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Abstract

Non-intrusive load monitoring (NILM) aims to decompose
aggregated electrical usage signal into appliance-specific
power consumption and it amounts to a classical example
of blind source separation tasks. Leveraging recent progress
on deep learning techniques, we design a new neural NILM
model Multi-State Dual CNN (MSDC). Different from pre-
vious models, MSDC explicitly extracts information about
the appliance’s multiple states and state transitions, which in
turn regulates the prediction of signals for appliances. More
specifically, we employ a dual-CNN architecture: one CNN
for outputting state distributions and the other for predicting
the power of each state. A new technique is invented that uti-
lizes conditional random fields (CRF) to capture state tran-
sitions. Experiments on two real-world datasets REDD and
UK-DALE demonstrate that our model significantly outper-
form state-of-the-art models while having good generaliza-
tion capacity, achieving 6%-10% MAE gain and 33%-51%
SAE gain to unseen appliances.

1 Introduction
Energy efficiency amounts to one of the major challenges
facing today’s families (Alahakoon and Yu 2016). Smart
grids, through their ability to meter and monitor energy
consumption to the level of individual households, provide
fine-grained data to discover patterns in a user’s behaviors.
With these patterns, appropriate strategies can be imple-
mented to improve power efficiency (Wilson, Hargreaves,
and Hauxwell-Baldwin 2015). A critical issue of this tech-
nology is non-intrusive load monitoring (NILM): dissecting
aggregated energy consumption signals of a household – the
usual input to smart meters – into per-appliance signals (Hart
1992). NILM is important not only to accurately unravel the
household’s power consumption patterns (Çimen et al. 2020;
Hassan et al. 2022), but also to tasks such as load forecasting
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(Dinesh, Makonin, and Bajić 2019; Wang, Zhang, and Ren
2018; Kong et al. 2017) and malfunction detection (Shao
et al. 2017; Green et al. 2019; Rashid et al. 2019).

NILM is a classical example of a single-channel blind
source separation (BSS) task such as the infamous cocktail
party problem, i.e., extracting multiple data sources from a
single mixed observation. BSS is known to be highly un-
derdetermined (Naik, Wang et al. 2014). To date, the main-
stream solutions for BSS have relied on statistical modeling.
In the NILM literature, hidden Markov models (HMM) (Zia,
Bruckner, and Zaidi 2011) and conditional random fields
(CRF) (Azaza and Wallin 2017) are two popular model-
ing paradigms to capture the operations of household appli-
ances. As an appliance’s power consumption signal is very
much dictated by (1) the appliances’ states which have (sta-
ble) power consumption levels, i.e., power states, and (2) the
patterns of the power state transitions, these models embed
appliances’ power states and state transitions. This informa-
tion is in turn used for statistical inference of power signals.
A severe limitation of these mainstream solutions is compu-
tational complexity. For large households that contain many
appliances with potentially many power states, these meth-
ods tend to incur unreasonable computational costs. More-
over, they perform poorly for unseen appliances as the in-
ferred model only fits appliances used for training.

Recent advances in deep learning techniques have pre-
sented new pathways to address these limitations. More
specifically, one can model the NILM problem as a
sequence-to-sequence (seq2seq) learning task: Training a
deep learning model that maps the aggregated power sig-
nal to the target per-appliance power signals. Based on this
idea, several NILM solutions have been introduced utilizing
various neural network architectures such as convolutional
neural networks (CNNs), recurrent neural networks (RNNs),
long-short-term memory (LSTM), denoising autoencoders
(Kelly and Knottenbelt 2015a; Mauch and Yang 2015; Hsu
et al. 2019), and transformers (Yue et al. 2020).

In this paper, we argue that the existing neural-based mod-
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els are insufficient for NILM. In particular, these models
were mostly designed to directly translate input aggregated
signals into per-appliance signals, without the necessary step
of exploiting power states and state transitions of the ap-
pliances. As shown in classical statistical inference mod-
els, power state and transitions of appliances can provide
key knowledge on the power consumption of appliances and
could greatly strengthen the predictive ability of a model.
Further, uncovering these power states and patterns of state
shifts may endow the prediction results with better inter-
pretability. Our goal is thus to develop a neural-based NILM
model through mining power states and state transitions.

Our main contributions are three fold: (1) We define a for-
mal model of the multi-state NILM problem and provide a
theoretical justification (see Theorem 1, Sec. 3) for the ad-
vantage of the multi-state setting on variance reduction in
sampling power data. (2) Accordingly, we propose a novel
multi-state NILM model (called MSDC, see Sec. 4) that fea-
tures a dual-CNN architecture: one CNN (state-CNN) for
capturing the appliance’s multiple power states, the other
(value-CNN) for predicting the power consumption for each
state. A cross-entropy is added to state-CNN as a regular-
ization item, which degrades the error in predicting the ap-
pliance’s power consumption. We further replace the cross-
entropy loss with a CRF (Lafferty, McCallum, and Pereira
2001) regularization that enables capturing state transitions.
(3) Experimental results on two real-world datasets REDD
(Kolter and Johnson 2011) and UK-DALE (Kelly and Knot-
tenbelt 2015b) (see Sec. 5) show that our model generalizes
well to unseen appliances where it achieves 6%-10% MAE
gain and 33%-51% SAE gain over the state-of-art on the ac-
curacy of energy decomposing. Moreover, visualization re-
sults demonstrate that the power state transitions predicted
by our model align with the ground truth at a higher level,
compared with baselines.

2 Related Work
NILM was first proposed in (Hart 1992). Mainstream so-
lutions of the problem employ statistical inference models
such as HMM and CRF. (Zia, Bruckner, and Zaidi 2011)
modelled an aggregated signal as a combination of HMMs,
each corresponding to an appliance, and found that power
consumption patterns of appliances can be differentiated
from the aggregated profile. (Kim et al. 2011) investigated
several variants of HMM and demonstrated that a condi-
tional factorial HMM integrating additional features about
the time usage of appliances outperforms other HMM mod-
els. (Kolter and Jaakkola 2012) incorporated additive facto-
rial HMM into the NILM task and developed a convex for-
mulation of approximate inference that is free of local op-
timal. Subsequent HMM variants further demonstrated non-
trivial performance gain (Kolter and Jaakkola 2012; Kong
et al. 2016; Mauch and Yang 2016a). Nevertheless, the as-
sumption that any observation is independent of the other
may violate real-life situations and lead to label bias issue.

CRF-based methods relax the independent assumption
and utilize the contextual information from all observations
to mitigate the label bias problem. (Azaza and Wallin 2017)
exploited CRF and the clustering algorithm to capture the
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Figure 1: Multi-state power consumption of a dishwasher.

component appliance’s power signal and corresponding on-
off states. This method was extended by (He et al. 2019a) to
capture appliances’ multiple states. However, high compu-
tational complexity and poor scalability prevent these sta-
tistical modeling methods from practical usage. Our pro-
posed model avoids these issues because it does not explic-
itly maintain a state transition network, but rather capture
transitions implicitly using CNNs.

Neural networks are suitable for NILM thanks to their
high expressibility. (Kelly and Knottenbelt 2015a) first tack-
led NILM using deep neural networks such as CNN, LSTM,
and denoising autoencoders, with superior performance over
statistical modeling methods. A series of subsequent CNN-
based models (Zhang et al. 2018; Shin et al. 2019; Chen
et al. 2019) revealed that CNN can provide a versatile frame-
work for extracting latent features such as power thresholds,
change point and duration for the power consumption of
appliances. These features are useful for identifying appli-
ances, thereby outperforming models based on other neural
networks. By adding more convolutional layers, enlarging
the number of filters and the kernel size, (Zhang et al. 2018)
proposed a CNN model that gains considerable improve-
ments. As CNN-based models are shown to exhibit consis-
tently reliable performance, we also adopt CNN in this work.

Other models leveraged the correlations between whether
an appliance is on or off and its power (Shin et al. 2019).
A sub-network is added to capture appliances’ on-off states,
which expedite identifying power signals. Several models
have been proposed using dilated convolutions (Chen et al.
2019), generative adversarial network (Pan et al. 2020), and
attention mechanisms (Sudoso and Piccialli 2019). How-
ever, these models are limited to predicting whether the ap-
pliance is on or off, without making an effort to reveal the
full spectrum of power states. In some sense, one can view
capturing the on-off states of an appliance as an extremely
coarse approximation of the power states. Yet, doing this
means that all different power levels when the appliance is
turned on are regarded as being in one “on” state, hence does
not provide enough information to deduce the power signal.

3 Problem Formulation
Multi-state non-intrusive load monitoring (MS-NILM)
problem seeks to recover the power consumption of in-
dividual multi-state appliances from the aggregated power
signal. Let X = (x1, x2, . . . , xT ) ∈ RT+ denote the ag-
gregated power, where T ∈ N+ represents the measured
time. Suppose the scope of investigation includes N ap-
pliances. Appliance i’s power consumption is denoted by
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Yi = (yi1, y
i
2, . . . , y

i
T ) ∈ RT+. Set [N ] as {1, 2, . . . , N}.

Following standard assumption in NILM literature, we as-
sume ∀i ∈ [N ], t ∈ [T ], the signal xt =

∑N
i=1 y

i
t + zt + εt,

where zt denotes the total power consumption of appliances
included in the power reading but fall outside of our scope
of investigation, and εt is a noise signal (Zhang et al. 2018).

A multi-state appliance can be modeled as a finite state
machine with a fixed set of operational states. As we are
interested only in power consumption, we view two oper-
ational states as in the same power state if they have the
same power consumption level, and transitions between op-
erational states are grouped into transitions between power
states. For appliance i, let M i ∈ N+ denote the number
of its power states. In principle, each power state is char-
acterized by a unique power level, and at each time step
the appliance will be in one power state sit. In reality, this
assumption may be over-simplified: (1) The actual power
reading for the appliance at a state is prone to perturba-
tion so there could be small fluctuation at the fixed power
level. Therefore it makes sense to individually express the
power consumption level cit,j for appliance i at state j and
at given time t. (2) Due to uncertainty within the learn-
ing process, it is difficult to pinpoint a single state for the
appliance to be operating in at a given time, but rather a
probability pit,j for appliance i to be in state j at time t.
More formally, the power consumption signal for states at
time step t is determined by power consumption at all M i

states Cit = (cit,1, c
i
t,2, . . . , c

i
t,Mi) ∈ RMi

+ and probability

distribution Pit = (pit,1, p
i
t,2, . . . , p

i
t,Mi) ∈ [0, 1]M

i

, where
cit,j 6= cit,k for j 6= k ∈ [M i] and pit,s is the probabil-
ity Pr(sit = s). Notably, the power state sit generally de-
pends on previous states si1, . . . , s

i
t−1. Indeed, the state tran-

sitions would follow certain specific patterns. E.g., in Fig. 1
State 3 is a successor of State 2. Following standard conven-
tion, we assume that the state transition is Markovian, i.e.,
Pr(sit|sit−1, . . . , s

i
1) = Pr(sit|sit−1). Given above settings,

an appliance’s power consumption can be viewed as the ex-
pectation on that of each state:

yit = Cit · Pit , ∀i ∈ [N ], t ∈ [T ]. (1)

MS-NILM can thus be addressed by inferring each appli-
ance’s power state sequence and the corresponding power
consumption from the aggregated power signals; at each
time step, each appliance’s power consumption is subse-
quently estimated according to Eq. (1). To summarize, we
state the problem of MS-NILM as follows:

Problem Statement: Given a set of instances of energy dis-
aggregation of the form {(X,Y1, . . . ,YN )}, infer Cit
and Pit for all i ∈ [N ] and t ∈ [T ], and further gen-
eralize to unseen aggregated power signal X′.

3.1 Justifications for the Multi-state Setting
We next discuss the need for a multi-state setting for NILM.
The idea is to show that sampling power data from a fine-
grained state structure can result in a smaller sample vari-
ance, making the average power of each appliance easier
to predict. We next make some useful assumptions, based

on which we present our main theoretical result. Following
conventional practice in NILM literature, we assume that an
appliance’s power consumption follows a normal distribu-
tion (Zhang et al. 2018; Mauch and Yang 2016b).

Assumption 1. For each appliance i, the power consump-
tion of each state s at each time step t is drawn from a nor-
mal distribution, i.e., cit,s ∼ N (µis, σ

i
s).

Recall that the observed power is the expectation on the
power of all states, i.e., yit =

∑Mi

s=1 p
i
t,sc

i
t,s. Due to the inde-

pendence of power measures of all states and the additivity
of normal distributions, we have the following fact.

Fact 1. Under Assumption 1, the input power yit of an appli-
ance also follows a normal distribution N (µi, σi) such that
µi =

∑Mi

s=1 p
i
t,sµ

i
s and (σi)2 =

∑Mi

s=1(pit,sσ
i
s)

2.

Since a multi-state model decomposes the total power into
a fine-grained state structure, it is natural to propose the fol-
lowing assumption that enforces the variance of the power
of each state to not exceed that of the observed total power.
This can be seen from the truth depicted in Fig. 1: a dish-
washer has a steady power level at each state; while, the
variance would be increased if we merge any two states into
an abstract state.

Assumption 2. For all s ∈ [M i], σis ≤ σi.
We are now ready to present our main result that uses the

following notations: ỹit denotes the sampled power under the
single-state assumption; ȳit = Es∈[Mi][c̄

i
t,s] is the sampled

power under the multi-state setting which is obtain by aver-
aging the sampled power c̄it,s of each state s ∈ [M i] (sup-
pose the state information is known a priori). We show in
the next theorem that the sampled power data can enjoy a
reduced sample variance from the multi-state setting.

Theorem 1. Suppose we have a sufficiently large number of
independent samples. Under Assumptions 1 and 2, the ex-
pectations and variances of ỹit and ȳit satisfy E[ȳit] = E[ỹit]
and D[ȳit] ≤ D[ỹit] for all t ∈ [T ], where the inequality is
strict if M i ≥ 2.

Proof. With a sufficiently large number of independent sam-
ples, both ỹit and ȳit would approach normal distributions,
i.e., ỹit ∼ N (µi, σi) and ỹit =

∑Mi

s=1 p
i
t,sc

i
t,s. Then, accord-

ing to Fact. 1, E[ŷit] = E[ỹit] follows immediately from the
additivity of normal distributions. The reduced variance can
be derived from Assumption 2 as follows:

D[ŷit] = D
[∑Mi

s=1
pit,sc

i
t,s

]
=
∑Mi

s=1
p2t,sD[cit,s]

=
∑Mi

s=1
p2t,sσ

i
s ≤

∑Mi

s=1
p2t,sσ

i ≤
(∑Mi

s=1
pt,s

)2

σi

= σi = D[ỹit].

If M i ≥ 2, we have
∑Mi

s=1 p
2
t,s <

(∑Mi

s=1 pt,s

)2

and hence
the inequalities above is strict.

Corollary 1. When the appliance has M i(M i ≥ 2) power
states in total, then the power estimation regarding the ap-
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Figure 2: Our model features a dual-CNN architecture.
Two versions, MSDC and MSDC-CRF, can be obtained by
switching between the cross-entropy loss and the CRF loss.

pliance in a multi-state setting with M i states would ap-
proach the mean value of truth power data with a higher
probability than using the single-state setting.

Proof. Assume ȳit =
∑Mi

s=1 p
i
t,sc

i
t,s and ỹit represent the

power estimation utilizing M i states and one state respec-
tively at each time step. According to Theorem 1, ȳit and ỹit
satisfy normal distribution, which denote as ȳit ∼ N (µ̄i, σ̄i)
and ỹit ∼ N (µ̃i, σ̃i) respectively, then we have µ̄i = µ̃i,
σ̄i < σ̃i. Furthermore for ∀ξ > 0:

Pr (|ȳit − µ̄i| < ξ) = Pr (| ȳ
i
t − µ̄i

σ̄i
| < ξ

σ̄i
) = 2Φ(

ξ

σ̄i
)− 1

Similarly, we have: Pr (|ỹit − µ̃i| < ξ) = 2Φ( ξσ̃i )−1, where
Φ() represents the probability meets the standard norm dis-
tribution. Since σ̄i < σ̃i, then Φ( ξσ̄i ) > Φ( ξσ̃i ), further we
can get that Pr (|ȳit − µ̄i| < ξ) > Pr (|ỹit − µ̃i| < ξ).

Remark 1. The corollary ensures the power estimation of
our scheme using multi-state setting can attain a smaller
MAE (see section 5.Perform metrics) with a higher prob-
ability on average than single state-based schemes.

4 The Multi-State Dual CNN Model
The discussion above justifies the benefit of the multi-state
setting in MS-NILM over the single-state setting. In this sec-
tion, we propose a novel model for MS-NILM called Multi-
State Dual CNN (MSDC). We begin with an overview of the
architecture, followed by the elaboration of its mechanisms.
Code and data used for MSDC can be found from our link1.

4.1 Overview
As Fig. 2 shows, we train a model for each appliance i ∈
[N ]. The dataset consists of the aggregated power signal X
as input and Yi of appliance i ∈ [N ] as output. From Yi, an
exogenous procedure pre-extracts a fixed set of M i power

1https://github.com/sub-paper/MSDC-NILM

states as well as the sequence of power states si1, s
i
2, . . . , s

i
T

of appliance i. Obtaining this information is possible as (1)
the power consumption of common household appliances
exhibit clear power-state patterns as shown in Appendix A:
a power state appears as a consecutive sequence of relatively
stable time steps and a transition takes place when a drastic
shift occurs at a time step followed by another power state,
whose signal is visibly separated from the previous state;
and (2) the states can be conveniently extracted using statis-
tical methods, e.g., a clustering algorithm that groups time
steps together if they have similar power levels.

To address the MS-NILM problem, our model produces
the probability distribution Pit over the (pre-extracted) set of
power states and the power consumption vector Cit as its out-
put. This is done using a dual-CNN architecture consisting
of a state-CNN (for Pit ) and a value-CNN (for Cit). Training
the model requires a two-part loss function: First a predic-
tion loss is defined over the disparity between the predicted
power consumption signal Pit · Cit and label Yi, and then a
state-based loss measuring inconsistency between the pre-
dicted power state sequence and the pre-extracted sequence.

A simple way to define the state-based loss is simply com-
pare the probability distribution Pit against the pre-extracted
power state qit. This, however, omits any pattern of state tran-
sitions of the appliance. As each appliance is seen as a finite
state machine, the shifts between consecutive states in the
power state sequence must follow certain patterns that cor-
relate power states. To capture these patterns, we proposed
a novel technique that employs conditional random fields
(CRF) (Lafferty, McCallum, and Pereira 2001), a discrimi-
native model for exploiting the correlations between consec-
utive elements of sequential data. Specifically, we use CRF
as an regularization for the state-CNN to explicitly com-
pute the contextual correlations between states. The model
is illustrated in Fig. 2. Details of both pre-extracting power
states and CRF follow shortly in this section.

4.2 Model Description
Pre-extracting states. The procedure that pre-extracts
power state sequence from Yi naturally plays a significant
role in determining the performance of the model, yet evi-
dence has shown that this step can be easily accomplished
for common household appliances whose power states are
clearly distinguishable. For example, the mean shift cluster-
ing algorithm (Fukunaga and Hostetler 1975; Cheng 1995)
that features assigning clusters to data without manually pre-
defining the number of clusters, could be a useful tool. The
cluster centers are determined in an iterative process through
computing the mean of the samples in a certain region. It al-
lows us to extract state labels for each appliance by inputting
the appliance’s power readings: Si = MeanShift(Yi), where
sit ∈ [M i] and M i is automatically determined according to
the appliance’s power readings (Yi).
Model structure. Aiming at the original power sequence,
previous studies employ the sliding window method to over-
come the long-sequence issue: separating the original data
into a series of short-sequences/windows of equal length.
We use a variant of the sliding window method to over-
come the long-sequence issue, which predicts a subsequence
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centered at the midpoint of the input window. An input
window is obtained by dividing the aggregated power sig-
nal into several w-length segments (can be overlapping).
The two CNNs share the same input window, denoted by
Xt,w = (xt−bw2 c, . . . , xt+d

w
2 e−1). We use f istate and f ipower

to represent two CNNs, respectively. The output of our
model is a shorter window centered at t, which represents
a sequence of predicted power signals of an individual ap-
pliance. We formally write the output window as Ŷi

t,q =

(ŷit−b q2 c
, . . . , ŷit+d q2 e−1), where q < w.

We denote the state-CNN by f istate : Rw+ → [0, 1]M
i×q ,

i.e., it outputs a window of predicted state distributions:

P̂i
t,q = f istate(Xt,w), (2)

where P̂it,q = (P̂it−b q2 c, . . . , P̂
i
t+d q2 e−1) and P̂iτ =

(p̂τ,1, . . . , p̂τ,Mi). Analogously, we represent the value-

CNN by f ipower : Rw+ → RM
i×q

+ that predicts power con-
sumption of each state at each time step:

Ĉi
t,q = f ipower(Xt,w), (3)

where Ĉi
t,q = (Ĉit−b q2 c, . . . , Ĉ

i
t+d q2 e−1), and Ĉiτ =

(ĉτ,1, . . . , ĉτ,Mi). To simplify the exposition, we will omit
w ans s in some notations. By Eq. (1), Ŷi

t,q is derived
from the element-wise product of the outputs of two CNNs.
More formally, we denote the combination of two CNNs by
f icomb : Rw+ → Rq+ such that

Ŷi
t,q = f icomb(Xt,w) = f istate(Xt,w)� f ipower(Xt,w). (4)

Finally, the state can subsequently be determined as the one

with the maximum probability: Ŝit,q = arg max(P̂it,q).
Loss functions. The cost function of the model consists
of two parts. The first part considers the error in power
consumption prediction, which we measure by the mean
squared error averaged over all output windows:

J ipower = Et∈[T ]

[(
yit − P̂it Ĉit

)2]
, (5)

where yit represents the true power signal of the ith appli-
ance, and P̂it , Ĉit are outputs of two CNNs as defined above.
The second part penalizes the difference between predicted
and true states. We propose two options for realizing it. The
first option is to simply ignore the dependence in state shifts
and thereby we can use the averaged cross-entropy to mea-
sure the difference between the predicted and true states:

J istate = −Et∈[T ]

[∑Mi

s=1
pit,s log p̂

i
t,s

]
, (6)

where the true state distribution Pit = (pit,1, . . . , p
i
t,Mi) is

estimated from pre-extracted states. The final cost function
sums over two parts: J iMSDC = J istate +J ipower. In the paper,
we use the name MSDC to represent the model with the loss
function defined above. We next give the second option to
realize the loss in terms of state prediction.

4.3 The CRF Regularization
In order to capture the state transition, we replace the cross
entropy loss J istate in Eq. (6) with the CRF regularization
that explicitly computes correlations between states Intu-
itively, Eq. (6) implies that the output of the state-CNN is a
sequence of independent state distributions. The state at each
time step can subsequently be determined as the one with
the maximum probability. Training the state-CNN can thus
be viewed as solving q independent M i-classification prob-
lems. While, the state distributions in the output window are
not independent in the face of state transitions. The CRF reg-
ularization allows us to capture state transition by train the
state-CNN in a state sequence-centered way, i.e., view a state
sequence as the minimum element in calculating the differ-
ence between the predicted and true states, rather than inde-
pendently consider the state for each time step. Since there
are (M i)q possible state sequences, training the state-CNN
thus turns to solving one (M i)q-classification problem. The
CRF regularization amounts to a maximum likelihood esti-
mation (MLE) in terms of state sequences. The MLE objec-
tive is a log-likelihood consisting of two parts: one is called
the emission score that captures the likelihood of each true
state; the other is the transition score that captures the transi-
tion probability between each two neighboring states. It can
be formally written as follows:

J iCRF = −E
[∑T

t=1
p̂it,sit

+
∑T−1

t=1
Ψ(sit, s

i
t+1)

]
+ logZ,

where the expectation is taken on all input state se-
quences. The sum

∑T
t=1 p̂

i
t,sit

is namely the emission score,
Ψ(sit, s

i
t+1) is the transition score computed from all pre-

dicted state distributions (see Appendix B for details) , and
Z denotes the partition function for two scores, i.e., the total
score for all input state sequences. We adopt MSDC-CRF
for the model with CRF regularization, whose loss function
is namely J iMSDC−CRF = J iCRF + J ipower.

5 Experiments
We evaluate our model on the two most commonly used
NILM benchmark datasets, REDD and UK-DALE, which
are collected from appliances in different households in the
US and UK, respectively. We seek to answer : (1) (gener-
alization capability) Using a set of training data sampled
from one household, can our model generalize to other (un-
seen) households? (2) (predictive ability) Can our model ac-
curately predict the power consumption of individual appli-
ances in the household where the training data is sampled?

5.1 Setup
Datasets. REDD consists of power readings of 6 house-
holds, where the aggregated power and individual appli-
ances’ power are recorded every 1 and 3 seconds, resp. We
choose four appliances (microwave, washing machine, dish-
washer, and fridge) in houses 1, 2, and 3 for evaluation.
UK-DALE accommodates power readings of 6 UK house-
holds. Both aggregated and per-appliance power readings
are measured every 6 seconds. We select 5 appliances (ket-
tle, microwave, washing machine, dishwasher, and fridge) in
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Scheme Fridge Dishwasher Microwave Washing machine Average Improvement(%)

FHMM 95.96/29.03/49.17 180.35/713.80/168.34 41.56/79.92/27.15 219.22/498.89/213.46 134.27/330.41/114.53 –/–/–
LSTM 39.59/17.72/22.57 25.43/54.89/24.41 30.99/19.48/24.43 13.23/4.52/11.03 26.31/24.15/20.61 –/–/–
S2P 37.66/15.47/17.66 19.86/15.81/15.24 27.19/21.37/19.33 13.27/4.58/10.84 24.50/14.31/15.78 –/–/–
BERT4NILM 28.98/31.49/17.66 23.31/88.76/23.05 17.53/76.80/15.49 16.68/8.75/12.03 21.63/51.90/17.06 –/–/–
SGN 33.61/19.23/18.45 17.85/38.01/10.33 22.13/49.84/16.35 12.97/2.30/10.05 21.64/27.35/13.80 0.00/0.00/0.00
MSDC 31.78/7.78/15.59 13.03/18.44/6.57 20.36/26.7413.51 13.63/4.34/11.79 19.70/14.3311.87 8.96/47.61/13.99
MSDC-CRF 30.64/5.15/16.08 12.81/21.87/6.75 20.35/23.81/12.94 13.47/2.28/10.65 19.32/13.28/11.61 10.72/51.44/15.87

Scheme Kettle Fridge Dishwasher Microwave Washing machine Average Improvement(%)

S2P 18.95/26.78/9.25 28.04/31.79/13.71 26.01/27.82/16.41 12.35/14.23/6.25 10.85/4.35/9.54 19.24/20.99/11.03 –/–/–
BERT4NILM 5.02/10.94/3.46 31.22/35.04/19.91 34.25/81.11/33.53 6.57/99.80/6.58 10.31/41.36/9.45 17.47/53.65/14.58 –/–/–
SGN 11.81/25.28/10.38 21.19/14.28/9.07 15.05/17.47/11.12 7.06/80.31/6.77 13.27/26.79/11.85 13.68/32.83/9.94 0.00/0.00/0.00
MSDC 11.14/17.88/7.63 16.34/6.49/4.42 19.21/15.75/13.60 9.92/45.71/6.10 7.46/22.50/4.93 12.81/21.67/7.34 6.36/33.99/22.13

Table 1: Results for MAE /SAE /SAEδ in REDD(top) and UK-DALE(bottom). The bold numbers indicate the best results.

house 1 and 2 for use. We choose these five types of appli-
ances for three reasons: (1) Generalization capability of our
model is the most critical factor we aim to evaluate. For this,
the training and testing data should be taken from different
houses. That is the same type of appliances must be installed
in more than one house. We thus eliminate appliances that
are only installed in a single house. We further exclude ap-
pliances whose power data are almost all zero values caused
by equipment failure and anomalies. (2) As stated in (Kelly
and Knottenbelt 2015a; Zhang et al. 2018), these five types
of appliances consume a significant portion of household en-
ergy. Furthermore, they represent a wide range of possible
‘power spectra’ from the simple on/off-states of a kettle to
the complex multiple states of a dishwasher. (3) The datasets
and the appliances are chosen by all previous baselines, pro-
viding the grounding for fair comparisons.

Baselines. We compare our model against five baselines:
(1) FHMM (Kim et al. 2011). The (classical) HMM-based
model in which each state corresponds to an abstract state
that absorbs several states of an appliance. (2) LSTM (Kelly
and Knottenbelt 2015a). The first RNN architecture for
NILM, which utilizes the long short-term memory (LSTM)
network. (3) S2P (Zhang et al. 2018). A single-state CNN-
based model that uses the sequence-to-point strategy, i.e.,
output only the middle point instead of the entire window.
(4) BERT4NILM (Yue et al. 2020). A bidirectional trans-
former model with 2 transformer layers and 2 attention
heads within each layer. (5) SGN (Shin et al. 2019). A state-
of-the-art model with a dual-CNN architecture that can cap-
ture the appliance’s on-off states.

Performance metrics. We adopt the following three met-
rics as performance indicators. (1) Mean Absolute Error
(MAE). MAE(Watt) is a general metric to measure the esti-
mation error at each time point. It is formally computed by:
MAEi = 1

T

∑T
t=1 |ŷi−yi|. (2) Normalized Signal Aggregate

Error (SAE). SAE(%) measures the total estimation error in
total test time: SAEi = |r̂i−ri|/ri,where r̂i =

∑T
i=1 ŷ

i and
ri =

∑T
i=1 y

i. This metric is also adopted in S2S (Zhang
et al. 2018). (3) A Variant of SAE (SAEδ). SAEδ(Watt) is a
variant of SAE that measures the average total error in a sub-

period of the total time: SAEiδ = (
∑Tδ
k=1

1
Nδ
|r̂ik − rik|)

/
Tδ .

Here, δ represents a physical time period. The total mea-
sured time are split to Tδ time periods, each of an equal
length of Nδ time steps. Following (Shin et al. 2019), we set
δ = 1 hour andNδ = 1200. The average predicted value and
true value in the kth period are captured by r̂ik =

∑Nδ
t=1 ŷ

i
k+t

and rik =
∑Nδ
t=1 y

i
k+t, respectively.

Parameter settings. We train one model per appliance.
Each of two CNNs consists of 6 convolutional layers plus
2 fully connected layers. The CNNs are implemented by
Python and Pytorch 1.4.0+cuda 10+cudnn7, and trained on
machines with GTX 1070 Ti (8G) + Ryzen 7 1700 (16
cores). The CRF is implemented by invoking a Pytorch
package. 2. The size of the input/output window is set as
w = 400/s = 64 for REDD and w = 200/s = 32 for UK-
DALE. Following (Zhang et al. 2018), for both datasets, we
normalize the power readings beforehand through subtract-
ing the mean values and dividing them by the standard de-
viations. We use the mean shift clustering algorithm to pre-
extract appliances’ power states and publicize corresponding
label data (see our code link 1). In each experiment, results
for the report are averaged over 20 independent runs.

5.2 Generalization Capability
To investigate the generalization capability, we take training
and test data from different houses: for REDD, house 2 and
3 are for training and house 1 for test; for UK-DALE, the
setting turns to house 1 for training and house 2 for test.

The top of Tab. 1 shows the comparisons of our MSDC
and MSDC-CRF against baselines on REDD. All the deep
learning-based models perform better than FHMM and our
models perform the best on almost all appliances. MSDC
achieves an average improvement for MAE, SAE, and SAEδ
by 8.96%, 47.61%, and 13.99%, respectively, compared to
the best baseline. Further, MSDC-CRF demonstrates even
higher improvements on all metrics (10.72%, 51.44%, and
15.87% on average). This demonstrates the advantage of us-
ing CRF to capture state transition.

2Pytorch-crf: https://pytorch-crf.readthedocs.io/en/stable/
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Model Metric house1 house2 house3 Average Improvement
MAE 8.18 4.18 12.83 8.40 –

S2P SAE 23.87 29.61 74.35 42.61 –
SAEδ 5.59 2.90 12.67 7.05 –
MAE 7.46 1.52 10.27 6.42 0.00%

SGN SAE 15.46 5.18 89.90 36.85 0.00%
SAEδ 5.36 0.70 10.38 5.48 0.00%
MAE 4.96 1.09 7.87 4.64 27.73%

MSDC SAE 8.49 7.87 59.27 25.21 31.59%
SAEδ 2.81 0.56 7.31 3.56 35.04%

Model Metric house1 house2 Average Improvement
MAE 12.50 4.99 8.75 –

S2P SAE 34.92 1.51 18.72 –
SAEδ 9.16 2.36 5.76 –
MAE 6.18 4.04 5.11 0.00%

SGN SAE 12.52 3.29 7.91 0.00%
SAEδ 5.30 2.86 4.08 0.00%
MAE 3.24 3.51 3.38 33.86%

MSDC SAE 3.49 3.51 3.38 33.86%
SAEδ 2.45 2.33 2.39 41.42%

Table 2: Results for the dishwasher in REDD (top) and UK-
DALE (bottom). Best results are highlighted in bold.

We further compare these baselines that attain better av-
erage performance. From the results on UK-DALE (the bot-
tom of Tab 1), we can see that our MSDC performs best on
average, achieving an improvement of 6.36%-33.99% on the
standard metrics. From Tab 1 we may find that BERT4NILM
can achieve better results on some metrics, it, however, can-
not ensure to produce robust and consistent performance. On
the other hand, BERT4NILM is a transformer that is a very
costly option, which requires more time for model training.

We then visualize the results to intuitively display the dif-
ference between the predicted results and the truth data. The
top of Fig. 3 depicts the predicted power curves for one
working cycle of the dishwasher. For a clear demonstration,
we only show results of S2P, SGN, and our MSDC-CRF.
Among all models involved, MSDC-CRF attains the small-
est prediction error and predicts on/off states with the high-
est accuracy. Moreover, the power levels of all “on” states
predicted by MSDC-CRF are much more consistent with
the truth. Although the average power level for each state
in training houses is not the same as in the testing house,
MSDC-CRF achieves the highest accuracy, indicating su-
perior generalization capability of our model. However, no
model can well predict the power level in the last time period
of the cycle (from 1000s to 1200s in the figure). The reason
may be that the dishwashers in two houses belong to differ-
ent models, and this time period corresponds to a working
state which only exists in the dishwasher of test house, but
not in the training houses. Considering this mismatching is-
sue, we next move our focus to the predictive ability of our
model assuming two appliances match in states.

5.3 Predictive Ability
To make appliances in training and testing matching in
states, for both datasets we take the training and testing data
from the same house. We set the ratio of the data for train-
ing, validation, and testing as 7:1:2. Several previous work
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Figure 3: Predicted power curves of the dishwasher.

(Kolter, Batra, and Ng 2010; Elhamifar and Sastry 2015; He
et al. 2019b) also adopted a similar setting.

Due to space limitation, we only report the results of S2P,
SGN, and our MSDC on the dishwasher. Tab. 2 records the
results of dishwasher for two datasets, which reveal that our
model achieves significant performance enhancements in all
houses. Specifically, the average improvements on MAE,
SAE, and SAEδ are up to 27.73%, 31.59%, and 35.04%, re-
spectively in REDD dataset; 33.86%, 33.86%, and 41.42%,
respectively in UK-DALE dataset. We owe the improved
performances to the multi-state setting.

The bottom of Fig. 3 depicts the predicted power curves
for one working cycle of the dishwasher in house 2 in
REDD. The predicted power signal of our model demon-
strates a closer resemblance to the true signal compared to
baselines. The signal output by our model is also smoother
whereas baselines output many nonzero values when the
dishwasher is actually “off” or has many abnormal peaks.

6 Conclusions and Future Work
In this paper, we extend NILM task to the multi-state setting
and formalize the multi-state-NILM (MS-NILM) problem.
The problem seeks a model that predict per-appliance power
signal through capturing the feature of multiple power states
of appliances. We theoretically justify the advantage of the
multi-state setting on reducing the sample variance of train-
ing data. We then proposed a dual-CNN-based model called
MSDC to address MS-NILM, which uses two CNNs to pre-
dict the state distribution and acquire the power consump-
tion of each state, respectively. To capture state transitions,
we further design a novel technique that incorporates CRF
into MSDC, leading to a variant model called MSDC-CRF.
Experimental results show that our model has the excellent
ability in recovering power consumption and good capabil-
ity to predict for unseen appliances.

As future work, one could attempt to generalize MSDC to
more general setups, say, Type-3 appliances which have con-
tinuous state space. Possible ideas include discretizing the
state space or parametrizing the state functions. Another fu-
ture work is to scale our model to other BSS problems such
as speech separation and recognition where each speech sig-
nal corresponds to a specific identifiable hidden state.
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