.365 0.637 0.784 0.298 0.471 0.820 0.393
Relative Impro. 20.2% 2.1% 5.9% 10.9% 38.4% 25.4% 19.5% 15.4%

Table 1: Extrapolation performance on MD17. Note the extrapolation errors for TFN are not available (NA) due to the floating
number overflow.

Methods ISO 1004 ISO 2134 ISO 2126 ISO 3001 ISO 1007

TFN 7.390 10.990 10.412 4.697 10.677
RF 4.772 4.364 21.576 9.077 11.049

SE(3)-Tr. 5.253 6.186 4.334 5.304 7.514
EGNN 1.142 0.578 0.928 1.017 1.035
GMN 1.205 0.363 0.998 1.053 1.154

SCFNN 1.781 1.693 1.785 2.842 2.264

DIFFMD 1.127 0.278 0.919 0.837 0.878
Relative Impro. 1.2% 23.4% 9.7% 9.8% 15.1%

Table 2: Performance on the five isomers in C7O2H10.

nating MD with ab initio accuracy. Behler-Parrinello net-
work (Behler and Parrinello 2007) is one of the first models
to learn potential surfaces from MD data. After that, Deep-
Potential net (Han et al. 2017) is further developed by ex-
tending to more advanced functions involving two neigh-
bors. While DTNN (Schütt et al. 2017) and SchNet (Schütt
et al. 2018) achieve highly competitive prediction perfor-
mance across the chemical compound space and the configu-
ration space in order to simulate MD (Noé et al. 2020). How-
ever, they still follow the routine of multi-stage simulations
and rely on forces or energy as the prediction target. Huang
et al. (2022) proposes an end-to-end GMN to characterize
constrained systems of interacting objects, where molecules
are defined as a set of rigidly connected particles with sticks
and hinges. Also, their experiments fail to be realistic and
the constraint strongly violates the nature of MD, since no
distance between any pair of atoms are fixed.

Conformation Generation. Researchers are increasingly
interested in conformation generation. Some works start
from 2D molecular graphs to gain their 3D structures
via bi-level programming (Xu et al. 2021b) and continu-
ous flows (Xu et al. 2021a). Some others concentrate on
the inverse design to create the conformations of drug-
like molecules or crystals with desired properties (Noh
et al. 2019). Recently, Gao and Remsing (2022) propose an
SCFNN that perturbs positions of the Wannier function cen-
ters induced by external electric fields. Latterly, diffusion
models become a favored choice in conformation genera-
tion (Shi et al. 2021). Xu et al. (2022) introduce a GeoD-
iff by progressively injecting and eliminating small noises.
However, its perturbations evolve over discrete times. A bet-
ter approach would be to express dynamics as a set of dif-
ferential equations since time is actually continuous. Fur-

thermore, these studies leverage diffusion models in recov-
ering conformations from molecular graphs instead of gen-
erating sequential conformations. We fill in the gap by ap-
plying them to yield MD trajectories.

Conclusion
We propose DIFFMD, a novel principle to sequentially gen-
erate molecular conformations in MD simulations. DIFFMD
marries denoising diffusion models with an equivariant geo-
metric Transformer, which enables self-attention to leverage
directional information in addition to the interatomic dis-
tances. Extensive experiments over multiple tasks demon-
strate that DIFFMD is superior to existing state-of-the-art
models. This research may shed light on the acceleration of
new drugs and material discovery.
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Schütt, K. T.; Sauceda, H. E.; Kindermans, P.-J.;
Tkatchenko, A.; and Müller, K.-R. 2018. Schnet–a
deep learning architecture for molecules and materials. The
Journal of Chemical Physics, 148(24): 241722.
Schwantes, C. R.; McGibbon, R. T.; and Pande, V. S. 2014.
Perspective: Markov models for long-timescale biomolec-
ular dynamics. The Journal of chemical physics, 141(9):
09B201 1.
Shan, Y.; Kim, E. T.; Eastwood, M. P.; Dror, R. O.; Seeliger,
M. A.; and Shaw, D. E. 2011. How does a drug molecule find
its target binding site? Journal of the American Chemical
Society, 133(24): 9181–9183.
Shi, C.; Luo, S.; Xu, M.; and Tang, J. 2021. Learning gra-
dient fields for molecular conformation generation. In In-
ternational Conference on Machine Learning, 9558–9568.
PMLR.

5328



Sohl-Dickstein, J.; Weiss, E.; Maheswaranathan, N.; and
Ganguli, S. 2015. Deep unsupervised learning using
nonequilibrium thermodynamics. In International Confer-
ence on Machine Learning, 2256–2265. PMLR.
Song, Y.; and Ermon, S. 2019. Generative modeling by esti-
mating gradients of the data distribution. Advances in Neu-
ral Information Processing Systems, 32.
Song, Y.; Garg, S.; Shi, J.; and Ermon, S. 2020a. Sliced
score matching: A scalable approach to density and score
estimation. In Uncertainty in Artificial Intelligence, 574–
584. PMLR.
Song, Y.; Sohl-Dickstein, J.; Kingma, D. P.; Kumar, A.;
Ermon, S.; and Poole, B. 2020b. Score-based generative
modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456.
Suomivuori, C.-M.; Gamiz-Hernandez, A. P.; Sundholm, D.;
and Kaila, V. R. 2017. Energetics and dynamics of a light-
driven sodium-pumping rhodopsin. Proceedings of the Na-
tional Academy of Sciences, 114(27): 7043–7048.
Thomas, N.; Smidt, T.; Kearnes, S.; Yang, L.; Li, L.;
Kohlhoff, K.; and Riley, P. 2018. Tensor field networks:
Rotation-and translation-equivariant neural networks for 3d
point clouds. arXiv preprint arXiv:1802.08219.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems, 30.
Wu, F.; Zhang, Q.; Radev, D.; Cui, J.; Zhang, W.; Xing, H.;
Zhang, N.; and Chen, H. 2021. 3D-Transformer: Molec-
ular Representation with Transformer in 3D Space. arXiv
preprint arXiv:2110.01191.
Xu, M.; Luo, S.; Bengio, Y.; Peng, J.; and Tang, J. 2021a.
Learning neural generative dynamics for molecular confor-
mation generation. arXiv preprint arXiv:2102.10240.
Xu, M.; Wang, W.; Luo, S.; Shi, C.; Bengio, Y.; Gomez-
Bombarelli, R.; and Tang, J. 2021b. An end-to-end frame-
work for molecular conformation generation via bilevel pro-
gramming. In International Conference on Machine Learn-
ing, 11537–11547. PMLR.
Xu, M.; Yu, L.; Song, Y.; Shi, C.; Ermon, S.; and
Tang, J. 2022. GeoDiff: a Geometric Diffusion Model
for Molecular Conformation Generation. arXiv preprint
arXiv:2203.02923.
Zhang, L.; Han, J.; Wang, H.; Car, R.; and Weinan, E. 2018.
Deep potential molecular dynamics: a scalable model with
the accuracy of quantum mechanics. Physical review letters,
120(14): 143001.

5329


