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Abstract

Routine clinical visits of a patient produce not only im-
age data, but also non-image data containing clinical in-
formation regarding the patient, i.e., medical data is multi-
modal in nature. Such heterogeneous modalities offer dif-
ferent and complementary perspectives on the same patient,
resulting in more accurate clinical decisions when they are
properly combined. However, despite its significance, how to
effectively fuse the multi-modal medical data into a unified
framework has received relatively little attention. In this pa-
per, we propose an effective graph-based framework called
HetMed (Heterogeneous Graph Learning for Multi-modal
Medical Data Analysis) for fusing the multi-modal medical
data. Specifically, we construct a multiplex network that in-
corporates multiple types of non-image features of patients to
capture the complex relationship between patients in a sys-
tematic way, which leads to more accurate clinical decisions.
Extensive experiments on various real-world datasets demon-
strate the superiority and practicality of HetMed. The source
code for HetMed is available at https://github.com/Sein-Kim/
Multimodal-Medical.

1 Introduction
Along with recent advances of deep convolutional neural
networks (CNNs) in computer vision domain, analyzing
medical image with CNNs have achieved great success in
patient healthcare (Azizi et al. 2021; Sun, Yu, and Bat-
manghelich 2021; Taleb et al. 2020; Deng et al. 2020; Ag-
garwal et al. 2021). Despite their success, they pay little at-
tention to the inherent uniqueness of medical data: medical
data is multi-modal in nature. That is, routine clinical vis-
its of a patient produce not only image data, but also non-
image data containing clinical information regarding the pa-
tient (Cui et al. 2022), which offers complementary diag-
nostic information of patients. More precisely, image data
includes images of various body parts used for diagnostic or
treatment purposes, while non-image data includes clinical
data (e.g., demographic features and diagnosis) and lab test
results (e.g., structured genomic sequences and blood test
results). Such heterogeneous medical data provides differ-
ent and complementary views of the same patient, leading
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to more accurate clinical decisions when they are properly
combined. Hence, it is crucial to study how to integrate the
multi-modal medical data for medical image analysis, which
is relatively under explored despite its importance.

However, effectively fusing the multi-modal medical data
is not a trivial task since a variety of clinical modalities con-
tain their own distinct information and may have different
data format (Cui et al. 2022). Some studies reflect multi-
ple modalities in an “early fusion” manner by combining
images of different modalities (e.g., positron emission to-
mography (PET), computed tomography (CT) and magnetic
resonance imaging (MRI)) before training the model (Ter-
amoto et al. 2016; Tan et al. 2020; Guo et al. 2019). On
the other hand, “late fusion” approaches combine represen-
tations of different imaging modalities (Liu et al. 2021; Suk
et al. 2014; Xu et al. 2016), while others learn from both
image and non-image medical data by combining informa-
tion from independently trained models in a post-hoc man-
ner (Sanyal, Kar, and Sarkar 2021; Akselrod-Ballin et al.
2019; Cheerla and Gevaert 2019). A recent approach pro-
poses end-to-end learning strategies for fusing multi-modal
features at different stages of the model training, i.e., fusing
intermediate features and output probabilities (Holste et al.
2021). However, current practice of naively integrating dif-
ferent modalities cannot fully benefit from the complemen-
tary relationship between multiple modalities.

In this work, we focus on the fact that patients who share
similar non-image data are likely to suffer from the same
disease. For example, it is well known that a group of peo-
ple possessing the E4 allele of apolipoprotein E (APOE)
has the primary genetic risk factor for the sporadic form of
Alzheimer’s Disease (AD) (Emrani et al. 2020). Hence, by
introducing non-image data (e.g., APOE in the tabular data)
in addition to image data, we argue that preemptive clinical
decisions can be made at an early stage of AD, which may
not be detected based on image data only.

To elaborate our argument, we compare the similarity of
non-image data between various levels of dementia with
OASIS-3 (LaMontagne et al. 2019) dataset in which pa-
tients in the dataset are divided into four classes according
to the severity of dementia assessed using Clinical Demen-
tia Rating (CDR) scale (Morris 1991): CDR 0 indicates nor-
mal cognitive function, CDR 0.5 indicates very mild impair-
ment, CDR 1 indicates mild impairment, and CDR 2 indi-
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Figure 1: Average pairwise cosine similarity of patients’
non-image features between various CDR levels of demen-
tia. Similarity is calculated with all features in (a), Type 1
features (i.e., personal and family historical list of patients)
in (b), and Type 2 features (i.e., cognitive abilities reported
by clinicians) in (c).

cates moderate dementia. We calculate the average pairwise
cosine similarities of patients’ non-image features within a
class and between different classes in Figure 1 (a). We ob-
serve that the patients in the same class (i.e., diagonal) share
high similarity compared with those in different classes (i.e.,
off-diagonal), demonstrating that patients with similar non-
image data are more likely to suffer from the same disease.
Furthermore, we find out that diverse aspects of non-image
data induce complex similarity relationships between pa-
tients as shown in Figure 1 (b) and (c), i.e., the similarity
among patients between different classes varies according to
which features are selected for calculating the similarity. As
a concrete example, consider two patients each of whom suf-
fers from dementia of CDR 1 and 2, respectively. Incorporat-
ing personal and family historical list of patients (i.e., Type 1
features) may fail to find connections between the patients of
CDR 1 and 2 as shown in Figure 1 (b). However, if the sim-
ilarity is calculated based on the patients’ cognitive abilities
(i.e., Type 2 features), we observe that the similarity between
patients that belong to CDR 1 and 2 is relatively high, which
indicates that mild impairment (i.e., CDR 1) likely leads to
moderate dementia (i.e., CDR 2). This implies that consid-
ering complex relationship between patients induced by var-
ious types of features helps to capture implicit relationships
that can play a key role in making medical decisions.

Contribution. In this work, we propose a general frame-
work called HetMed (Heterogeneous Graph Learning for
Multi-modal Medical Data Analysis) for fusing multi-modal
medical data (i.e., image and non-image) based on a graph
structure, which provides a natural way of representing
patients and their similarities (Parisot et al. 2017). Specifi-
cally, each node in a graph denotes a patient associated with
multi-modal features including medical images and non-
image data of the patient. Moreover, each edge represents
the similarity between patients in terms of non-image data.
To capture the complex relationship between patients in a
systematic way, we propose to construct a multiplex net-
work (De Domenico et al. 2013) whose edges are connected
according to the similarity of various feature combinations,
revealing various types of relationship between patients.
Our extensive experiments on various real-world datasets
demonstrate the superiority of HetMed, showing that
modeling complex relationships inherent between patients

is crucial. A further appeal of integrating multi-modality
into a graph structure, especially via a multiplex network, is
that it shows robustness even with scarce label information.

2 Related Work
2.1 Medical Image Representation Learning
Training deep neural networks requires massive number of
labeled data, which is time-consuming and expensive es-
pecially in medical domain. Recently, self-supervised rep-
resentation learning methods for medical image has been
recently proposed to alleviate the lack of training data. In-
spired by SimCLR (Chen et al. 2020), Azizi et al. (2021)
propose a loss function to maximize the mutual information
between the images of the same patient. Sun, Yu, and Bat-
manghelich (2021) propose bi-level self-supervised learning
objective for local anatomical level and patient-level. They
use graph structure to model the relationship between differ-
ent anatomical regions. For 3D medical images, Taleb et al.
(2020) propose five self-supervised learning strategies in-
spired by recent computer vision approaches (Noroozi and
Favaro 2016; Gidaris, Singh, and Komodakis 2018; Doer-
sch, Gupta, and Efros 2015). Despite their success, they are
designed to utilize only single-modality data, whereas multi-
modal data are common in medical field.

2.2 Multi-modal Medical Image Analysis
By incorporating multiple modalities of medical data, ma-
chine learning models can trace patterns of diseases which
cannot be captured by single modality of data. Some stud-
ies create multi-modal inputs to CNNs by combining im-
ages of multiple modalities (e.g., PET, CT and MRI) in an
“early fusion” manner. Teramoto et al. (2016) identify ini-
tial pulmonary nodule candidates from both PET and CT
images, and candidate regions from two images were com-
bined for classification. Tan et al. (2020) propose medical
image fusion method based on boundary measure modulated
by a pulse-coupled neural network (Wang, Wang, and Guo
2018). Others learn from both image and non-image medical
data by combining information from independently trained
models in a post-hoc manner. Akselrod-Ballin et al. (2019)
integrate XGBoost selected clinical features and mammog-
raphy images to predict breast cancer of patients. Cheerla
and Gevaert (2019) estimate the future course of patients
with cancer lesions by fusing features that are indepen-
dently learned from clinical data, mRNA expression data,
microRNA expression data and histopathology whole slide
images (WSIs). Recently, an end-to-end learning framework
for fusing multiple modalities at different stages of model
training has been proposed (Holste et al. 2021). However, a
naive integration of the modalities cannot fully benefit from
the complementary relationship between the modalities.

To address the issue, some recent works (Parisot et al.
2017; Kazi et al. 2019; Cao et al. 2021) suggest to fuse the
multi-modalities into a graph structure. More precisely, each
node feature is associated with a patient’s imaging feature
vector, while edges represent the similarity between patients.
These prior works, however, (a) do not consider inherent
complex relationship between patients and (b) fail to show
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Figure 2: Overall model framework.

generalizability by only applying to a certain disease (e.g.,
autism spectrum disease and Alzheimer’s disease). Instead,
we seek a general framework that encodes multi-modality
into elaborately constructed network.

2.3 Multiplex Graph Neural Networks
With the recent success of deep neural networks, Graph
Neural Networks (GNNs) extend the deep neural networks
to deal with arbitrary graph-structured data. GNNs are
trained by repeatedly aggregating the information from
neighborhoods in a graph structure (Kipf and Welling 2016;
Hamilton, Ying, and Leskovec 2017; Veličković et al. 2017;
Lee et al. 2022a). Moreover, recent studies try to alleviate
lack of label information with self-supervised learning meth-
ods (Zhu et al. 2020; Lee, Lee, and Park 2022; Lee et al.
2022b). However, by assuming only a single type of relation-
ship between nodes, the above GNNs cannot deal with vari-
ous types of edges which are prevalent in reality. A multiplex
network, which is a type of heterogeneous graph (Shi et al.
2017), which is also known as multi-view graph (Qu et al.
2017), multi-layer graph (Li et al. 2018), multi-dimension
graph (Ma et al. 2018), multi-relational graph (Schlichtkrull
et al. 2018), and multiplex heterogeneous graph (Cen et al.
2019) in the literature, considers multiple types of relation-
ships among a set of single-typed nodes. Recent multiplex
network embedding methods aim to learn a single embed-
ding for each node that captures multiple types of relation-
ships associated with the node (Park et al. 2020; Jing, Park,
and Tong 2021; Jing et al. 2021). MVE (Qu et al. 2017) and
HAN (Wang et al. 2019) adopt attention approaches to com-
bine embeddings learned from various relationships. DMGI
(Park et al. 2020) and HDMI (Jing, Park, and Tong 2021)
propose to adopt mutual information-based approaches to
learn embeddings of nodes with consensus regularization
and high order mutual information, respectively. To the best
of our knowledge, this work is the first to employ a multi-
plex network to capture the complex relationship between
patients for multi-modal medical image analysis.

3 Problem Statement
Definition 1. (Attributed Multiplex Network)
An attributed multiplex network is a network
G = {G(1), ...,G(r), ...,G(|R|)} = {V, E ,X}, where
G(r) = {V, E(r),X} is a graph of the relation type r ∈ R,
V is the set of n nodes, E =

⋃
r∈R E(r) ⊆ V × V is the

set of all edges with relation type r, and X ∈ R|V|×F

is a matrix that encodes node attribute information for n
nodes. Given the network G, A = {A(1), ...,A(|R|)} is a
set of adjacency matrices, where A(r) ∈ {0, 1}|V|×|V| is an
adjacency matrix of the network G(r).
Task: Multi-modal Medical Image Analysis. Given a
multi-modal medical data D = {B,C, Y }, where B ∈
R|V|×Fimg is the 2D or 3D medical image data, C ∈
R|V|×Fnon-img is the non-image medical data that consists of
categorical and numerical features, and Y ∈ R|V|×c is the
label matrix, where c is the number of classes. The goal
of multi-modal medical image analysis is to classify pa-
tient i into label Yi given multi-modal medical data, i.e.,
medical image bi ∈ B ∈ R|V|×Fimg and non-image data
ci ∈ C ∈ R|V|×Fnon-img of patient i.

4 Method
An overview of our proposed HetMed is shown in Fig. 2.

4.1 Image Preprocessing: Anatomical
Standardized Image

Unlike ordinary images, medical images contain noisy in-
formation due to the difference in photographing devices
and physical size variation per patient. To get medical im-
age represented in standard anatomical information, we use
a software called SimpleITK (Lowekamp et al. 2013; Yaniv
et al. 2018) for medical image pre-processing that works
as: bi = Topt(Ts(T

−1
i (boriginal

i )), transforming original
image boriginal

i of patient i into preprocessed image bi

with standard anatomical coordinate. Transformation func-
tion T−1

i is a fixed mapping function that maps patient i’s
image domain to patient i’s virtual image domain, while
Ts is a fixed mapping function that maps virtual image do-
main to standard anatomical image domain. Finally, Topt

is a modified mapping function for optimization. The trans-
formation function, T−1

i is a fixed mapping function which
maps patient i’s image domain to patient i’s virtual image
domain. Ts is fixed mapping function which maps virtual
image domain to standard anatomical image domain. Fi-
nally, Topt is modified mapping function for optimization.

4.2 Learning Medical Image Representation
After the image preprocessing step, we obtain representa-
tions of images through a pretrained image encoder. We
adopt several previous self-supervised medical image rep-
resentation learning methods to verify the generality of
HetMed.

2D Medical Image. Following Azizi et al. (2021), we first
pre-train an encoder network f(·) : R|V|×Fimg → R|V|×Fz

(i.e., a ResNet (He et al. 2016)) with non-medical image
datasets (i.e., STL10 (Coates, Ng, and Lee 2011) and Ima-
geNet (Deng et al. 2009)) by adopting recent self-supervised
contrastive learning methods1, e.g., SimCLR (Chen et al.
2020) and MoCo (He et al. 2020). After the non-medical
image pre-training step, we adopt Multi-Instance Con-
trastive Learning (MICLe) loss (Azizi et al. 2021), which

1We do not use the label information.
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Patient Age DIG TRA ADA MMS City APOE RAV

1 42 34 -4 18.6 28 2 0 6

2 73 25 -15.8 31 20 9 1 4

3 80 38 -1.5 14.6 29 9 0 4

4 29 25 -9.4 21.3 27 4 1 4

5 65 34 -10.8 25.6 25 7 0 5

Column-wise
K-means Clustering

Type 3: ADAS, MMSE
Type 4: DIGIT, TRAIL, RAVLT

Type 2: APOE
Type 1: Age, City

(a) Feature Clustering

(b) Multiplex Network

𝜌 ! 2, 3 > 𝜃(!)

Patient 1

Patient 2

Patient 3

Patient 5

Patient 4

𝜌 $ 3, 5 > 𝜃($)

Figure 3: Multiplex network construction.

maximizes the mutual information between images from
the same patient. More formally, given a randomly sampled
mini-batch of patient i, two randomly selected medical im-
ages b1

i , b2
i ∈ RFimg of patient i are encoded via the encoder

network f(·) to generate representations z1i , z2i ∈ RFz , re-
spectively. Given a mini-batch images of size N , the MICLe
loss between patient i and other patients is given as follows:

LMICLe
i = − log

exp(sim(z1i , z
2
i )/τ)∑2N

k=1 1[k ̸=i]exp(sim(zi, zk)/τ)
(1)

where sim(·, ·) is the cosine similarity between two vectors,
and τ is a temperature hyperparameter. Finally, the patient
i’s image representation zi is given by the mean of multiple
images, i.e., zi = 1/K

∑K
k=1 z

k
i , where zki is the represen-

tation of the k-th image of patient i, and K is the number of
images for a patient.

3D Medical Image. On the other hand, digital medical
imaging systems can also create 3D images of human or-
gans. With 3D images, medical staffs can access new an-
gles, resolutions, and more details required for better med-
ical decisions while minimizing radiation exposure of pa-
tients. However, inherent limited availability of 3D medical
image data (Singh et al. 2020) makes it difficult to learn rep-
resentations of 3D images by directly applying MICLe loss.
Thus, we adopt recently proposed medical image represen-
tation learning approaches for 3D medical image, i.e. 3D
Jigsaw, 3D Rotation and 3D Exampler (Taleb et al. 2020)
to pre-train an encoder network f(·) that produces a medi-
cal image representation zi ∈ RFz for each patient i. These
image representations are later used as node features of the
multiplex network. Note that following (Taleb et al. 2020),
we do not pre-train f(·) with non-medical image dataset.

4.3 Multiplex Network Construction
In this section, we introduce how to construct a multi-
plex network to capture the inherent complex relationship
between patients. Different from conventional approaches

that utilize multiplex networks introduced in Section 2.3,
where multiple types of relations are predefined (e.g., Paper-
Author-Paper, Paper-Subject-Paper relationship in citation
networks), relationship between patients are usually not
given. Thus, the main challenge of constructing a multiplex
network based on patient data is how to extract meaningful
relationship between patients. On the other hand, non-image
medical data contains various types of information regarding
patients, e.g. demographic features, personal and family his-
torical list and lab test results, each of which provides unique
clinical information. That is, each type of non-image fea-
ture has a different connection to the target disease. For ex-
ample, African Americans (i.e., demographic features) have
been reported to have a higher prevalence of Alzheimer’s
disease than Caucasians (Howell et al. 2017), while histori-
cal list (i.e., personal and family historical list) is an impor-
tant non-modifiable risk factor for hypertension (Ranasinghe
et al. 2015). Since non-image features can be categorized
into several types regarding their characteristics, categoriz-
ing the features is the first step for relationship extraction.

Although adopting the domain knowledge is straight-
forward for the non-image features categorization, domain
knowledge may (1) not be always available, and (2) not help
discover implicit correlation between features. Thus, to au-
tomatically categorize various types of non-image features,
we simply adopt K-means clustering algorithm 2 on the non-
image tabular data C ∈ R|V|×Fnon-img in a column-wise man-
ner, which partitions the features in Fnon-img dimensions into
|R| sets, i.e., T = {T1, T2, . . . , T|R|}. By doing so, we di-
vide non-image data C into non-overlapping |R| types of
features as shown in Figure 3 (a).

With |R| types of non-image features, we construct a
multiplex network G = {G(1), ...,G(r), ...,G(|R|)}, where
each G(r) is constructed by calculating the cosine similarity
of type r features of non-image data, i.e., C(r), as follows:

A(r)(i, j) =

{
1 if ρ(r)(i, j) > θ(r),

0 otherwise
(2)

where ρ(r)(i, j) is the cosine similarity of type r non-image

feature between patient i and j, i.e., ρ(r)(i, j) =
c
(r)
i ·c(r)

j

∥c(r)
i ∥·∥c(r)

j ∥

where c
(r)
i is the i-th row of C(r), and θ(r) is the threshold

hyperparameter for each relation r. For example in Figure
3 (b), patient 2 and patient 3 are connected by relation type
1 since their age and city features (i.e. demographics type)
are similar, while patient 3 and patient 5 are connected
by APOE similarity (i.e., relation type 2). Finally, the
image representation Z ∈ R|V|×Fz , and non-image feature
C ∈ R|V|×Fnon-img are concatenated to generate the node

2For simplicity, we adopt K-means column-wise clustering as-
suming the categorical features are continuous, because a major-
ity of the categorical features are in fact ordinal features, e.g., 12
out of 14 categorical features, and 13 out of 17 categorical fea-
tures are ordinal in ADNI and OASIS-3 dataset, respectively. A
general approach that would work regardless of the feature type is
to use a cluster algorithm that works on mixed data types, such as
K-prototype clustering (Huang 1997).
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attribute matrix X ∈ R|V|×F of multiplex network G, i.e.,
F = (Fz + Fnon-img).

4.4 Multiplex Graph Neural Networks
Given a multiplex network G, learning from heterogeneous
types of relationship among nodes is non-trivial, since
these types of relationship are related (Park et al. 2020).
Recently proposed multiplex network embedding methods
captures interaction between relationships through attention
mechanism (Wang et al. 2019) and consensus regularization
(Park et al. 2020). Among various approaches for multiplex
network embedding, we adopt DMGI (Park et al. 2020) in
this work due to its simplicity and applicability under un-
supervised setting. However, as HetMed is model-agnostic,
any multiplex network embedding method can be adopted
as will be demonstrated in Appendix 7.5.
Deep Multiplex Graph Infomax (DMGI). The core idea
of DMGI is to learn the consensus embedding of a single
node regarding multiple relation types, while each relation-
type specific node embedding is trained to maximize the mu-
tual information with relation-type specific summary vec-
tor. Specifically, relation-type specific node encoder gr(·) :
R|V|×F × R|V|×|V| → R|V|×d generates the relation-type
specific node embedding matrix H(r) ∈ R|V|×d for each re-
lation type r ∈ R. Then, the summary representation s(r)

of graph G(r) is computed through mean pooling readout
function. Given the embedding H(r) and the summary vec-
tor s(r) ∈ Rd, DMGI maximizes the mutual information
between H(r) and s(r), while minimizing the mutual infor-
mation between corrupted representation H̃(r) and s(r) as

L(r) =

|V|∑
i=1

logD(h
(r)
i , s(r)) +

|V|∑
j=1

log (1−D(h̃
(r)
j , s(r))) (3)

where D is a discrimination function that scores patch-
summary representation pairs, i.e., high score for positive
patch-summary pairs (h

(r)
i , s(r)), where h

(r)
i is the type r

embedding of node vi. However, independently trained en-
coder gr(·), which contains relevant information regarding
each relation type r, cannot fully benefit from the multiplex-
ity of the network. To this end, DMGI proposes consensus
regularization which aims to minimize the discrepancy be-
tween relation specific embeddings, i.e., {H(r)|r ∈ R}, and
the consensus embedding O ∈ R|V |×d as:

ℓcs =
[
O−Q

(
{H(r)|r ∈ R}

)]2
−
[
O−Q

(
{H̃(r)|r ∈ R}

)]2
(4)

where Q is an attentive pooling function for every relation-
specific embedding matrix H(r). Finally, we introduce a
semi-supervised module to learn from labeled medical im-
ages based on the consensus embedding O as:

ℓsup = − 1

|YL|
∑
l∈YL

c∑
i=1

Yli ln Ŷli (5)

where YL is the set of labeled node indices, Y ∈ R|V|×c is
the label matrix, and Ŷ is the model prediction after pass-
ing the consensus embedding O through a softmax layer.

Dataset Body Target 3D # Non-Img # Subjects # ClassesParts Disease Features
ADNI Brain Alzh ✓ 17 417 3

OASIS-3 Brain Alzh ✓ 19 979 4
ABIDE Brain Autism ✓ 14 977 2
Duke Breast Tumor ✕ 25 614 3

CMMD Breast Tumor ✕ 4 1774 2

Table 1: Data statistics. Duke = Duke-Breast, Alzh =
Alzheimer

Finally, our model is optimized to minimize the following
loss:

L =
∑
r∈R

L(r) + αℓcs + βℓsup + γ ∥Θ∥2 (6)

where α, β, γ are adjustable hyperparameters for each loss
term, and Θ is the trainable parameters of our model.

5 Experiments
5.1 Experimental Setup
Datasets. To evaluate our proposed HetMed, we conduct
experiments on five multi-modal medical datasets. Specif-
ically, we use three brain related datasets, and two breast-
related datasets. Note that since 3D images can be readily
converted to 2D images through slicing, we also report the
performance on 3D image datasets when they are converted
to 2D. The detailed statistics are summarized in Table 1 and
further details on each dataset are described in Appendix 7.1.

Methods Compared. 1) Methods for 2D medical im-
ages: We compare HetMed against three non graph-based
feature fusion approaches, i.e., “Feature Fusion (Feat.),”
“Probability Fusion (Prob.)” and “Learned Feature Fusion
(Learned)” proposed in Holste et al. (2021), and one graph-
based approach (Spec.) (Parisot et al. 2017). Since these
methods are trained in an end-to-end manner, we also train
HetMed in an end-to-end manner for fair comparisons, i.e.,
2D medical images are directly used as input to f(·) instead
of pre-training f(·) based on non-medical described in Sec-
tion 4.2.1. Besides, to compare among the pre-training ap-
proaches, i.e., SimCLR (Chen et al. 2020) and MoCo (He
et al. 2020), we propose baselines that do not leverage mul-
tiplex graph structure after the concatenation of image and
non-image feature, i.e., MLP and GCN. Specifically, both
MLP and GCN are trained to predict labels given a con-
catenated vector of image and non-image features, but GCN
uses a single graph constructed based on the entire non-
image features whereas MLP is solely based on the features.
Note that the major difference between Spec. and GCN is
the graph structure on which each model is applied, i.e.,
Spec. constructs a graph by comparing absolute values of
certain features leading to an almost fully connected graph,
whereas GCN constructs a graph based on the cosine simi-
larity of given features leading to a sparse graph. Moreover,
Feat. is equivalent to MLP when the model is trained end-
to-end. 2) Methods for 3D medical images: Since there is
no existing studies for multi-modal medical image analysis
that use 3D medical images, we compare HetMed with MLP
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Model ADNI OASIS-3 ABIDE Duke-Breast CMMD
Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

Feat. (=MLP) 0.521 0.562 0.216 0.625 0.407 0.753 0.466 0.712 0.667 0.75
(0.017) (0.020) (0.008) (0.022) (0.015) (0.020) (0.031) (0.032) (0.021) (0.017)

Prob. 0.509 0.522 0.230 0.639 0.385 0.761 0.407 0.688 0.564 0.665
(0.009) (0.020) (0.022) (0.025) (0.034) (0.031) (0.028) (0.025) (0.013) (0.026)

Learned 0.576 0.598 0.199 0.647 0.649 0.776 0.484 0.625 0.714 0.773
(0.012) (0.022) (0.009) (0.010) (0.021) (0.023) (0.022) (0.024) (0.032) (0.020)

Spec. 0.628 0.788 0.202 0.679 0.696 0.717 0.427 0.701 0.681 0.742
(0.009) (0.018) (0.011) (0.014) (0.032) (0.037) (0.010) (0.025) (0.036) (0.024)

GCN 0.606 0.795 0.201 0.670 0.768 0.770 0.430 0.671 0.683 0.745
(0.022) (0.015) (0.021) (0.033) (0.019) (0.017) (0.016) (0.020) (0.028) (0.016)

HetMed 0.774 0.813 0.205 0.697 0.778 0.784 0.432 0.794 0.716 0.785
(0.037) (0.024) (0.005) (0.011) (0.035) (0.033) (0.024) (0.057) (0.008) (0.010)

Table 2: Performance under end-to-end framework on 2D medical image analysis.

Pretrain Model ADNI OASIS-3 ABIDE Duke-Breast CMMD
Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

SimCLR

MLP 0.561 0.781 0.219 0.646 0.703 0.735 0.430 0.652 0.523 0.751
(0.022) (0.031) (0.017) (0.016) (0.023) (0.022) (0.019) (0.019) (0.027) (0.014)

GCN 0.611 0.816 0.235 0.685 0.751 0.756 0.440 0.698 0.625 0.745
(0.019) (0.014) (0.025) (0.026) (0.016) (0.018) (0.017) (0.019) (0.014) (0.022)

HetMed 0.851 0.857 0.235 0.686 0.833 0.842 0.447 0.765 0.720 0.781
(0.009) (0.012) (0.020) (0.017) (0.005) (0.004) (0.011) (0.021) (0.025) (0.022)

MoCo

MLP 0.547 0.757 0.247 0.669 0.708 0.739 0.439 0.699 0.531 0.748
(0.012) (0.020) (0.014) (0.013) (0.012) (0.014) (0.020) (0.027) (0.033) (0.021)

GCN 0.616 0.825 0.238 0.679 0.734 0.749 0.445 0.716 0.611 0.752
(0.016) (0.018) (0.013) (0.021) (0.022) (0.030) (0.026) (0.024) (0.019) (0.021)

HetMed 0.832 0.842 0.242 0.690 0.855 0.858 0.446 0.753 0.706 0.764
(0.011) (0.020) (0.030) (0.022) (0.006) (0.006) (0.011) (0.027) (0.018) (0.024)

Table 3: Performance over pretraining strategies on 2D medical image analysis.

and GCN as described above. Moreover, we evaluate vari-
ous pre-training strategies, i.e., Jigsaw, Rotation, and Exem-
plar (Taleb et al. 2020). Further details on compared meth-
ods are described in Appendix 7.2.

Evaluation Protocol. For end-to-end framework evaluation,
we split the data into train/validation/test data of 60/10/30%
following previous work (Holste et al. 2021). For pretrain-
ing framework evaluation, we use the whole data to pretrain
the image encoder network following previous work (Azizi
et al. 2021), and split the data into train/validation/test data
of 60/10/30% to train the final image classifier. We mea-
sure the performance in terms of Micro-F1 and Macro-F1
for classification. We report the test performance when the
performance on validation data gives the best result.

Implementation Details. We use ResNet-18 as our back-
bone image encoder f(·) and single layer GCN (Kipf and
Welling 2016) as our backbone node encoder gr(·). For
hyperparameters, we tune them in certain ranges as fol-
lows: learning rate η in {0.0001, 0.0005, 0.001}, supervised
loss parameter β in {0.01, 0.1, 1.0}, node embedding di-
mension size d in {64, 128, 256}, the number of clusters
|R| in {3, 4, 5}, and the graph construction threshold θ in
{0.01, 0.75, 0.9} for each relationship. Further details are
described in Appendix 7.4.

5.2 Overall Performance
Table 2 and Table 3 show the classification performance of
the methods on the end-to-end and pretraining evaluations,
respectively. We have the following observations: 1) Our
proposed HetMed generally performs well on all datasets
compared to baseline methods not only on the proposed
scheme (i.e., pretraining approach), but also end-to-end
training fashion. This verifies the benefit of considering var-
ious relationships between patients during multi-modality
fusion. 2) We also evaluate HetMed on 3D medical images
in Table 4. HetMed also outperforms other naive fusion
methods, showing generality of the proposed framework. 3)
It is worth noting that methods that fuse multiple modalities
based on a graph structure (i.e., Spec., GCN and HetMed)
perform better than naive fusion methods (i.e., Feat., Prob.,
Learned and MLP). This indicates modeling the relationship
between patients during the fusion helps medical decision
process. Considering that most clinical decisions in reality
are made based on empirical experiences, i.e., previous
similar cases of patients, it is natural to consider relationship
(similarity) during the fusion process. 4) However, among
the graph-based methods, HetMed performs the best. This
indicates that there exist multiple types of features that
should be considered during medical decision process and
also during multi-modality fusion process. 5) Comparing
Table 2 and Table 3, pretraining the image encoder with
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Model ADNI OASIS-3 ABIDE
Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

M-J 0.551 0.742 0.201 0.643 0.652 0.724
(0.015) (0.021) (0.020) (0.018) (0.021) (0.023)

G-J 0.561 0.804 0.230 0.654 0.718 0.755
(0.010) (0.017) (0.009) (0.017) (0.024) (0.015)

H-J 0.761 0.825 0.233 0.687 0.827 0.831
(0.025) (0.010) (0.015) (0.016) (0.009) (0.006)

M-R 0.529 0.700 0.200 0.635 0.669 0.712
(0.017) (0.021) (0.015) (0.020) (0.021) (0.017)

G-R 0.541 0.709 0.216 0.667 0.708 0.741
(0.014) (0.020) (0.011) (0.017) (0.007) (0.010)

H-R 0.632 0.796 0.220 0.675 0.807 0.817
(0.018) (0.010) (0.019) (0.014) (0.006) (0.004)

M-E 0.600 0.810 0.226 0.668 0.700 0.744
(0.011) (0.010) (0.021) (0.014) (0.019) (0.038)

G-E 0.654 0.840 0.247 0.681 0.721 0.755
(0.031) (0.033) (0.018) (0.027) (0.019) (0.020)

H-E 0.832 0.846 0.247 0.682 0.853 0.855
(0.010) (0.012) (0.030) (0.021) (0.008) (0.005)

Table 4: Performance on 3D medical image analysis.
Pretrain methods: -J=Jigsaw, -R=Rotation, -E=Exemplar,
M=MLP, G=GCN, HM=HetMed

Model ABIDE OASIS-3
Ma-F1 Mi-F1 Ma-F1 Mi-F1

Random 0.757 0.766 0.231 0.672
(0.042) (0.041) (0.013) (0.018)

HetMed 0.833 0.842 0.235 0.686
(Clustering-based) (0.005) (0.004) (0.007) (0.011)

Domain 0.851 0.853 0.295 0.717
Knowledge (0.005) (0.006) (0.020) (0.017)

Table 5: Performance on various feature splitting strategies.

non-medical image data helps medical image analysis as
argued in Azizi et al. (2021), which has been overlooked in
previous fusion methods.

5.3 Model Analysis
Number of Clusters. Figure 4 shows the sensitivity anal-
ysis on the hyperparameter |R| of HetMed. Since |R| is
the number of relation types between patients, it determines
how complex the relationship between patients is to be mod-
eled. Note that HetMed becomes equivalent to a single graph
framework (i.e., GCN in Table 3 and 4) if |R| equals to 1. We
observe that |R| = 4 generally gives the best performance.
On the other hand, too few or many clusters deteriorate per-
formance of HetMed. When |R| is small, it lacks capability
to model the complex relationship between patients. When
|R| is large, it can get larger than the number of relation
types inherent in the data, which leads to redundant infor-
mation between multiple types of relationship. Furthermore,
the multiplex network may include noisy relationship that
is medically meaningless, thereby deteriorating the perfor-
mance of HetMed.
Non-Image Features Splitting Strategy. Since a multiplex
network in HetMed is constructed based on non-overlapping
|R| types of non-image features, it is important to have
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Figure 5: Effect of number of training data.

splits such that each type contains its own meaningful
information. In this regard, we compare the performance
of HetMed with various feature splitting strategies in Table
5: i) splitting features randomly, and ii) splitting features
based on domain knowledge3. We have the following
observations: 1) Our proposed clustering-based splitting
strategy outperforms the random splitting strategy. We
attribute this to the fact that the randomly split feature types
may share similar features with one another, which hinders
the construction of a meaningful multiplex network. 2)
Splitting non-image features based on domain knowledge
outperforms the clustering-based strategy. We argue that
feature types that are split based on domain knowledge are
clinically more meaningful, which eventually leads to a
multiplex network that better captures complex relationship
between patients that is clinically more meaningful. It is
important to note that with some help of clinicians, the per-
formance can be further improved, which implies that our
HetMed can serve as a clinical decision support tool. Note
that splitting based on domain knowledge can be considered
as an upper bound of clustering-based splitting strategy.
Number of Training Data. Since a large volume of anno-
tated data is rarely available in medical domain, showing
robustness under the lack of labeled data is a key challenge
in medical image analysis. As shown in Figure 5, HetMed
consistently produces accurate predictions even under the
lack of labeled data, and the performance gap becomes
larger as the number of training data gets smaller, which
demonstrates the practicality of HetMed. By modeling

3We use clinical feature description texts of each datasets to
manually split the non-image features into |R| related types. De-
tails can be found in Appendix 7.5.
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Figure 6: Model explainability analysis.

complex relationship into a multiplex network, HetMed
becomes more robust than single relationship network (i.e.,
GCN). We can also observe that graph-based methods (i.e.,
GCN and HetMed) are more robust than non graph-based
method (i.e. MLP). This is due to the advantage of using
graph neural networks which makes decision by aggregating
information from neighborhoods even with lack of label
information. Moreover, we further verify the robustness of
HetMed under the number of features used in Appendix 7.5.

5.4 Model Practicality
Explainability. The explainability of a machine learning
model is one of the most important factors in its applica-
tion to the medical field. Thanks to the attentive pooling
mechanism in HetMed that captures the importance of each
relation type, HetMed can provide explanations on which
relationship has the most significant effect on the target
disease. In Figure 6(a), we find out that model attention
weights are concentrated on Type 3 relationship (i.e.,
cognitive abilities). This indicates that cognitive ability
is the most important factor in determining Alzheimer’s
disease among the multiple clinical features. Furthermore,
in Figure 6(b), we conduct case studies on two patients,
i.e., Patient A and Patient B, with Alzheimer Disease (AD)
(i.e., CDR 2), who are correctly classified as having AD
by HetMed, but incorrectly classified as not having AD by
GCN. We calculate the average pairwise cosine similarity of
non-image feature between patients A/B, and other patients
that belong to different classes. We find out that when
computing the similarity based on all the features, patients
A and B are expected to belong to CDR 0.5 (i.e., very
mild impairment) and CDR 0 (i.e., normal), respectively.
However, when the similarities are computed based only
on Type 3 feature discovered by HetMed to be important
for the target disease, we observe that both patients A and
B show the highest similarity with patients that belong to
CDR 2 (i.e., moderate dementia). This implies that HetMed
can infer the importance of each feature type, which can
be used to explain the model prediction. We further verify
explainability on various datasets in Appendix 7.5.
Generalizability. To further verify the practicality of
HetMed, we conduct experiments on the situations where
new patients arrive at the hospital (Table 6). We assume
that new patients have provided all the required information
to the hospital, which means these patients have their own
medical image and non-image data. Under this situation, ex-

Model OASIS-3 Duke-Breast CMMD
Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

MLP 0.197 0.646 0.359 0.622 0.484 0.642
(0.017) (0.029) (0.011) (0.023) (0.028) (0.053)

GCN 0.203 0.674 0.360 0.653 0.592 0.670
(0.016) (0.015) (0.023) (0.006) (0.018) (0.027)

HetMed 0.217 0.684 0.362 0.742 0.631 0.748
(0.009) (0.012) (0.012) (0.032) (0.014) (0.013)

Table 6: Performance on generalization.

isting non graph-based approaches (e.g., MLP) would clas-
sify the patients based on their features alone. On the other
hand, benefiting from the inductive capability of graph neu-
ral networks (Hamilton, Ying, and Leskovec 2017), we pro-
pose to add the new patients into the graph that we have used
for training, and classify them based on the trained model.
More precisely, we first split the non-image features of the
new patients into |R| types of features found during training,
and follow Equation 2 to connect them to existing patients.
Having constructed the graph, we use the trained multiplex
graph neural networks to obtain the embeddings for the new
patients, which are then used for classification. For exper-
iments, we split the data into train/validation/test data into
60/10/30%, and use the graph that consists of patients that
belong to the train split during the model training. We re-
port the performance on the test data when the performance
on the validation data is the best. We observe that graph-
based methods (i.e., GCN and HetMed) perform better than
a non graph-based method (i.e., MLP), which demonstrates
the benefit of leveraging the relationship between patients.
Moreover, HetMed outperforms GCN, which again veri-
fies that considering various relationships between patients
is crucial. We argue that this experiment demonstrates the
practicality of HetMed.

6 Conclusion
In this paper, we propose a general framework called
HetMed for fusing multiple modalities of medical data,
which provides heterogeneous and complementary in-
formation on a single patient. Instead of naively fusing
medical data, we propose to fuse multiple modalities
into a multiplex network that contains complex relational
information between patients. By doing so, the proposed
framework HetMed captures important information for
clinical decision by considering various aspects of the given
data. Through experiments on the variety of multi-modal
medical data, we empirically show the effectiveness of
HetMed in fusing multiple modalities. A further appeal
of HetMed is explainability and generalizability, which
demonstrates the practicality of HetMed.
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