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Abstract

Deepfake video detection has drawn significant attention
from researchers due to the security issues induced by deep-
fake videos. Unfortunately, most of the existing deepfake de-
tection approaches have not competently modeled the nat-
ural structures and movements of human faces. In this pa-
per, we formulate the deepfake video detection problem into
a graph classification task, and propose a novel paradigm
named Facial Action Dependency Estimation (FADE) for
deepfake video detection. We propose a Multi-Dependency
Graph Module (MDGM) to capture abundant dependencies
among facial action units, and extracts subtle clues in these
dependencies. MDGM can be easily integrated into the exist-
ing frame-level detection schemes to provide significant per-
formance gains. Extensive experiments demonstrate the su-
periority of our method against the state-of-the-art methods.

Introduction
With the advance in deep learning techniques, various deep
neural network (DNN) based face manipulation techniques/-
softwares, such as FakeApp, ZAO, Deepfake (Deepfakes
2019), DeepFaceLab(Perov et al. 2020), have led to the pro-
liferation of deepfake images/videos on the internet. These
deepfake techniques can generate indistinguishable videos,
and they may induce various security problems, including
fake news, infringement of personal privacy, etc. Therefore,
researches on deepfake image/video detection, especially
the deepfake facial image/video detection, have become an
important topic in the field of image/video forensics.

There exist two major types of deepfake video detection
mechanisms, i.e., frame-level detection and video-level de-
tection. Frame-level detection methods usually seek for sub-
tle clues in a single frame, e.g. jitters, blurs, and strange ar-
tifacts (Zi et al. 2020). With extensive efforts devoted to fa-
cilitating the detection, schemes, such as exposing blending
boundaries (Li et al. 2020a), detecting via frequency domain
features (Qian et al. 2020; Liu et al. 2021), and leveraging
multiple attentions on different regions (Zhao et al. 2021),
etc., achieve superior performances. Unfortunately, the ac-
curacy of these methods may not be quite satisfactory when
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Figure 1: There exists various dependencies between the Fa-
cial Action Units on a face. The red edges represent the
temporal action dependencies between the left eye and con-
nected action units on a serious face. According to these de-
pendencies, the left eye can exchange information with other
action units and update its feature from a more comprehen-
sive perspective.

serving for deepfake video detection, due to the ignorance
of temporal dependencies.

In video-level detection methods, a portion of them fo-
cuses on modeling the temporal inconsistencies among the
adjacent frames, including color jitters (Gu et al. 2021), off-
sets of facial landmarks (Sun et al. 2021), etc. Meanwhile,
other detection methods model the bio-signatures, e.g., heart
rate, eye-blinking (Ciftci, Demir, and Yin 2020a,b). These
methods tend to assign more emphasis on the relationships
between adjacent frames, while the intra-correlations within
each single frame are utilized incompetently.

Although the existing methods show decent performances
in deepfake video detection, they have not properly consid-
ered the facial movements and the structural properties of
the human faces, which is a limitation of the existing meth-
ods. The natural facial actions are generally accomplished
by several facial action units, which function together ac-
cording to certain structural correlations. Meanwhile, sev-
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eral researches (Mittal et al. 2020; Hosler et al. 2021) have
proven that existing manipulation methods cannot precisely
simulate facial movements and express emotions.

Based on the above observations, we assume that the ma-
nipulation clues are more likely to be exposed in certain
facial regions, where frequent movements happen, such as
regions highly correlated with expressions. Besides, mul-
tiple dependencies among these regions across different
frames (including long-distanced frames) tend to provide
more comprehensive and robust clues, especially on real-
like data and low-quality videos. Since the existing CNNs,
RNNs and Transformers are not quite suitable for processing
these local facial regions with complex dependencies across
multiple frames (including long-distanced frames), we ex-
plicitly model these discrete regions with specific dependen-
cies as a graph.

In this paper, we propose a novel deepfake video de-
tection method by proposing a novel paradigm named Fa-
cial Action Dependency Estimation (FADE), to explore the
subtle clues and dependencies in the facial action regions.
Specifically, based on our assumption, we formulate the
deepfake video detection problem as a graph classification
task and leverage Graph Convolutional Networks (GCNs)
to solve it. According to Facial Action Coding System (Ek-
man and Friesen 1978), the facial action units, which are
highly correlated with facial movements, are selected as the
nodes, and their features are extracted by a backbone net-
work with the RoI Alignment (He et al. 2017). To construct
the graph and perform graph classification, we propose a
module named Multi-Dependency Graph Module (MDGM).
In particular, MDGM contains four parts, i.e., Pattern-Mixer,
Action Branch, Content Branch, and Fusion Block. The
Pattern-Mixer can model the action dependencies in a more
applicable manner for deepfake video detection. Then, the
Action Branch can process the node features and the depen-
dencies represented by Pattern Mixer, and generate a more
robust feature. Meanwhile, the Content Branch aims to cap-
ture the dynamic dependencies according to the node fea-
tures, as a complement to Action Branch. At last, we con-
struct a Fusion Block, which combines and enhances the
features extracted from different branches to generate a more
comprehensive representation to achieve deepfake video de-
tection.

Our major contributions are summarized as follows.

• We formulate the deepfake video detection as a graph
classification task, according to structural prior informa-
tion, and propose a novel Facial Action Dependency Es-
timation method for deepfake video detection.

• We propose a Multi-Dependency Graph Module, which
can capture abundant dependencies among the facial ac-
tion units, and extract clues in these dependencies. In ad-
dition, this module can be easily transplanted to the ex-
isting frame-level detection methods.

• We propose a Pattern Mixer, which can model the prior
action dependencies from multiple perspectives and out-
put the mixed patterns, to provide more appropriate de-
pendencies for deepfake video detection.

• Extensive experiments have demonstrated the effective-

ness of our proposed method against the state-of-the-art
methods, and explain the underlying mechanisms of our
methods via visualizations.

Related Work
Graph Convolutional Networks
Graph Convolutional Network (GCN) features good repre-
sentation capability on structural data, which can be formu-
lated as a graph. In the past few years, GCNs have been
widely exploited to process large-scale structural data, such
as biochemical compounds (Wale, Watson, and Karypis
2008), social networks (Hamilton, Ying, and Leskovec
2017), etc.

The excellent feature representation ability of GCNs have
also been utilized in the field of computer vision. In video
processing, such as video action recognition and video
anomaly detection, GCNs play vital roles. By consider-
ing the structure of human skeletons, GCNs are adopted to
model the movement of linked joints to recognize human ac-
tions (Jain et al. 2016; Yan, Xiong, and Lin 2018). In video
anomaly detection, HL-Net (Wu et al. 2020) applies GCNs
to capture the long-distance dependencies among the frames
and multiple modalities. ACAD (Zhong et al. 2019) selects
different correlations of frames, including features similarity
and temporal consistency, to build the graphs, and achieves
good performance.

Since GCNs can well model the correlations (especially
the structural dependencies) in a group of features, we ex-
ploit GCNs to better capture the manipulation clues in the
deepfake facial videos.

Deepfake Video Detection
Current deepfake video detection schemes can be classified
into two categories, frame-level and video-level methods.

Frame-level methods prefer to excavate the inconsisten-
cies between the manipulated and original regions in a sin-
gle frame. Early frame-level methods usually rely on the
hand-crafted or statistical features (Fridrich and Kodovsky
2012; Zhang, Zheng, and Thing 2017). Unfortunately, they
are expired due to the evolving forgery techniques. With the
rapid development of deep learning, CNN-based methods
become dominant. GramNet (Liu, Qi, and Torr 2020) reveals
the global texture differences between the real and fake im-
ages/frames. (Li et al. 2020a) proposes Face X-ray to detect
the subtle clues of boundary-blending, which is an impor-
tant step in faceswap. The anomaly artifacts in frequency
domain, which are induced by the generation methods, are
detected by F3-Net (Qian et al. 2020) and SPSL (Liu et al.
2021). By taking the personal identity into considerations
(Cozzolino et al. 2021; Dong et al. 2022), unseen manipula-
tions can be handled and the generalization capabilities can
be improved. Unfortunately, these frame-level methods have
not considered the temporal information due to their natures.

For video-level methods, they usually pay more atten-
tions to the inconsistencies between frames, because most
of the synthesis methods lack temporal constraints. (Li et al.
2020b) formulates the deepfake video detection as a multi-
ple instance learning task to handle the partial face attack.
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Figure 2: The architecture of our Facial Action Dependency Estimation for deepfake video detection.

Forensic methods based on bio-signatures also perform de-
cently. Multiple approaches are developed to model the heart
rate and identify the authenticity of videos (Ciftci, Demir,
and Yin 2020b; Fernandes et al. 2019; Qi et al. 2020). Lip-
Forensics (Haliassos et al. 2021) considers the movement
of lips in a video as a robust detection feature. (Gu et al.
2021) gradually amplifies the pixel jitters in the manipulated
videos. These video-level methods tend to ignore the intra-
correlations within each single frame.

PatchDiffusion (Zhang et al. 2022) directly crops the fea-
ture map into smaller patches, connects them via similari-
ties to form the graph and straightforwardly applies a Graph
Neural Network (GNN) to achieve a frame-level deepfake
detection. On the contrary, our FADE formulates the deep-
fake video detection task as a graph classification task, con-
structs the graph according to the facial structural infor-
mation as well as the facial action dependencies, generates
comprehensive representations containing intra- and inter-
frame information, and achieves video-level detection.

The Proposed Work

According to our above assumptions that the manipulation
clues are more likely to be exposed in the facial regions re-
lated to facial expressions, and multiple dependencies can be
explored to obtain more comprehensive representations, we
can convert the input facial video into a graph. In the graph,
the features of the facial action units are regarded as nodes,
and the dependencies among them are the edges. Then,
deepfake video detection is formulated as a graph classifi-
cation task and we accordingly propose a novel deepfake
video detection method, named Facial Action Dependency
Estimation (FADE). FADE contains two stages: Action Unit
Feature Extraction and Multi-Dependency Graph Module
(MDGM). Fig. 2 illustrates the architecture of FADE.

Action Unit Feature Extraction
Facial Action Coding System (FACS) (Ekman and Friesen
1978) is a well-known theory which depicts the correlations
between different facial muscle movements and different ex-
pressions. In FACS, Ekman and Friesen design fine-grained
action units (AUs) based on the correlations and action char-
acteristics of AUs. By considering the mechanisms of main-
stream face manipulation approaches, the demand of deep-
fake detection and the limitations of face detection meth-
ods, we define six AUs in each face, including, the left eye,
right eye, left cheek, right cheek, nose and mouth. To per-
form graph classification, we utilize the features of the en-
tire face as the frame master node in each frame and a learn-
able global token as the global master node for the entire
video. Under such circumstance, one frame master node is
connected to all the AUs within its frame and the global
master node is connected to every frame master node in the
video. After message passing, the features in the global mas-
ter node become the final representation of the video. We ex-
tract the AU features X ∈ RN×C×h×w via a backbone with
RoI Alignment (He et al. 2017) operation, where N , C, h,
and w denote the number of nodes, the channel, the height,
and the width of AU features, respectively.

Multi-Dependency Graph Module
The Multi-Dependency Graph Module (MDGM) is pro-
posed to leverage GCNs to generate a robust feature for
deepfake video detection, based on various dependencies
and the node features. MDGM consists of a Pattern-Mixer,
an Action Branch, a Content Branch, and a Fusion Block.

Pattern Mixer In expression classification task, the ex-
pressions are usually classified into 8 categories (Lucey et al.
2010), e.g., happy, sad, afraid, etc. The action dependencies
and action unit activations usually vary for different expres-
sions. However, there exists obvious overlaps in the moving
AUs for different expressions. To better capture the action
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Figure 3: The procedures of Pattern Mixer. Multiple mixed
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dures.

dependencies and avoid an overly fine-grained expression
categorization for deepfake video detection, we empirically
re-categorize the expressions into three classes, including
neutral faces, smiling faces, and serious faces, instead of di-
rectly employing the original 8 expression categories. The
new categorization can well cover all the common facial
movements in typical deepfake videos. Three correspond-
ing basic action patterns are then designed with reference to
FACS. For example, there is only one connection between
the left and right eyes on a neutral face. Meanwhile, the left
eye, left cheek and mouth are usually correlated with each
other on a smiling face, and similar correlations can be dis-
covered on the right half of the face. Additional patterns are
designed based on the positional relationships.

Since the hand-crafted dependencies may not be opti-
mal for deepfake video detection. we propose a mixer-like
method named Pattern Mixer, which can adjust the weights
of edges and mix the basic patterns into more appropriate
patterns, as shown in Fig. 3. Pattern Mixer consists of two
steps, i.e., temporal expansion and pattern mixing. In tempo-
ral expansion, the basic patterns in a single frame are firstly
assigned with different temporal weights according to the
sequential order of the frames. Then, different patterns are
mixed up to generate a new one, via linear mapping with
activation functions. The input of pattern-mixer is the basic
action patterns A ∈ RM×n×n, where n indicates the num-
ber of AUs in a single frame. The output of the pattern-mixer
is the mixed Ã ∈ RM̃×N×N , where M̃ is set to 4, and N
denotes the number of nodes in the entire video, including
the global master node.

Action Branch The Action Branch aims to handle the
graphs, which is constructed based on the mixed dependen-
cies Ã from Pattern Mixer. The Action Branch consists of a
projection layer and a ConvGCN. The projection layer is a

convolutional layer with the kernel size of 1×1. The outputs
of the projection layer are divided into four groups along the
channel dimension.

In GCN, each layer is composed of an aggregation oper-
ation and an update operation. In the aggregation operation,
nodes aggregate information from its neighbors, which can
be formulated as

H
′
= Aggregate(H,A) = D−0.5AD−0.5H, (1)

where D−0.5AD−0.5 is the symmetric normalized adja-
cency matrix and D is the degree matrix determined by
A. H

′ ∈ RN×C× h×w is the collection of the aggregated
node features which are the linear combinations of the local
neighbors’ features.

H in FADE is a feature map with the dimension of
N × C × h× w, rather than a vector in the standard GCN.
Inspired by (Zhang, Wang, and Guo 2019), we modify the
update process to retain more spatial information, and finally
implement it as a Conv-BN-ReLU layer, i.e.,

Update(H
′
) = ReLU

(
BN(Conv3×3(H

′
))
)
, (2)

where Conv3×3(·), BN(·), and ReLU(·) represent a convo-
lutional layer with kernel size of 3×3, a batch normalization
layer and a ReLU activation function, respectively.

Then, our graph convolution layer is formulated as

H(l+1) = Update(l+1)
(
Aggregate(H(l),A)

)
, (3)

where the H(l+1) and H(l) denote the node features at the
l-th layer and (l + 1)-th layer, respectively, with H(0) = X.

Inspired by (He et al. 2016), we add a residual connection
in the network and the entire two-layered model is named
ConvGCN. Then, the feature Hout can be finally obtained.
The entire process is described as

Hout = ConvGCN(H(0),A) = H(2) +H(0), (4)

where HA
out is the output of the Action Branch.

Content Branch To mine more potential dependencies,
we construct the Content Branch as a complement to the Ac-
tion Branch. The architecture of Content Branch is identical
to the Action Branch. However, the dependencies are dy-
namically estimated by calculating the similarities of node
features in each iteration. We convert the feature map H ∈
RN×C×h×w to a vector h ∈ RN×C via max pooling, and
calculate the cosine similarities. The process is described as

Ai,j =
hih

T
j

(∥hi∥∥hj∥+ ϵ)× α
, (5)

Â = Softmax(A), (6)

where ϵ and α stand for a scalar to prevent zero-division
and a learnable parameter to amplify the dependency dif-
ferences, respectively. The default value of ϵ is 0.01. After
graph convolution in Content Branch, the features are de-
noted as HC

out.
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Method Param LQ HQ
(M) ACC AUC ACC AUC

MesoNet ≤ 1.0 70.47 - 83.10 -
Xception(Avg)* 21.6 86.42 89.30 95.97 97.87
Xception(LSTM)* 55.2 86.06 90.32 95.63 98.41
F3-Net* 44.2 87.01 88.15 96.30 98.85
Face X-ray ≥ 43.0 - 61.60 - 87.40
Multi-Attention* 32.8 86.67 88.20 96.63 99.07
DIANet 27.8 89.77 94.50 96.37 98.80
PatchDiffusion 28.4 86.11 89.29 95.16 98.51
RECCE 24.7 91.03 95.02 97.06 99.32

Two-Branch - - 91.10 - 99.12
UV-Transformer ≥ 130 - - 99.52 99.64
Finfer - - - - 95.67

FADE 25.6 92.89 95.98 98.33 99.52

Table 1: Performances on the FF++ dataset with HQ and LQ
settings. Param stands for the (possible) number of parame-
ters of these methods. Bold numbers represent the best result
in the column and * denotes our implementations.

Fusion and Classification The output features, HA
out

from the Action Branch and HC
out from the Content Branch,

are concatenated. Then, the concatenated features are fed to
the Fusion Block, which contains two Conv-BN-ReLU lay-
ers with a kernel size 1× 1. At last, the fused feature is sent
to the classifier after a global average pooling.

Hfuse = Fusion((HA
out∥HC

out)), (7)

p̂ = Classifier (GAP (Hfuse)) , (8)
where GAP(·) and Classifier(·) represent the global
average-pooling and the softmax layer, respectively. The
Cross-Entropy Loss is employed as our classification loss.

Experiments
Setups
Datasets The training of our models is carried out on
the Face Forensics++ (FF++) (Rössler et al. 2018) dataset.
Here, we follow the official dataset division strategy. Ac-
cording to the compression ratios, FF++ can be divided into
three subsets: RAW, HQ and LQ. Note that our experiments
on FF++ are conducted on HQ and LQ only. To verify the
effectiveness of our FADE comprehensively, FADE and the
compared methods are tested not only on FF++, but also on
Celeb-DF (CDF) (Li et al. 2020c) and DeepFake Detection
(DFD) (Nick Dufour and Andrew Gully 2019).

Implementation Details 8 continuous frames with an in-
terval of 8 are sampled from the videos as the input. For
each video, four clips with the same number of frames are
evenly sampled for training, validation and testing. MTCNN
(Zhang et al. 2016) is employed to detect the faces and
landmarks in each frame. Input images will be resized to
320×320 and the landmarks will be utilized to calculate the
RoIs of the AUs.

In the training process, the batch size is set as 4 (clips).
The initial learning rate of MDGM is 2e-4, while the learn-
ing rate of the backbone is one fifth of it. The learning rates

Method cross-quality cross-dataset
FF++(LQ) CDF DFD

MesoNet - 54.80 96.30
Xception* 70.87 65.90 93.45
EfficientNet-b4* 69.55 64.29 94.22
DSP-FWA 62.00 59.93 90.14
Face X-ray 72.80 74.76 -
SPSL - 76.88 -
PatchDiffusion - 68.23 95.74
RECCE - 68.71 -

Two-branch - 73.41 -
LipForensics - 82.40 -
Finfer - 70.60 -

FADE 83.33 74.83 98.41
FADE† 84.64 77.46 96.23

Table 2: Cross-dataset and cross-quality evaluations on the
Celeb-DF and DFD datasets while training on FF++. * rep-
resents our implementations and FADE†is constructed with-
out the Content Branch.

will be divided by 2 when the AUC score plateaus for 3
epochs. The models are optimized via AdamW (Loshchilov
and Hutter 2017) optimizer with β1 = 0.9, β2 = 0.999, and
ϵ = 0.001. These models are trained on four RTX 3080s
for approximately 10000 iterations and the best model is se-
lected according to the evaluations on the validation set.

Comparisons with the Existing Methods
To demonstrate the effectiveness of our method, a variety
of methods are selected for comparison, including MesoNet
(Afchar et al. 2018), Xception (Chollet 2017), EfficientNet
(Tan and Le 2019), DSP-FWA (Li and Lyu 2019), SPSL (Liu
et al. 2021), Face X-ray (Li et al. 2020a), Multi-Attention
(Zhao et al. 2021), F3-Net (Qian et al. 2020), Two-Branch
(Masi et al. 2020), UV-Transformer (Khan and Dai 2021),
LipForensics(Haliassos et al. 2021), DIANet (Hu et al.
2021), PatchDiffusion (Zhang et al. 2022), RECCE (Cao
et al. 2022), and Finfer (Hu et al. 2022). Note that Xception
is employed as the backbone network in our FADE.

Intra-dataset Evaluation As shown in Tab. 1, we achieve
the best performance on the LQ set in terms of both the
video-level ACC and AUC metrics. Although our method
gives a slightly worse result than UV-Transformer on the HQ
set, which possesses much more model parameters than the
proposed method and needs additional UV texture map in-
puts extracted from 3DMM, FADE still outperforms all the
other methods. Compared to PatchDiffusion (Zhang et al.
2022), which also applies GNN to deepfake detection, our
FADE selects the features of AUs as the input of MDGM,
rather than the patches of feature maps. We believe that
the differences in feature modeling contribute to the perfor-
mance gap between PatchDiffusion and our FADE.

Cross-quality & Cross-dataset Evaluation Here, the
models are trained on the FF++ HQ dataset, and the frame-
level AUC score is employed as the metric. Note that the
generalization ability against JPEG compression is assessed
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Method LQ HQ
ACC AUC ACC AUC

Xception* 86.42 89.30 95.97 97.87
EffNet* 86.21 88.30 95.73 97.51
ResNet* 83.43 86.59 95.30 98.12
F3-Net* 87.01 88.15 96.30 98.85

FADE(Xception) 92.89 95.98 98.33 99.52
(+6.47) (+6.68) (+2.36) (+1.65)

FADE(EffNet) 91.33 93.68 97.50 99.21
(+5.12) (+5.38) (+1.77) (+1.70)

FADE(ResNet) 91.21 93.77 97.55 99.31
(+7.78) (+7.18) (+2.25) (+1.19)

FADE(F3-Net) 90.56 93.37 97.93 99.37
(+3.55) (+5.22) (+1.63) (+0.52)

Table 3: Evaluations of integrating our work to the existing
frame-level methods. The values in brackets are the perfor-
mance gains. * denotes our implementations.

by testing the model on the highly compressed data. The
DFD and Celeb-DF datasets are utilized to assess the gen-
eralization abilities against unseen manipulation methods.
According to Tab. 2, DSP-FWA and Face X-ray, which are
trained on the HQ data, suffer giant performance drops on
the LQ data. Meanwhile, the performance of our FADE has
only dropped to 83.33%, which is still decent. In the cross-
dataset test, our method gives the best performance on DFD
and outperforms most of the existing methods on Celeb-DF.
It is worth noting that our FADE without the Content Branch
has shown better generalization performance, which indi-
cates that the Content Branch may lead FADE to overfitting
to specific forgery methods.

Integration with Different Frame-level Methods We
have integrated our work to several existing frame-level
methods, including Xception (Chollet 2017), EfficientNet
(Tan and Le 2019), ResNet (He et al. 2016), and F3-Net
(Qian et al. 2020). The improvements are shown in Tab. 3,
where we utilize the averaged value of the frame-level re-
sults as the video-level results for these frame-level methods.
After integrating MDGM, the improvements of video-level
AUC on the LQ set is 6.57%, 5.12%, 7.78%, and 5.22% for
Xception, EfficientNet-b4, ResNet-50, and F3-Net, respec-
tively, similar to the gains in ACC. On the HQ set, though the
performances of the existing frame-level methods are rel-
atively high, our method can still achieve an approximately
2% gain. These results demonstrate that our work can further
boost the performances of the existing frame-level methods
in video deepfake detection.

Ablation Study
In this subsection, we conduct a series of ablation studies
on different components of FADE. Note that the following
experiments are carried out on FF++ with Xception being
the backbone.

Impacts of Action Units and ConvGCN To demonstrate
the positive influences of our AUs and ConvGCN, Four
models are constructed and compared in Tab. 4. According
to the results, AUs can bring a 4.47% gain to AUC and a

AU MDGM ACC AUC

✗ ✗ 86.42 89.30
✓ ✗ 89.14(+2.72) 93.77(+4.47)
✓ ✓† 90.64(+4.22) 94.97(+5.67)

✓ ✓ 92.89(+6.47) 95.98(+6.68)

Table 4: Ablation evaluations on the FF++ LQ dataset. † in-
dicates that the update operation in MDGM follows the orig-
inal GCN.

Method ACC AUC

Xception 86.42 89.30
+Action Branch 87.82(+1.40) 92.72(+3.42)
+Action Branch+Mixer 90.57(+4.15) 94.54(+5.24)
+Content Branch 89.79(+3.37) 93.68(+4.38)
+MDGM 92.89(+6.47) 95.98(+6.68)

+MHSA 89.84(+3.42) 93.32(+4.02)
+MHSA † 87.37(+1.70) 89.99(+0.72)

Table 5: Ablation evaluations on the FF++ LQ dataset. †
represents that the input of the MHSA block is the feature
patches rather than features of the Action Units.

1.72% gain to ACC. When MDGM is further integrated,
the model is further improved. Note that different update
operations in MDGM tend to perform differently, i.e., the
convolution-based update operation obviously outperforms
the linear-based one, because our ConvGCN tends to cap-
ture more positional relations and maintain more spatial in-
formation than the standard GCN.

Impacts of Each Branch We separately switch off the
Action Branch and the Content Branch to demonstrate their
impacts on the FF++ LQ dataset. Since the widely used
multi-head self-attention (MHSA) mechanism is considered
as a variant of GNN (Joshi 2020), we also implement the
self-attention block, and add two such blocks to the same
backbone as a competitor. For fair comparison, all the mod-
els’ training settings are identical. The number of heads in
the MHSA models is set to 8, which equals to the number of
graphs in MDGM. According to Tab. 5, the pattern-mixer in
the Action Branch tends to offer more abundant action pat-
terns by adjusting the weights on edges and combinations
of the basic patterns. It can be observed that the incorpo-
ration of the proposed Action Branch and Content Branch
are indeed useful. Compared to MHSA, our Content Branch
achieves a similar result with fewer heads. The performance
of MHSA drops with the feature patches, which may be in-
duced by the redundant information in certain patches, such
as the patches corresponding to the backgrounds.

Visualizations
Visualizations of Adjacency Matrices We visualize all
the adjacency matrices to illustrate the mechanism of FADE.
Fig. 4(a) shows a kind of dependencies that AUs prefer to ag-
gregate features from AUs at the identical location in other
frames, and there exists a significant difference along the
temporal dimension. Figs. 4(b) and (c) also show certain dif-
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Figure 4: The visualizations of all the learned adjacency matrices in the Pattern Mixer. The horizontal and vertical axis coordi-
nates represent the frame numbers, and G denotes the global master node.

NT DF F2F ORIFS

Xcep

Ours

Figure 5: Several hard samples in the FF++ HQ dataset. The
top row represents the heatmaps of our method, and the bot-
tom row shows the heatmaps of Xception.

ferences in the temporal dimension, which are complemen-
tary to the dependencies shown in Fig. 4(a). In Fig. 4(d) the
dependencies are almost evenly distributed along the tempo-
ral dimension. Details of the dependencies in a single frame
are shown in Fig. 4(f). As can be observed, the left eye com-
municates with the left cheek and the left cheek communi-
cates with the left eye and mouth, which is consistent with
the positional relationships on a human face. In Fig. 4(e),
the frame master node is evenly connected to all other AUs
in the same frame, which significantly differs from other ad-
jacency matrices.

Visualizations of Activations To better understand the
decision-making mechanism of FADE, we provide the vi-
sualizations obtained via Grad-CAM (Selvaraju et al. 2017)
in Fig. 5. When processing the real-like forgery data, the
activations of Xception may not be in the facial regions.
Compared to the baseline, since FADE focuses on the de-
pendencies of facial action units, its heatmaps are mostly ac-
tivated in the facial regions with frequent movements, even
the forgery samples seem very authentic. In the same situ-
ation, the heatmaps of Xception are less reasonable. Fig. 6
shows the heatmaps against multiple forgery methods. It is

NT DF F2F ORIFS

Xcep

Ours

Figure 6: The activations vary along with the changes of
forgery techniques. The upper row gives the visualizations
of our FADE. The bottom row presents the heatmaps of
Xception.

obvious that our FADE’s activations are more compact and
effective. However, since we discard the forehead regions,
there may exists very slight activation near the forehead
region in the benign frame. These results have explained
the decision-making mechanism of our method and further
proved the effectiveness of our FADE.

Conclusion
In this paper, we focus on exploiting the facial action de-
pendencies among different facial regions in a video and
formulate the deepfake video detection problem as a graph
classification task. We propose Facial Action Dependency
Estimation, to capture the subtle local clues and the intra-
and inter-frame correlations of the facial action units. We
propose Multi-Dependency Graph Module, which can cap-
ture abundant dependencies among the facial action units,
and extracts clues in these dependencies, based on the cor-
relations of action patterns and content of AUs. Extensive
experiments have demonstrated the superiority and the in-
terpretability of our FADE, and the potentials of integrating
our work to the existing frame-level methods.
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