
Unsupervised Deep Embedded Fusion Representation of Single-Cell
Transcriptomics

Yue Cheng1*, Yanchi Su1*, Zhuohan Yu1, Yanchun Liang2, Ka-Chun Wong3, Xiangtao Li1†

1School of Artificial Intelligence, Jilin University, Jilin, China
2Zhuhai Laboratory of Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Zhuhai

College of Science and Technology, Zhuhai 519041, China
3Department of Computer Science, City University of Hong Kong, Hong Kong SAR
chengyue22@mails.jlu.edu.cn, suyanchi@gmail.com, zhuohan20@mails.jlu.edu.cn

ycliang@jlu.edu.cn, kc.w@cityu.edu.hk, lixt314@jlu.edu.cn

Abstract

Cell clustering is a critical step in analyzing single-cell RNA
sequencing (scRNA-seq) data that allows characterization of
the cellular heterogeneity after transcriptional profiling at the
single-cell level. Single-cell deep embedded representation
models have gained popularity recently as they can learn fea-
ture representation and clustering simultaneously. However,
the models still pose a variety of significant challenges, in-
cluding the massive amount of data, pervasive dropout events,
and complicated noise patterns in transcriptional profiling.
Here, we propose a Single-Cell Deep Embedding Fusion
Representation (scDEFR) model that produces a deep em-
bedded fusion representation to learn the fused heterogeneous
latent embedding containing both the gene-level transcrip-
tome and cell topology information. We first fuse them layer
by layer to obtain compressed representations of the intercel-
lular relationships and transcriptome information. Then, we
use the zero-inflated negative binomial model (ZINB)-based
decoder to capture the global probabilistic structure of the
data to reconstruct the final gene expression information. Fi-
nally, by simultaneously integrating the clustering loss, cross-
entropy loss, ZINB loss, and cell graph reconstruction loss,
scDEFR can optimize clustering performance and learn the
latent representation from the fused information in a joint
mutual supervised strategy. We conducted comprehensive ex-
periments on 15 single-cell RNA-seq datasets from differ-
ent sequencing platforms and demonstrated the superiority of
scDEFR over a variety of state-of-the-art methods.

Introduction
Single cell RNA sequencing (scRNA-seq) technology al-
lows analyzing the entire transcriptomes of very large num-
bers of individual cells, which is essential for characteriz-
ing the stochastic heterogeneity within cell populations and
establishing distinct developmental trajectories, for exam-
ple, immune cells (Papalexi and Satija 2018). Cell cluster-
ing is one of the most crucial tasks in the standard scRNA-
seq pipeline that can group cells according to their gene ex-
pression patterns and thereby establish the intrinsic molecu-
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Figure 1: Heatmaps of cell similarity matrices in the la-
tent space of (a) scDEFR, (b) scDEFR with only fusion
cell topology encoder and, (c) scDEFR with only transcrip-
tomics profile-based graph encoder

lar profiles (Svensson et al. 2017). In previous studies, tra-
ditional clustering methods such as K-means (MacQueen
1967) and hierarchical clustering (Johnson 1967) were em-
ployed for unbiased cell type identification. However, due
to the high heterogeneity of genome coverage and techni-
cal limitations, scRNA-seq data is very sparse, with 95% of
measurements being zero (Grün, Kester, and Van Oudenaar-
den 2014). These problems prevent traditional clustering
methods that rely on similarity metrics from being adequate.
It is necessary to explore new computational approaches to
learn the diverse characteristics in order to better uncover the
specific patterns in scRNA-seq data. Deep embedded clus-
tering algorithms tailored to scRNA-seq data have been de-
veloped to identify cell types. These methods usually utilize
an autoencoder to learn the latent representation of the gene
expression matrix and to optimize cluster assignment simul-
taneously; for instance, scDCC (Tian et al. 2021), scDeep-
Cluster (Tian et al. 2019), scziDesk (Chen et al. 2020a).
However, these methods only focus on learning the gene ex-
pression matrix itself and ignore the topology of the cells.
Moreover, the similarity between cells is the crucial point for
guiding clustering, and due to the high sparsity of scRNA-
seq as mentioned above, higher order cellular structural in-
formation could also be investigated to reveal potential sim-
ilarities in common neighboring cells. Recently, deep graph
embedding clustering algorithms have been advanced to ad-
dress the clustering problem; for instance, scTAG (Yu et al.
2022), scGNN (Wang et al. 2021), scGAE (Luo et al. 2021)
and GraphSCC (Zeng et al. 2021), which usually use a graph
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autoencoder to capture the cell structural information in a
graph and then learn the latent representations for cluster-
ing. These methods are often prone to missing key patterns
in the gene expression data, leading to the collapse of depth
map clustering methods. It is natural, therefore, to couple
the two methods to learn the latent representation from the
gene expression matrix and cell graph simultaneously. More
recently, a deep fusion clustering network (DFCN) was de-
signed that integrates autoencoder and graph convolutional
networks into a unified framework to process finely the at-
tributes and structural information extracted from the au-
toencoder (AE) and graph autoencoder (GAE) (Tu et al.
2021). However, this research is still in its infancy stage
and such a fusion framework has not yet been exploited for
single-cell RNA-seq data analysis.

Motivated by the above observations, we propose
scDEFR, a single-cell deep embedding fusion representa-
tion model, as depicted in Fig. 2. To effectively fuse the fea-
ture representations of the transcriptomic information and
cell-cell topology information, scDEFR incorporates a fused
cell topology encoder and a transcriptomics-based graph en-
coder via an interlayer fusion operation. Then, scDEFR uses
the heterogeneous structural fusion mechanism to obtain the
fused heterogeneous latent embeddings of the different en-
coders and a ZINB-based multimodal fusion decoder for
subsequent clustering. Finally, we adopt a mutual supervised
strategy that combines four kinds of training loss, including
the clustering loss, cross-entropy loss, ZINB loss, and cell
graph reconstruction loss. Thus, scDEFR can uniformly op-
timize the clustering process as well as the fused heteroge-
neous latent embedding to avoid representation collapse to
accurately identify cell clusters and thereby improve cluster-
ing performance. Fig. 1 illustrates the phenomenon of repre-
sentation collapse on the Qs Limb Muscle dataset with six
cell clusters. We observe from the figure that the clustering
performance is limited and some smaller-scale cell clusters
are not easily distinguishable from other cell clusters.

The main contributions of our work are summarized be-
low:
• We propose a single-cell deep embedding fusion repre-

sentation model called scDEFR, combining a cell topol-
ogy encoder with a transcriptomics profile-based graph
encoder to capture the fusion-compressed representation
of scRNA-seq data.

• scDEFR adopts a TAGCN to extract the topological in-
formation from the data and then augments fusion across
each of the layers of the encoders during the encoding.
In addition, scDEFR utilises a ZINB-based multimodal
fusion decoder to capture the global probabilistic struc-
ture of the data, modelling the highly sparse and over-
dispersed scRNA-seq data.

• To the best of our knowledge, this is the first architecture
proposing fusion of heterogeneous structural information
to address single-cell transcriptomics analysis.

• We compare our method with competitive state-of-the-
art methods on 15 real scRNA-seq datasets. The results
demonstrate that scDEFR outperforms all of the other
baseline methods.
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Figure 2: The model architecture of scDEFR. scDEFR
integrates a deep graph autoencoder into a ZINB-based
deep autoencoder to learn the fusion latent representation,
which contains the gene information and cell-cell topol-
ogy representation, and adopts cross-entropy loss and Kull-
back–Leibler (KL) divergence to optimize the clustering
performance.

Related Work
In this section, we present two related works: deep embed-
ded clustering and graph embedded clustering in the single-
cell RNA sequence field.

In single-cell RNA sequence analysis, deep clustering
methods aim to learn the rich representations of gene expres-
sion matrices by optimizing clustering targets; for instance,
scDeepCluster (Tian et al. 2019) offers a single-cell model-
based deep embedded clustering approach that uses the loss
function of Kullback-Leibler(KL) divergence to make the la-
tent representation. scDMFK (Chen et al. 2020b) employs a
multinomial distribution to characterize scRNA-seq data and
a fuzzy weighted k-means clustering algorithm to cluster the
cells in the latent space. scziDesk (Chen et al. 2020a) uti-
lizes a negative log-likelihood function to capture the global
probability structure of scRNA-seq in the latent space. DCA
(Eraslan et al. 2019) is a deep count autoencoder network
to denoise the scRNA-seq and utilizes a negative binomial
noise model to capture the count distribution, overdisper-
sion, and sparsity of the scRNA-seq data. However, these
methods focus only on extracting the characteristics of in-
dividual cells, while the common structural information be-
tween cells is essentially ignored in the learning representa-
tion.

Besides, deep graph embedded clustering methods are
well recognized in the single-cell field, focusing on the im-
portance of the structural relationship between cells. For in-
stance, scTAG (Yu et al. 2022) develops a topological adap-
tive graph convolution autoencoder to learn cell-cell topo-
logical representations. GraphSCC (Zeng et al. 2021) com-
bines a graph convolutional network and a denoising au-
toencoder to integrate structural information of the scRNA-
seq data, and a dual self-supervised module is employed
to optimize the latent representations. scMGCA (Yu et al.
2023) builds a graph-embedding autoencoder to simultane-
ously learn cell-cell topology representation and cluster as-
signments. scGNN (Wang et al. 2021) is a hypothesis-free
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deep learning framework that combines a mixture Gaussian
model with graph neural networks for scRNA-Seq analysis
that utilizes graph neural networks to formulate the cell-cell
relationships and combines a left-truncated mixture Gaus-
sian model to capture the heterogeneous gene expression
patterns.

Method
Fusion Cell Topology Encoder
Most previous deep embedded clustering always focused on
learning the gene expression matrix and ignored the topol-
ogy between cells. Therefore, in our study, we embed the
cell-cell topology into an encoder that focuses on gene-level
information analysis. To merge cell topology information
into an effective feature representation at the gene level, we
propose a fusion cell topology encoder with an inter-layer
embedded operation. The fusion cell topology encoder con-
sists of three fully connected layers. In contrast to the previ-
ous studies, we consider the compressed representation after
fusion as the input of the fully connected layers and combine
it with the cell-cell topological structural information at each
layer. The input to layer l of the fusion cell topology encoder
can be formulated as follows:

Zl = fα(H
l−1
D , H l−1

G ) (1)

where fα(·) is a linear combination of two different hidden
information and α is the pre-defined hyper-parameter; H l−1

D
is the hidden information of the i − 1 layers in the fusion
cell topology encoder and H l−1

G is the hidden information
of the l− 1 layers in the transcriptomics profile-based graph
encoder. After that, the latent representation in the fusion
cell topology encoder can be obtained as follows:

H l
D = ϕ(WeZ

l + be) (2)

where ϕ is ReLU(), the activation function of the fully con-
nected layers; We and be are the learnable weight matrix and
bias of the fusion cell topology encoder, respectively.

Transcriptomics Profile-based Graph Encoder
Existing single-cell graph embedding autoencoders lack a
robust and synergistic approach to embed the cell topology
and gene-level transcriptome information for feature repre-
sentation learning. To capture the feature representation of
gene expression data and the relationships between cells,
we develop a transcriptomics profile-based graph encoder
to integrate the gene-level transcriptome information into
the graph encoder. Transcriptomics profile-based graph en-
coder of our model consists of three topology adaptive graph
convolutional layers (TAGCN) (Du et al. 2017). A topology
adaptive graph convolutional layer uses M graph convolu-
tion kernels to extract local structural features of different
sizes, which could fully extract the graph information. The
internal architecture of the polynomial convolution kernel is
defined as:

Gl
c,f =

M∑
m=0

glc,f,m(D− 1
2AD− 1

2 )m (3)

where glc,f,m denotes the polynomial coefficients; M is the
number of graph convolution kernels; A is the adjacency
matrix generated from the gene expression matrix by the
KNN algorithm; and D is the degree matrix. After that, the
g
(l)
c,f,m is transmitted by the normalized adjacency matrix
Ã = D− 1

2AD− 1
2 . To embed the gene-level transcriptome

information H l
D from the fusion cell topology encoder into

the transcriptomics profile-based graph encoder, we use the
compressed representation Zl as the input feature map of
TAGCN on the l-th hidden layer, which is calculated from
the formula:

Zl = αH l−1
D + (1− α)H l−1

G (4)

On this basis, the integrated representation can be used to
generate a new representation to learn the feature representa-
tion of gene expression data and relationships between cells,
which provides an approximate second-order graph regular-
ization for the fused gene expression representation(Bo et al.
2020). In particular, we assume that before feature mapping
each node has Cl features and c-th feature is zlc ∈ RN , where
c = 1, 2, ..., Cl. Then, the convolution operation process of
TAGCN is defined as follows:

hl
f = ϕ(

Cl∑
c=1

Gl
c,fz

l
c + bf1N ) (5)

where hl
f represents the f -th output feature map, ϕ is

ReLU(), bf is a learnable bias, and 1N is the Nl dimension
vector of all ones.

To simplify, we can provide the formulation of the output
of the transcriptomics profile-based graph encoder as:

H l
G = ϕ(fG(Z

l)) (6)

where fG is the graph convolution operation of the topology
adaptive graph convolutional layer in the transcriptomics
profile-based graph encoder; and Zl is the input of the l-th
layer that is calculated from Eq. 4.

Heterogeneous Structure Information Fusion
Inspired by the cross-modal fusion mechanism (Tu et al.
2021), we generate the fused heterogeneous latent represta-
tion Z by incorporating the two latent embeddings (ZD and
ZG) of the fusion cell topology encoder and the transcrip-
tomics profile-based graph encoder. Indeed, our model takes
both local and global cell correlations into account. After
the cell graph has been processed by the transcriptomics
profile-based graph encoder, the encoder’s latent embedding
will contain various orders of structural information. Then,
we fuse them with the transcriptome gene level represen-
tation, thereby reducing the correlation between cells with
multiple-hop relationships.

ZINB-based Multimodal Fusion Decoder
After integrating the compressed representations from the
fusion cell topology encoder and a transcriptomics profile-
based graph encoder, we get a fused heterogeneous latent
embedding Z as the input of the decoder. In contrast to other
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fusion models, we used only a single decoder based on the
zero-inflated negative binomial (ZINB) model to simultane-
ously connect the two encoder models, achieving the effect
of reconstructing single-cell transcriptomic profiles and cell
graphs. The ZINB distribution is used to capture the over-
all probability structure of the data and thus to model highly
sparse and over-dispersed gene expression data. On this ba-
sis, we propose a ZINB-based multimodal fusion decoder to
capture the characteristics of scRNA-seq data. At first, the
decoder that reconstructs X̄ can be described as:

X̄ = fdec(W
′
Z + b

′
) (7)

where W
′

and b
′

represent the weight matrix and the bias
vecoters of the decoder, respectively; fdec is a three-layer
fully connected neural network; and Z is the fused latent
embedding obtained by the heterogeneous structure infor-
mation fusion mechanism. The reconstructed adjacency ma-
trix Ar can be defined as the inner product between the latent
embedding:

Ar = σ(ZTZ) (8)
And we define the reconstruction loss of A as follows:

Lr = ∥A−Ar∥22 (9)

Subsequently, to capture the global probabilistic structure
of the data, we also integrate the ZINB-based decoder into
our decoder model, which connects three independent full
connection layers with the last layer to estimate the parame-
ters of ZINB: dropout rate π, dispersion degree θ and mean
µ. The parameter matrices of the network output are defined
as follows:

Π = sigmoid(WπX̄) (10)
M = exp(WµX̄) (11)

Θ = exp(WθX̄) (12)
where W represents the learned weights of the loss func-
tions. The ZINB-based decoder reconstructs the scRNA-seq
data as follows:

NB(X|µ, θ) = Γ(X + θ)

X!Γ(θ)
(

θ

θ + µ
)θ(

µ

θ + µ
)X (13)

ZINB(X|π, µ, θ) = πδo(X) + (1− π)NB(X) (14)
Then, the reconstruction loss function of the original data X
is defined as the negative log likelihood of the ZINB distri-
bution:

LZINB = −log(ZINB(X|π, µ, θ)) (15)

Joint Mutual Supervised Strategy
As the deep embedded clustering method is unsupervised,
we apply a mutual supervised strategy, which unifies the
fusion cell topology encoder, transcriptomics profile-based
graph encoder and cluster module into a uniform optimiza-
tion framework to effectively train the two modules for clus-
tering. In our model, it consists of three different distribution
blocks: the cluster distribution Q, the target distribution P
and the fused heterogeneous latent embedding Z of the fu-
sion model scDEFR; the cluster distribution QD, the target
distribution PD and the latent embedding ZD of the fusion

cell topology encoder; and the transcriptomics profile-based
graph encoder with a clustering distribution QG, target dis-
tribution PG and latent embedding ZG. These three distribu-
tions in the same block are mutually supervised and united
in a framework for learning and training. Considering the fu-
sion model scDEFR, we define the soft label qiu as follows:

qiu =
(1 + ∥zi − µu∥2)−1∑
r(1 + ∥zi − µr∥2)−1

(16)

This label represents the similarity between the latent em-
bedding zi and the cluster center µu, which is generated by
spectral clustering or K-Means clustering after pre-training
of the ZINB-based multimodal fusion decoder. In addition,
on the basis of qiu, we define the auxiliary target distribution
piu as follows:

piu =
q2iu/

∑
i qiu∑

r(q
2
ir/

∑
i qir)

(17)

Finally, we adopt the Kullback-Leibler (KL) divergence by
minimizing the clustering target (Xie, Girshick, and Farhadi
2016), defined as follows:

LC = KL(P ||Q) =
∑
i

∑
u

piulog
piu
qiu

(18)

It can be observed that distribution P supervises distribution
Q learning, and target distribution P is calculated by dis-
tribution Q. Such a mutual supervision strategy contributes
to learning a better representation of the data for the fusion
model, resulting in higher quality clustering.

Moreover, to enable the latent representations generated
by the different models to be as close as possible to the clus-
tering centres of the original data and to avoid the collapse of
the entire model, we use the binary cross-entropy as another
objective function, using the distributions PD and PG to
supervise distributions QD and QG, respectively. Note that
they are calculated using Eq. 16 and 17 by replacing Z with
ZD and ZG. Thus the target distributions can help the en-
coders learn better latent representations to achieve better
clustering results. It is generated by a fusion cell topology
encoder and a transcriptomics profile-based graph encoder,
as described below:

LD = −PDlog(QD)− (1− PD)log(1−QD) (19)

LG = −PGlog(QG)− (1− PG)log(1−QG) (20)

Therefore, in the training process, the latent repre-
sentations of the fusion cell topology encoder and the
transcriptomics-based graph encoder and their fused rep-
resentations are aligned with the robust target distribution
simultaneously. Our scDEFR method has five optimization
objectives:

L = γ1Lr + γ2LZINB + γ3LC + γ4(LD + LG) (21)

where Lr is the reconstruction loss; LZINB is the ZINB
loss; γ1, γ2, γ3 and γ4 are weight coefficients to control the
balance of the total loss function.
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Dataset Platform Cell Gene Group Reference
Yan Tang 90 20214 6 Yan et al.

Camp1 SMARTer 734 18927 6 Camp et al.
Camp2 SMARTer 777 19020 7 Camp et al.

QS Diaphragm Smart-seq2 870 23341 5 Consortium et al.
QS Limb MuscleSmart-seq2 1090 23341 6 Consortium et al.

QS Lung Smart-seq2 1676 23341 11 Consortium et al.
Muraro CEL-seq2 2122 19046 9 Muraro et al.
Adam Drop-seq 3660 23797 8 Adam, Potter, and Potter

QX Limb Muscle 10x 3909 23341 6 Consortium et al.
QS Heart Smart-seq2 4365 23341 8 Consortium et al.

Young 10x 5685 33658 11 Young et al.
Plasschaert inDrop 6977 28205 8 Plasschaert et al.
QX Trachea 10x 1126923341 5 Consortium et al.
QS Trachea Smart-seq2 1350 19992 4 Consortium et al.
QX Bladder 10x 2500 23341 4 Consortium et al.

Table 1: Summary of the fifteen real scRNA-seq datasets.

Experiments
Data Sources and Preprocessing
To demonstrate the effectiveness of scDEFR, we applied our
method to fifteen real scRNA-seq datasets collected from
(Yu et al. 2022). These fifteen real datasets were gener-
ated from seven different representative sequencing plat-
forms and originate from several species. The detailed in-
formation is described in Table 1. We first filter out genes
that are expressed as non-zero in more than 1% of the cells
and genes that are not expressed. Second, we normalized the
data using the scanpy package. Third, we selected the top d
highly variable genes based on the ranking of the normal-
ized values. Finally, the KNN algorithm was employed to
construct the cell graph, where each node in the graph rep-
resents a cell. For each cell, we identified its top-K similar
neighbors and connected them via edges.

Baseline
We selected ten state-of-the-art methods for comparison

• Deep fusion clustering network (DFCN)(Tu et al. 2021):
DFCN is a deep fusion clustering network with a fusion
module for structure and attribute information based on
interdependency learning for representation learning.

• ZINB-based graph embedded autoencoder (scTAG)(Yu
et al. 2022): scTAG is a deep graph embedding clustering
method that learns cell-cell topology representations and
identifies cell clusters.

• Single-cell graph autoencoder (scGAE)(Luo et al. 2021):
scGAE is a dimensionality reduction technique that
builds a cell graph and employs a multitask-oriented
graph autoencoder to preserve the topological structure
and feature information in scRNA-seq data.

• Single-cell graph neural network (scGNN)(Wang et al.
2021): scGNN is a framework for hypothesis-free deep
learning that formulates and aggregates cell-cell relation-
ships using graph neural networks and then constructs
heterogeneous gene expression patterns.

• Deep soft K-means clustering for scRNA-seq data
(scziDesk)(Chen et al. 2020a): scziDesk combines the

technique of deep learning with a denoising autoencoder
to characterize scRNA-seq data in the latent space.

• Single-cell model-based deep embedded clustering
(scDeepCluster)(Tian et al. 2019): scDeepCluster is
a single-cell model-based deep embedded clustering
method that clusters scRNA-seq data.

• Deep embedded clustering (DEC)(Xie, Girshick, and
Farhadi 2016): DEC utilizes deep neural networks to dis-
cover feature representations and cluster assignments in
a lower-dimensional feature space.

• Deep count autoencoder network (DCA)(Eraslan et al.
2019): DCA is a deep count autoencoder network that
uses a negative binomial noise model to account for
count distribution, overdispersion and sparsity data.

Implementation Details
In our study, we constructed the cell graph with the KNN al-
gorithm with the nearest neighbor parameter at K = 10. In
addition, we constructed the network using the combined fu-
sion cell topology encoder and transcriptomics profile-based
graph encoder, and the linear fusion parameter α was set
to 0.1; each layer was configured with 1024, 128, and 24
nodes; and the layer of the fully connected decoder was
configured with a symmetric encoder form. In particular,
our algorithm consisted of pre-training and training, both
of which were set to 250 epochs. The Adam algorithm was
used as an optimizer, with a learning rate of 5e-5 for pre-
training and 1e-7 for formal training. The weight coefficients
for objective functions {γ1, γ2, γ3, γ4} are respectively set
to {0.3, 0.1, 0.5, 0.1}. The parameters of the baseline meth-
ods were set exactly as in the original publications. Finally,
our experiments are conducted on an Ubuntu server with an
NVIDIA Quadro RTX 6000 GPU and 24GB of memory.

Clustering Performance
To evaluate the performance of scDEFR, we employ two
widely-used indices, the Normalised Mutual Information
(NMI) and the Adjusted Rand Index (ARI). The higher the
value of the index, the better the clustering performance.

The clustering performance of our method compared to
the baseline methods on 15 scRNA-seq datasets is presented
in Table 2. Each clustering method was run ten times to com-
pute the average, and the values in red represent the best av-
erage index of clustering performance. On the 15 datasets,
our method yields the 11 best NMI and ARI scores com-
pared to other baseline algorithms, even reaching 0.9934
and 0.9976 on the ’Qx Bladder’, respectively. Furthermore,
we observe that the deep embedding approach did not lead
to a stable performance in clustering with a significant ad-
vantage. The main reason may be that gene expression in-
formation alone cannot fully capture the characteristics of
the highly sparse scRNA-seq data. Compared to the deep
graph embedding clustering methods, our proposed scDEFR
is generally better, which demonstrates that the other deep
graph embedding clustering methods may miss key pat-
terns in the transcriptomic profiles. For DFCN containing
fused representations, the clustering performance is better
and more stable than the other three deep graph embedding
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Ours Deep Graph Embedded Methods Deep Embedded Methods Base MethodsDatasets scDEFR DFCN scTAG scGNN scGAE scziDesk scDeepCluster DEC DCA K-Means Spectral
Yan 0.9057 0.9056 0.682 0.8244 0.672 0.7656 0.7972 0.7205 0.8566 0.8069 0.6346

Camp1 0.8037 0.8749 0.7716 0.6569 0.781 0.7356 0.8258 0.657 0.7006 0.7096 0.7881
Camp2 0.5606 0.552 0.5085 0.3577 0.462 0.5087 0.4766 0.487 0.4667 0.3963 0.4712

Qs Diaphragm 0.9306 0.9402 0.8929 0.86 0.615 0.9409 0.0012 0.8253 0.8667 0.2537 0.3381
Qs Limb Muscle 0.9747 0.9635 0.9327 0.8474 0.628 0.9519 0.0102 0.8523 0.8018 0.0937 0.3333

Qs Lung 0.8133 0.627 0.7845 0.7019 0.616 0.8094 0.0117 0.7474 0.712 0.2341 0.412
Muraro 0.8903 0.785 0.8 0.7198 0.617 0.7759 0.5725 0.6592 0.8045 0.7018 0.8264
Adam 0.8781 0.7129 0.8651 0.5587 0.633 0.8476 0.768 0.6688 0.4897 0.0722 0.0998

Qx Limb Muscle 0.953 0.9412 0.9273 0.7166 0.567 0.9407 0.7359 0.8122 0.8129 0.4481 0.8443
Qs Heart 0.9226 0.8375 0.8689 0.7184 0.482 0.8448 0.1844 0.7991 0.86 0.2035 0.4648

Young 0.762 0.6459 0.8055 0.5623 0.586 0.7665 0.2736 0.6002 0.5441 0.2544 0.3661
Plasschaert 0.8934 0.6046 0.6561 0.5764 0.37 0.8582 0.5876 0.6406 0.6919 0.3965 0.5409
Qx Trachea 0.8356 0.5274 0.6615 0.4223 0.32 0.8397 0.5063 0.5541 0.5187 0.1 0.5585
Qs Trachea 0.8619 0.4647 0.7151 0.5262 0.489 0.7417 0.1201 0.6698 0.6632 0.1102 0.3222

NMI

Qx Bladder 0.9934 0.7994 0.8118 0.742 0.389 0.9511 0.5267 0.6193 0.661 0.5426 0.7545
Yan 0.8955 0.8955 0.4956 0.6822 0.55 0.5628 0.6911 0.5729 0.8029 0.7016 0.4461

Camp1 0.6433 0.7952 0.6283 0.5046 0.547 0.5464 0.6303 0.4752 0.5717 0.5281 0.6214
Camp2 0.4274 0.5087 0.3787 0.2306 0.229 0.4061 0.3617 0.3369 0.4091 0.332 0.3681

Qs Diaphragm 0.9661 0.9541 0.9137 0.8797 0.254 0.918 -0.0011 0.8645 0.7929 0.1617 0.28
Qs Limb Muscle 0.9873 0.9751 0.956 0.8309 0.248 0.9729 -0.0023 0.8849 0.6802 0.0352 0.2398

Qs Lung 0.7002 0.4135 0.6252 0.5259 0.199 0.7462 0.0026 0.6314 0.6435 0.1453 0.2505
Muraro 0.9248 0.789 0.8085 0.6031 0.202 0.6949 0.494 0.5445 0.8533 0.4959 0.6436
Adam 0.8851 0.6348 0.8713 0.4125 0.249 0.8431 0.6241 0.5222 0.3647 0.0218 0.0368

Qx Limb Muscle 0.9744 0.9516 0.95 0.6206 0.13 0.9127 0.4381 0.8253 0.7819 0.3775 0.8981
Qs Heart 0.9684 0.6947 0.9299 0.57 0.071 0.8307 -0.006 0.8778 0.9339 0.1147 0.3347

Young 0.6344 0.5223 0.7161 0.4193 0.135 0.6831 0.1564 0.4505 0.3842 0.2008 0.225
Plasschaert 0.9353 0.4966 0.6203 0.4394 0.037 0.8061 0.2974 0.5645 0.5934 0.3071 0.3537
Qx Trachea 0.9463 0.4159 0.6317 0.2478 0.1 0.9082 0.1568 0.4912 0.233 0.0652 0.4916
Qs Trachea 0.9345 0.3795 0.8152 0.4462 0.126 0.7626 0.0987 0.7639 0.4857 0.0043 0.3824

ARI

Qx Bladder 0.9976 0.7845 0.7538 0.7062 0.067 0.9612 0.2214 0.5476 0.6268 0.538 0.7385

Table 2: Performance of scDEFR and the other baseline methods on 15 scRNA-seq datasets. The red font indicates the best
values among the compared methods.

methods, which also highlight the superiority of the fusion
mechanism. In addition, we find that scDEFR had the 14
best NMI and 12 best ARI scores out of the 15 datasets
compared with DFCN, respectively, indicating that the fu-
sion suggestion in scDEFR improves the feature represen-
tation of scRNA-seq data. This is likely due to the fact that
the ZINB model is capable of modeling scRNA-seq data ef-
fectively, and the latent embedding of the fused cell topology
information can better capture the higher-order structural in-
formation of single-cell RNA-seq data. In addition, we also
compared the running time of scDEFR with the other deep
graph embedding clustering methods, including scGNN, sc-
GAE, scTAG, and DFCN. As depicted in Fig. 3(A), scDEFR
has the shortest running times on most scRNA-seq datasets.
In addition, we applied t-SNE to visualize the latent em-
bedding of the scDEFR and the other baseline methods in
two-dimensional space, as depicted in Fig. 4. We can clearly
observe that identical cells in the dataset can be well sepa-
rated in the latent embedding representation of scDEFR. In
summary, scDEFR can perform better than other methods.

Parameter Analysis
Impact of the Neighbor Parameter K: When construct-
ing the cell graph with KNN, K is the number of edges be-
tween nodes. We ran our program with K parameters of 5,
10, 15, 20, and 25 to investigate the effect of K. Fig. 3(B) de-
picts the NMI and ARI values for the proposed model with
various K values. As depicted in Fig. 3(B), the values of ARI

and NMI increase rapidly from parameters 5 to 10, reaching
an optimal value at K equals 10, then decreasing gradually
from parameters 15 to 25. Therefore, we set the value of the
neighbor parameter K to 10 in the model.

Impact of the Fusion Parameter α: In our study, α de-
termines the fusion ratio between the transcriptomic profile
information and the structural cell topology information. To
explore the impact of the α, we ran our program with the
α parameters of 0.1, 0.3, 0.5, 0.7, and 0.9. Fig. 3(C) shows
the average NMI and ARI measures on the 15 datasets with
different α values. We observe that when α goes from 0.1
to 0.3, both two indices decrease sharply. Although metrics
improve as the value of the parameter increases from 0.3 to
0.5, the performance of α = 0.1 remains the best. Therefore,
we set the α parameter as 0.1 in our model.

Different Numbers of Variable Genes Analysis: In the
analysis of single-cell RNA data, highly variable genes play
a significant role in determining the cell-type specificity
and providing biological significance. To investigate the im-
pact of the number of highly variable genes, we tested our
method on the 15 datasets that contain varying numbers of
differentially expressed genes. Fig. 3(D) depicts the average
NMI and ARI values obtained on the 15 datasets that se-
lected 300, 500, 1000, 1500, and 2000 highly variable genes.
From the results, we conclude that the 2000 highly variable
genes are the most effective for the proposed model. There-
fore, we set the number of highly variable genes to 2000.
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Figure 3: The analysis of (A) the running time comparison
on the different datatsets. (B) the average NMI and ARI val-
ues with different neighbor parameters, K. (C) the average
NMI and ARI values with different fusion parameter, α. (D)
Comparison of the average NMI and ARI values with differ-
ent numbers of genes. (E) NMI and ARI values for scDEFR
and baseline methods on the ’Tabula Muris’ dataset.

Ablation Study
In this experiment, we analyzed the impact of each method-
ological component. We specifically ablated each compo-
nent as described: 1) In the encoder, the fusion compo-
nent of the fusion cell topology encoder was removed,
resulting in the data feeding directly to the autoencoder,
called scDEFRNAu; 2) The transcriptomic profiles-based
graphical encoder component, resulting in data going di-
rectly to the graph encoder , called scDEFRNGrA; 3)
The fusion component between the first and second lay-
ers of both encoders , called scDEFRNFir; 4) The fu-
sion elements between the second and third layers, called
scDEFRNSec; 5) without fusion cell topology encoder,
called scDEFRNFcte. 6) without a transcriptomic profiles-
based graph encoder, called scDEFRNTpge. 7) without
ZINB, called scDEFRNZinb. It is evident from Table 3 that
combining the fusion cell topology encoder and the tran-
scriptomic profiles-based graph encoder improves the clus-
tering performance. Moreover, fusion cell topology encoder
and ZINB had a substantial effect on the final clustering
result, indicating the necessity to model scRNA-seq data
based on ZINB distribution. In summary, each aspect of the
scDEFR is reasonable and valid.

Scalability of scDEFR
To establish whether scDEFR can be used to analyze large
datasets, we used it to cluster the model organism Mus mus-
culus dataset called ’Tabula Muris’ (Consortium et al. 2018).

Methods NMI ARI
scDEFRNAu 0.8566 0.8412

scDEFRNGrA 0.8424 0.8087
scDEFRNFir 0.8208 0.7716
scDEFRNSec 0.8157 0.7579
scDEFRNFcte 0.6646 0.5272
scDEFRNTpge 0.8381 0.8069
scDEFRNZinb 0.8564 0.8318

Ours 0.8653 0.8547

Table 3: Ablation study measured by NMI and ARI values

scDEFR scTAG DFCN scGAE

scGNN scziDesk

DCA scDeepCluster Raw

Figure 4: Comparison of clustering results with 2D visual-
ization by t-SNE on the ’Qs Limb Muscle’ dataset

There are nearly 100,000 cells from 20 organs and tissues
and 19179 genes with 55 cell types in the Tabula Muris.
Fig. 3 (E) illustrates the clustering performance of scDEFR
compared to the baseline methods on Tabula Muris. The
scGNN clustering method was removed since it was un-
able to run on such a massive dataset. As depicted in Fig. 3
(E), scDEFR can provide excellent clustering performance
on large datasets with the highest NMI and ARI values.

Conclusion
In this paper, we propose a single-cell model-based deep
embedding fusion representation model for clustering. The
compressed representations obtained from the fusion cell
topology encoder and the transcriptomics profile-based
graph encoder are incorporated into the model in a layer-by-
layer fashion. Then, the heterogeneous structural informa-
tion representations are produced after fusing the two afore-
mentioned distinct kinds of data and employing the ZINB-
based multimodal fusion decoder for reconstructing a cell
graph and the transcriptomic information, respectively. Fi-
nally, a joint mutual supervision strategy is proposed to op-
timize both the embedded fusion representations and the
clustering performance. Through experiments on 15 real
scRNA-seq datasets, we demonstrate the superiority of the
proposed scDEFR method over other state-of-the-art base-
line methods. Moreover, evidence from ablation studies and
scalability studies demonstrates that scDEFR is efficient, re-
liable, and extensible.

5042



Acknowledgements
The work described in this paper was substantially sup-
ported by the National Natural Science Foundation of
China under (Grant No. 62076109, 61972174) and the Jilin
Province Outstanding Young Scientist Program (Grant NO.
20230508098RC), and also funded by ’the Fundamental Re-
search Funds for the Central Universities, JLU’. This re-
search was substantially sponsored by the research projects
(Grant No. 32170654 and Grant No. 32000464) supported
by the National Natural Science Foundation of China and
was substantially supported by the Shenzhen Research In-
stitute, City University of Hong Kong.

References
Adam, M.; Potter, A. S.; and Potter, S. S. 2017. Psy-
chrophilic proteases dramatically reduce single-cell RNA-
seq artifacts: a molecular atlas of kidney development. De-
velopment, 144(19): 3625–3632.
Bo, D.; Wang, X.; Shi, C.; Zhu, M.; Lu, E.; and Cui, P. 2020.
Structural deep clustering network. In Proceedings of The
Web Conference 2020, 1400–1410.
Camp, J. G.; Badsha, F.; Florio, M.; Kanton, S.; Gerber, T.;
Wilsch-Bräuninger, M.; Lewitus, E.; Sykes, A.; Hevers, W.;
Lancaster, M.; et al. 2015. Human cerebral organoids reca-
pitulate gene expression programs of fetal neocortex devel-
opment. Proceedings of the National Academy of Sciences,
112(51): 15672–15677.
Camp, J. G.; Sekine, K.; Gerber, T.; Loeffler-Wirth, H.;
Binder, H.; Gac, M.; Kanton, S.; Kageyama, J.; Damm, G.;
Seehofer, D.; et al. 2017. Multilineage communication reg-
ulates human liver bud development from pluripotency. Na-
ture, 546(7659): 533–538.
Chen, L.; Wang, W.; Zhai, Y.; and Deng, M. 2020a. Deep
soft K-means clustering with self-training for single-cell
RNA sequence data. NAR genomics and bioinformatics,
2(2): lqaa039.
Chen, L.; Wang, W.; Zhai, Y.; and Deng, M. 2020b. Single-
cell transcriptome data clustering via multinomial modeling
and adaptive fuzzy k-means algorithm. Frontiers in genetics,
11: 295.
Consortium, T. M.; et al. 2018. Single-cell transcrip-
tomics of 20 mouse organs creates a Tabula Muris. Nature,
562(7727): 367–372.
Du, J.; Zhang, S.; Wu, G.; Moura, J. M.; and Kar, S. 2017.
Topology adaptive graph convolutional networks. arXiv
preprint arXiv:1710.10370.
Eraslan, G.; Simon, L. M.; Mircea, M.; Mueller, N. S.; and
Theis, F. J. 2019. Single-cell RNA-seq denoising using a
deep count autoencoder. Nature communications, 10(1): 1–
14.
Grün, D.; Kester, L.; and Van Oudenaarden, A. 2014. Valida-
tion of noise models for single-cell transcriptomics. Nature
methods, 11(6): 637–640.
Johnson, S. C. 1967. Hierarchical clustering schemes. Psy-
chometrika, 32(3): 241–254.

Luo, Z.; Xu, C.; Zhang, Z.; and Jin, W. 2021. A topology-
preserving dimensionality reduction method for single-cell
RNA-seq data using graph autoencoder. Scientific reports,
11(1): 1–8.
MacQueen, J. 1967. Classification and analysis of multi-
variate observations. In 5th Berkeley Symp. Math. Statist.
Probability, 281–297.
Muraro, M. J.; Dharmadhikari, G.; Grün, D.; Groen, N.; Die-
len, T.; Jansen, E.; Van Gurp, L.; Engelse, M. A.; Carlotti,
F.; De Koning, E. J.; et al. 2016. A single-cell transcriptome
atlas of the human pancreas. Cell systems, 3(4): 385–394.
Papalexi, E.; and Satija, R. 2018. Single-cell RNA sequenc-
ing to explore immune cell heterogeneity. Nature Reviews
Immunology, 18(1): 35–45.
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