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Abstract

Molecular representation learning is a fundamental problem
in the field of drug discovery and molecular science. Whereas
incorporating molecular 3D information in the representa-
tions of molecule seems beneficial, which is related to com-
putational chemistry with the basic task of predicting sta-
ble 3D structures (conformations) of molecules. Existing ma-
chine learning methods either rely on 1D and 2D molecu-
lar properties or simulate molecular force field to use addi-
tional 3D structure information via Hamiltonian network. The
former has the disadvantage of ignoring important 3D struc-
ture features, while the latter has the disadvantage that ex-
isting Hamiltonian neural network must satisfy the “canon-
ial” constraint, which is difficult to be obeyed in many cases.
In this paper, we propose a novel plug-and-play architec-
ture LagNet by simulating molecular force field only with
parameterized position coordinates, which implements La-
grangian mechanics to learn molecular representation by pre-
serving 3D conformation without obeying any additional re-
strictions. LagNet is designed to generate known confor-
mations and generalize for unknown ones from molecular
SMILES. Implicit positions in LagNet are learned iteratively
using discrete-time Lagrangian equations. Experimental re-
sults show that LagNet can well learn 3D molecular structure
features, and outperforms previous state-of-the-art baselines
related molecular representation by a significant margin.

Introduction
Well-designed representations of molecules are the basis of
drug design and molecular property prediction. Most of the
previous deep learning-based molecular representation stud-
ies focused on 1D sequence manner using Simplified Molec-
ular Input Line Entry System (SMILES) (Li et al. 2022a),
molecular fingerprint (Rogers and Hahn 2010) and 2D graph
(Kearnes et al. 2016) or a mixture architecture of 1D and
2D property features (Paul et al. 2018). These methods gen-
erally used off-the-shelf neural architectures such as graph
convolutional network (GCN) (Kipf and Welling 2016),
Message-Passing Neural Networks (MPNNs) (Gilmer et al.
2017), recurrent neural network (RNN) (Li et al. 2022a)
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and Transformer (Rong et al. 2020a) to learn molecular
representation. However, these methods ignore important
3D structural features of molecules. Recently, there has
been a trend towards incorporating 3D structural features of
molecules into molecular representation for various down-
stream tasks (Li et al. 2021b,a). Whereas it is difficult to
obtain labeled 3D information of molecules. The molecular
conformation (the 3D coordinates of atoms in a molecule)
contains important geometric information and plays an im-
portant role in the prediction of biochemical function and
activity. The 3D structural features of a molecule largely de-
termine the properties of drugs and the binding features of
drug targets. It has been shown that using the 3D coordinates
of atoms in 3D space can improve the accuracy of molecular
property predictions (Schütt et al. 2017; Cho and Choi 2018;
Li et al. 2021c; Yang et al. 2021). 3D structure is one of the
most critical factors in determining molecular properties and
understanding how they function in the physical world (Wu
et al. 2021).

To push the boundaries of molecular characterization into
the 3D realm, we propose LagNet from the perspective of
molecular dynamics simulations. From physics, molecules
are considered as particle systems, the motion of all parti-
cles follows the classical Newton’s laws of motion, and the
interaction between atoms satisfies the superposition princi-
ple. The predominant conformations of the molecules reflect
the equilibrium of these particle systems and are therefore
of great interest. Inspired by HamNet (Li et al. 2021c) and
PhysChem (Yang et al. 2021), in this paper, we proposed
LagNet, a plug-and-play molecular representation method
based on Lagrangian mechanism. In summary, the key con-
tributions of our work are as follows:

• To the best of our knowledge, we are the first to pro-
pose a Lagrangian-based mechanism for modeling small
molecule conformations using deep neural network with
only parameterized positional coordinates to simulate
molecular dynamics processes. LagNet learns molecular
representations by maintaining 3D conformations with-
out adhering to additional “canonial” constraints that are
difficult to obey in deep learning networks.

• Taking SMILES strings of molecules as input, LagNet
is designed to generate known molecular conformations
and can be generalized to unknown molecular conforma-
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tions through the discrete-time Lagrange equations. The
potential energy and atomic momentum of molecules are
updated by iteratively learning the implicit position, and
the final positions predicted by neural network are super-
vised with the real molecular conformation information.

• Extensive experiments are conducted on different
datasets to demonstrate the effectiveness of LagNet. Our
molecular experiments for reconstructing conformation
show that the proposed LagNet can predict molecu-
lar conformations more accurately than neural physi-
cal engines (HamNet, PhysChem), traditional geometric
methods (RDKit), and message-passing neural architec-
tures (MPNN). Meanwhile, LagNet learns conformations
of molecules from scratch, therefore, labeled molecular
conformations are not required. Moreover, LagNet can
accurately predict the 3D conformation structure of any
molecule.

Related Work
Molecular Representation Learning
Early molecular representation learning encoded SMILES
strings, molecular fingerprint and graph notations using off-
the-shelf neural architectures. The graph-based neural net-
works, such as GCN (Kipf and Welling 2016), can directly
process graph topology and vertex attribute information, ex-
tract features from molecular graph structure (Hao et al.
2020). MPNNs (Gilmer et al. 2017) introduced a general
framework for graph-based model, that includes message
passing process and readout phases. The former aims to
extract molecular graph features, and the latter is to ob-
tain molecular graph-level representation for downstream
tasks. Whereas incorporating molecular 3D information in
the representations of molecule seems beneficial (Schütt
et al. 2017; Klicpera, Groβ, and Günnemann 2020; Cho and
Choi 2018). The models that used geometric features of 3D
molecular conformations achieved better performance than
those that used only 1D or 2D features notations. However,
above molecular 3D models required labeled conformations,
which is difficult to obtain. The common practice of most
models is to generate molecular 3D structure by using the
molecular force field in the RDKit package (Landrum 2010),
which has large noise and leads to inaccurate 3D coordi-
nates. Therefore, it limited the applicability of 3D represen-
tation models.

Molecular Dynamics Simulation
Recent studies demonstrated that neural networks success-
fully learn physical dynamics to simulate potential energy,
kinetic energy and forces in a system of particles, which
facilitates fast molecular simulations (Zhang et al. 2018;
Lu et al. 2021), accelerating the progress of conventional
molecular dynamics. More recently, researchers began to
simulate molecular dynamics to predict 3D conformation
using neural networks, which includes two categories: one
is to predict conformation distribution by flow-based and
energy-based models (Xu et al. 2021b), or to generate con-
formations by gradient field and scoring function meth-
ods (Xu et al. 2021a; Luo et al. 2021), or to infer the 3D

coordinates of the atoms by diffusion model and coarse-
graining probabilistic model (Xu et al. 2022; Wand et al.
2022). The second category is to generate 3D conforma-
tional information by a neural physical engine (simulating
molecular force field) using Hamiltonian neural network (Li
et al. 2021c; Yang et al. 2021). HamNet (Li et al. 2021c)
reconstructed molecular conformations using Hamiltonian
engine with parameterized potential, kinetic and dissipa-
tion functions. PhysChem (Yang et al. 2021) fused physi-
cal and chemical information of molecules to learn molec-
ular representations, which directly parameterize the forces
between each pair of atoms. The disadvantage of the first
category is the extra errors induced by the distance predic-
tion. In addition, when generating 3D coordinates, the re-
lationship of three sides and interior angle summation the-
orem in a triangle cannot be satisfied. The disadvantage of
the second category is that the existing Hamiltonian neu-
ral network must satisfy the “canonial” constraint, which is
difficult to be obeyed in many cases. Specifically, consid-
ering the Hamiltonian H in a system, the Hamiltonian for-
malism requires to obey a strict set of rules given by the
Poisson bracket relations via the input coordinates (p, q):
{H,H} = 0, where {F,G}pq =

∑
t(

∂F
∂pt

∂G
∂qt
− ∂F

∂qt
∂G
∂pt

).
In addition, some discrete gradient methods were imple-
mented to model the dynamics of physical systems (Matsub-
ara, Ishikawa, and Yaguchi 2020; Aoshima, Matsubara, and
Yaguchi 2021), such as pendulum system and mass-spring
systetm. However, the approaches are not directly applica-
ble to molecular representation learning.

Preliminaries
Hamiltonian equations. The Hamiltonian equations de-
scribe the relationship between particle momentum, parti-
cle space position and Hamiltonian in a multi-particle sys-
tem. In a system with n particles, the position and momen-
tum of n particles can be denoted as (x1, x2, ..., xn) and
(p1, p2, ..., pn), respectively. xi and pi are regarded as inde-
pendent variables. Let H is the Hamiltonian of the system,
so the Hamiltonian equations can be expressed as follows:

dpi
dt

= −∂H
∂xi

,
dxi
dt

=
∂H
∂pi

(1)

The total energy of the system is expressed by Hamiltonian
H as follows, which is the sum of the kinetic energy T of
each particle and the potential energy V indicated the inter-
action of the system:

H =
n∑

i=1

Ti(pi) + V (x1, x2, ..., xn) (2)

Lagrangian mechanics and discrete gradient. Let L be
the Lagrangian, and L = T − V , where T denotes kinetic
energy and V denotes potential energy. If M is the mass-
matrix, ẍ = d2x

dt2 indicates the second derivative of x with
respect to time t, then Mẍ indicates the force f that atoms
experience, and f = −∇xV (x), so Mẍ = −∇xV (x). The
Euler–Lagrangian equation can be denoted as d

dt∇ẋL =
∇xL (Cranmer et al. 2020; Lutter, Ritter, and Peters 2019).
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Some studies (Celledoni et al. 2012; Matsubara, Ishikawa,
and Yaguchi 2020; Aoshima, Matsubara, and Yaguchi 2021)
employed discrete gradient methods to conserve physical
system energy strictly.
GCNs and MPNNs. Given a graph G(V, E) with initial
node features fxv

for v ∈ V and edge features feuv
for

(u, v) ∈ E . |v| = n, the adjacency matrix A ∈ Rn×n, and
Â = A+ In, In denotes an identity matrix. The degree ma-
trix D̂ii =

∑
j Âij . GCN (Kipf and Welling 2016) extracts

the hidden state features of nodes as

H(l+1) = f(D̂−
1
2 ÂD̂−

1
2H(l)W (l)) (3)

Here, W (l) is a trainable weight matrix. f(·) denotes an ac-
tivation function. H(l) is the matrix of activations in the lth
layer and H(0) denotes the original feature matrix. MPNNs
(Gilmer et al. 2017) can obtain nodes representations hv
for every hidden layer via learning the graph structures and
passing message. Calculate the m-th iteration of message
passing follows

h(m)
v = Y

(m)
U (h(m−1)

v , Y
(m)
A (

{
(h(m−1)

v , h(m−1)
u , feuv )

}
)) (4)

where u ∈ N (v), N (v) is the neighbor set of node v, h(m)
v

is the feature vector of node v at the m-th layer, feuv
is the

embedding of the edge between node u and node v, h(0)
v =

fxv . YU (·) and YA(·) are parameterized by neural networks.
YA(·) denotes an aggregate function and YU (·) denotes an
update function.

Lagrangian Molecular Representation:
LagNet

Figure 1 shows the overview of LagNet. LagNet learns the
system dynamics of molecular conformations and is de-
signed to be a plug-and-play molecular representation mod-
ule, consisting of four parts: featurization, position initial-
ization, Lagrangian molecular dynamics and graph attention
layer for downstream tasks. Inspired by mass-spring sys-
tem (Aoshima, Matsubara, and Yaguchi 2021), the proposed
LagNet is a discrete-time Lagrangian mechanics network
for molecular representation learning, which can simulate
atomic interactions in a physical system of molecule.
Discrete Lagrangian equations. From Eq. (1),

dp

dt
= −∇xH,

dx

dt
= ∇pH (5)

Here, p denotes atomic momentum in a molecule, and x de-
notes atomic position coordinate. From Eq. (2), Hamiltonian
H is a linear combination of kinetic energy T and potential
energy V . T and V are parameterized by momentum p and
position x, respectively. Specifically, T can be expressed as:

T =
1

2
pTM−1p (6)

Therefore , dp
dt and dx

dt can be calculated (Zhong, Dey, and
Chakraborty 2020):

dp

dt
= −∇xV (x),

dx

dt
= M−1p (7)

Let ∇ denotes discrete gradient. A vector ∇J is a discrete
gradient of a function J when ∇J satisfies the following

Figure 1: Overview of LagNet, a deep Lagrangian mechan-
ics for plug-and-play molecular representation learning. a.
The feature engineering to obtain node feature, edge fea-
ture and adjacency matrix by converting molecular SMILES
strings into molecular graph. b. The position initialization by
using graph convolution network and recurrent neural net-
work. c. The process of Lagrangian molecular dynamics for
predicting atomic position and momentum. d. The graph at-
tention layer for molecular tasks with the input of node fea-
ture, edge feature and conformation feature using atomic po-
sition and momentum.

condition:

J(m)−J(n) = ∇J(m,n) ·(m−n),∇J(m,m) = ∇J(m)
(8)

where · indicates an operation of inner product. Follow-
ing discrete gradient methods (Aoshima, Matsubara, and
Yaguchi 2021; Matsubara, Ishikawa, and Yaguchi 2020), a
discrete gradient ∇H for Eq. (5) can be expressed as fol-
lows:

p(n+1) − p(n)

∆t
= −∇xH(z(n+1), z(n)) (9)

x(n+1) − x(n)

∆t
= ∇pH(z(n+1), z(n)) (10)
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Figure 2: The process of Lagrangian molecular dynamics to simulate molecular force field only with parameterized position,
and the final positions predicted by neural network are supervised with the real molecular conformation information.

where z denotes a status z = (xẋ)T of the system, ∆t is the
time step size and the n is the n-th time step. Further, the
discrete form of Eq. (7) can be expressed as:

p(n+1) − p(n)

∆t
= −∇xV (x(n+1), x(n)) (11)

x(n+1) − x(n)

∆t
=

1

2
M−1(p(n+1) + p(n)) (12)

We can obtain p(n+1) from Eq. (11) and Eq. (12) as follow-
ing:

p(n+1) = p(n) −∆t∇xV (x(n+1), x(n)) (13)

p(n+1) = −p(n) + 2M
x(n+1) − x(n)

∆t
(14)

Subtract Eq. (14) from Eq. (13) to get p(n) =

M x(n+1)−x(n)

∆t + ∆t
2 ∇xV (x(n+1), x(n), which is substituted

into Eq. (13) to get momentum p(n+1) as following:

p(n+1) = M
x(n+1) − x(n)

∆t
−∆t

2
∇xV (x(n+1), x(n)) (15)

The momentum p(n) can be expressed from Eq. (15):

p(n) = M
x(n) − x(n−1)

∆t
− ∆t

2
∇xV (x(n), x(n−1)) (16)

By substituting Eq. (15) and Eq. (16) into Eq. (12), we can
obtain M x(n+1)−2x(n)+x(n−1)

(∆t)2 = − 1
2 (∇xV (x(n+1), x(n)) +

∇xV (x(n), x(n−1))). Similar to Lagrangian method in phys-
ical systems (Aoshima, Matsubara, and Yaguchi 2021), by
using∇xV (x(n)) to approximate− 1

2 (∇xV (x(n+1), x(n))+

∇xV (x(n), x(n−1)), which is equivalent to the leapfrog in-
tegrator (Chen et al. 2020), the variational integrator (Sae-
mundsson et al. 2020) and the Verlet method (Hairer, Wan-
ner, and Lubich 2006), we can obtain the position coordinate
x(n+1) at (n+1)-th time step as following, that is expressed

by the coordinate x(n) at n-th time step and the coordinate
x(n−1) at (n− 1)-th time step:

x(n+1) = − (∆t)2

M
∇xV (x(n))− x(n−1) + 2x(n) (17)

Obviously, by employing Eq. (15) and Eq. (17), we can
calculate the atomic momentum and position of the next
time step, which is related to the position and potential en-
ergy of the last two steps. In order to accelerate the conver-
gence, the incremental mode is used to iterate in the experi-
ment. Specifically, Figure 2 shows the process of Lagrangian
molecular dynamics in detail. Therefore, LagNet is designed
only with parameterized position without obeying any addi-
tional restrictions, such as the “canonial” constraint, which
must be held in Hamiltonian neural networks. LagNet can
easily calculate the kinetic energy T by substituting Eq. (15)
into Eq. (6). For the potential energy V , we simulate it us-
ing simplified Lennard-Jones potential with parameterized
distances via a neural network, that can be expressed as:

V =
∑
m 6=n

d−4
mn − d−2

mn (18)

where d2
mn = (xm− xn)TWT

VWV (xm− xn), WV is learn-
able parameter in neural network.
Initializer and loss function. The structure of a molecule
can be looked as a graph. Atoms and bonds are regarded as
nodes and edges in a graph (Figure 1 (a)), respectively. The
original features of atom include atomic symbol, degree, hy-
bridization, the number of radical electrons and so on. The
original features of bond are considered as bond types, such
as single, double, triple, aromatic, and whether it is a ring.
Following the initialization method (Li et al. 2021c), GCN is
implemented to extract atoms feature for learning chemical
environment in molecule. RNN network is used to determine
the initial positions of atoms (Figure 1 (b)), which takes the
output of GCN as input. The process of initializer can be
expressed as follows:

H(l+1) = RNN(GCN(Â, D̂,H(l))) (19)
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where GCN and RNN denote graph convolutional net-
work and recurrent neural network, respectively. Let chunk
be a partition function, that split H(l+1) into two parts with
the same dimension. The initialization can be expressed as:
x(0) = chunk(H(l+1), 2)[0], x(1) = chunk(H(l+1), 2)[1].
In this way, we obtain the initial positions x(0) and x(1).

Following the Kabsch Algorithm (Kabsch 1976) and sim-
ilar to the method in (Li et al. 2021c), we calculate the Root
of Mean Squared Deviations (RMSD)LKR between the pre-
dictive atom positions (X̂) and the ground-truth conforma-
tion positions (Xg) as follows:

LKR(X̂,Xg) = (

∑t
j=1mj× ‖ x̂j − xgj ‖22∑t

j=1mj

)
1
2 (20)

where mj denotes atomic mass. In addition, 3-hop distance
lossL3D is considered to supervise LagNet training, that can
be computed as

L3D(X̂,Xg)=(
1

t

t∑
j,l=1

Â3
jl(‖ x̂j−x̂l ‖22−‖ x

g
j−x

g
l ‖

2
2)2)

1
2

(21)
where Â denotes the predictive adjacency matrix. Inspired
by literature (Li et al. 2021c), we define the final loss func-
tion as follows:

Lloss = LKR(X̂,Xg) + αL3D(X̂,Xg) (22)

where α is a predefined hyperparameter.

Experiments
Experiment Settings
Datasets. To evaluate the performance of LagNet with
the existing molecular representation learning baselines,
we have conducted extensive experiments using different
datasets recommended by MoleculeNet (Wu et al. 2018) in-
cluding a quantum mechanics dataset (QM9), two physiol-
ogy datasets (Tox21, BBBP) for classification tasks and two
physical chemistry datasets (Lipophilicity and FreeSolv) for
regression tasks. QM9 (Ramakrishnan et al. 2014) contains
geometric conformations (atomic coordinates) and 12 quan-
titative quantum-chemical properties of 133,885 molecules.
Tox21 (Rossoshek 2014) is a dataset about the toxicity of
compounds, including toxicity information for 7,831 drug
molecules on 12 different targets. BBBP (Martins et al.
2012) contains blood–brain barrier penetration information
for over 2,000 compounds on their permeability properties.
Lipophilicity (Wenlock and Tomkinson 2015) contains ex-
perimental results of octanol/water distribution coefficient
(logD at pH 7.4) from 4,200 molecules. FreeSolv (Mobley
and Guthrie 2014) provides calculated and experimental hy-
dration free energy of 642 small molecules in water.
Baselines. We compare the proposed LagNet with
eleven state-of-the-art models, including 2D-based models
(MoleculeNet (Wu et al. 2018), DMPNN (Yang et al. 2019),
CMPNN (Song et al. 2020), AttenetiveFP (Xiong et al.
2019), GROVER (Rong et al. 2020b)) and 3D-based mod-
els (Drug3D-Net (Li et al. 2021a), GeomGCL (Li et al.

2022b), GEM (Fang et al. 2022), SchNet (Schütt et al. 2017),
DimeNet (Klicpera, Groβ, and Günnemann 2020), Ham-
Net (Li et al. 2021c)). MoleculeNet is a widely used bench-
mark for various methods of molecular representation learn-
ing. DMPNN, CMPNN and AttenetiveFP are three vari-
ants of message passing neural networks. GROVER is a
self-supervised graph transformer method based on molec-
ular motif substructure for learning molecules. Drug3D-
Net proposed a spatial-temporal gated attention module
to learn molecular voxelized reprersentation. GeomGCL
is a geometric graph contrastive learning based on 2D
view and 3D view graphs for molecular property predic-
tion. GEM is a geometry-enhanced molecular representa-
tion learning method to learn molecular spatial knowledge
using 3D structure, such as bond length, bong angles and
atomic distances. SchNet models molecular quantum inter-
actions using a continuous-filter convolutional neural net-
work. DimeNet uses the directional information based on
angles to learn molecular graph by constructing spheri-
cal Bessel function and spherical harmonics. HamNet fits
molecular positions and momentums to preserve 3D confor-
mations with a Hamiltonian network.
Implementation Details. LagNet is trained on the basis of
Pytorch framework, with Adam [52] as the optimizer to ap-
ply gradient back-propagation. All datasets are split into
training, validation and testing set with a ratio of 0.8, 0.1,
0.1 , respectively. We use mean absolute error (MAE) for
QM9, and root mean squared error (RMSE) for Lipop, Free-
Solv to evaluate the performance of regression tasks. As
for classification datasets, cross-entropy losses is applied to
optimize model, and the receiver operating characteristics
curve (ROC) is used as a metric for Tox21 and BBBP to
evaluate the overall performance. The learning rate is set
to 0.0001 with decay rate 0.00004 during training LagNet.
The dropout and batch size are set to 0.2, 16, respectively. It
should be noted that the time step size ∆t in our experiment
is set to 0.025. In addition, we use the identical featurization
as HamNet (Li et al. 2021c). In total, 39-dimensional atom
features and 10-dimensional bond features are obtained from
each molecule.

Performance Evaluation
Overall Comparision. The performance comparisons of
conformation prediction on QM9 are presented in Table 1.
As shown in Table 1, our model trained in 100 epochs sig-
nificantly outperforms all the baselines on Kabsch-RMSD
loss LKR, 3-hop loss L3D and distance loss based on
L3D, which demonstrates the ability of LagNet in recon-
structing 3D conformations. On the whole, our proposed
LagNet improves the performance over the best HamNet
baseline with 6% for Kabsch-RMSD loss. Figure 3 visual-
izes the conformations at different iterations for molecule
“CC(C)C1OCC1=O” selected randomly on test set, (h) de-
picts the 3D structure of real conformation, (i) is the molec-
ular 2D image generated by RDKit package. As we can see,
with the number of iterations increasing, conformations con-
verge to the real one, gradually.

Table 2 summarizes the predictive performances of
LagNet and previous 2D-based models and 3D-based mod-
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Model Kabsch-RMSD (Å) Distance Loss (10−2Å) 3-hop Loss (103Å)
RDKit 2.349 0.565 4.246
MPNN 1.634 0.592 0.694
HamNet 1.253 0.213 0.411

LagNet (Lv
loss) 0.996 0.181 1.742

LagNet (as proposed) 1.180 0.201 0.402

Table 1: Performance comparisons of conformation prediction on QM9.

Model Type Model Physiology Physical chemistry Quantum
Tox21

Multi-ROC↑
BBBP
ROC↑

Lipop
RMSE↓

FreeSolv
RMSE↓

Pc.Ave
RMSE↓

QM9
Multi-MAE↓

2D-based models

MoleculeNet 0.829 0.729 0.655 1.150 0.903 2.350
DMPNN 0.854 0.917 0.591 1.009 0.800 -
CMPNN 0.856 0.960 - 0.808 0.808 -

AttentiveFP 0.858 0.920 0.578 0.768 0.673 1.292
GROVER 0.831 0.940 0.560 1.544 1.052 -

3D-based models

Drug3D-Net 0.903 - 0.993 1.471 1.232 -
GeomGCL 0.850 - 0.541 0.866 0.704 -

GEM 0.781 0.724 0.660 1.877 1.269 1.673
SchNet 0.767 0.847 0.909 3.215 2.062 1.974

DimeNet 0.780 - 0.614 0.978 0.796 1.920
HamNet 0.872 - 0.557 0.767 0.662 1.194
LagNet 0.867 0.961 0.538 0.761 0.649 1.187

Table 2: Performance comparison of property prediction on various datasets based on baseline models. Baseline results are
taken from the ref (Li et al. 2021c, 2022b; Rong et al. 2020b; Fang et al. 2022; Song et al. 2020). “↑” indicates that the larger
is better, and “↓” indicates that the smaller is better.

Model Tox21 (Multi-ROC↑) BBBP (ROC↑) Lipop (RMSE↓) FreeSolv (RMSE↓) ESOL (RMSE↓)
LagNet (w/o LagM) 0.856 0.952 0.551 0.789 0.558

LagNet (as proposed) 0.867 0.961 0.538 0.761 0.541

Table 3: Performance comparisons of plug-and-play Lagrangian module on molecular property prediction tasks.

els for the tasks of molecular property prediction with sim-
ilar network design (Li et al. 2021c). The Pc.Ave denotes
the average results of physical chemistry datasets based
on RMSE metric. Among all 2D-based models, the well-
designed attention mechanics model AttentiveFP and mes-
sage passing model CMPNN generally show the better per-
formance, which indicates that learning local and nonlocal
features in AttentiveFP and the essential bond properties of
chemical structure in CMPNN can provide useful seman-
tic information for molecular representation learning. As to
3D-based baseline models, HamNet performs much better
than the other baselines due to the integration of interac-
tive implicit positions and momentums based on Hamilto-
nian network. Although GeomGCL, GEM and DimeNet can
identify geometric information such as distance and angle,
the 3D information in geometric graphs exists much noise,
especially, the 3D position coordinates generation by using
Merck Molecular Force Field (MMFF) (Tosco, Stiefl, and
Landrum 2014), which is implemented in the RDKit pack-
age. Drug3D-Net obtains a high ROC score on Tox21, how-
ever, it has poor performance on the other datasets, which
may be caused by the boolean expression for voxel-based
model. By contrast, LagNet is capable of learning 3D posi-
tion accurately by simulating molecular force field with dis-

creted Lagrangian neural network. Figure 4 shows the scat-
ter diagrams of 12 quantitative quantum-chemical properties
for the test sets on QM9 dataset. As depicted in Figure 4,
we observe that the points on the test sets closely surround
the identity lines, which illustrates that the predictive results
are closer to the target value. Whereas, the property µ of
describing dipole moment has a prediction that deviates sig-
nificantly from the identity line. Thereby, there is a obvious
MAE error between the predictive µ and the ground-truth µ.

Ablation Study. To further investigate the loss function
that influences the performance of conformation prediction,
we conduct the ablation study on Kabsch-RMSD, distance
Loss and 3-hop loss with different loss function trained in
LagNet. Table 1 shows the performance comparisons with
two variants using loss functions Lv

loss and Lloss, respec-
tively. Lloss refers to Eq. (22) and is used to train LagNet,
proposed in this paper. LagNet (Lv

loss) denotes a variant of
LagNet, which is trained with Lv

loss loss, including 1-hop
loss LD instead of L3D. Lv

loss can be calculated as follows:

Lv
loss = LKR(X̂,Xg) + αLD(X̂,Xg) (23)

Refer to the previous section for the significance of X̂ and
Xg . As shown in Table 1, LagNet (Lv

loss) leads to better
performances on Kabsch-RMSD, distance loss than the pro-
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(a) 0-iteration (b) 5-iteration (c) 8-iteration

(d) 10-iteration (e) 15-iteration (f) 20-iteration

(g) 99-iteration (h) Real conf. (i) 2D image

Figure 3: Conformations visualization at different iterations
for molecule “CC(C)C1OCC1=O”.

posed LagNet. However, the 3-hop loss of LagNet (Lv
loss)

are obviously large, which indicates although predictive po-
sitions tend to appear closer to the labeled locations, the rela-
tive structures inside the molecules are distorted and lead to
greater reconstruction error for 3D conformation. Whereas
the proposed LagNet shows better performance, which is
consistent with HamNet (Li et al. 2021c).

Lagrangian Module Analysis. Finally, we analyze the
performance variation of plug-and-play Lagrangian mod-
ule for LagNet with and without molecular force field sim-
ulation using discrete Lagrangian mechanics. The perfor-
mance comparisons are presented in Table 3 with addi-
tional dataset ESOL (Delaney 2004). The “w/o LagM” rep-
resents without Lagrangian module. As we can see, the pro-
posed model LagNet outperforms LagNet (w/o LagM) on
molecular property prediction datasets. The plug-and-play
Lagrangian module can simulate molecular force field with
parameterized position coordinates using discrete-time La-
grangian equations. Therefore, LagNet improves the predic-
tive performance on various downstream tasks.

Conclusion
In this paper, we propose a novel Lagrangian mechanics-
based plug-and-play architecture LagNet by simulating
molecular force field for preserving molecular conforma-
tion, which brings molecular dynamics simulation into
molecular representation learning. LagNet is designed only
with parameterized position coordinates, which implements
Lagrangian mechanics to learn molecular representation

(a) µ (b) α (c) εHOMO

(d) εLUMO (e) 4ε (f) 〈R2〉

(g) ZPV E (h) U0 (i) U

(j) H (k) G (l) cv

Figure 4: Scatter diagrams of 12 quantitative quantum-
chemical properties for the test sets on QM9 dataset. The
horizontal axis is the predicted value by our model, and the
vertical axis is the ground truth value. The trend lines and
identity lines for each predicted property are shown as solid
lines and the dashed lines, respectively.

without obeying any additional restrictions. LagNet can gen-
erate known conformations and generalize for unknown
ones by learning implicit positions iteratively using discrete-
time Lagrangian equations. The experimental results show
that LagNet can well learn 3D molecular structure fea-
tures, which thereby demonstrates the effectiveness of the
proposed LagNet on molecular property prediction tasks.
Meanwhile, LagNet can be also implemented on other tasks
in the field of drug discovery, such as drug-drug interaction
prediction. Nevertheless, there is still much space for im-
provement of LagNet. For future work, a straight-forward
improvement is to calculate discrete gradient accurately in-
stead of obtaining a approximation using leapfrog integrator.
In addition, another promising aspect would be to replace
current discrete method with a continuous calculus method,
which could enable fine-grained modeling of molecular dy-
namics. Last but not least, as to noisy data, for providing pre-
cise energy and momentum conservation, variational inte-
grator networks (Desai, Mattheakis, and Roberts 2021) will
be a considerably interesting topic.
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