
BETA-CD: A Bayesian Meta-Learned Cognitive Diagnosis Framework
for Personalized Learning

Haoyang Bi1, 2, Enhong Chen∗1, 2, Weidong He1, 2, Han Wu1, 2,
Weihao Zhao1, 2, Shijin Wang2,3, Jinze Wu3

1 Anhui Province Key Laboratory of Big Data Analysis and Application, University of Science and Technology of China
2 State Key Laboratory of Cognitive Intelligence
3 iFLYTEK AI Research, iFLYTEK CO., LTD.

bhy0521@mail.ustc.edu.cn, cheneh@ustc.edu.cn, {hwd, wuhanhan, zhaoweihao}@mail.ustc.edu.cn,
{sjwang3, jzwu4}@iflytek.com

Abstract

Personalized learning is a promising educational approach
that aims to provide high-quality personalized services for
each student with minimum demands for practice data. The
key to achieving that lies in the cognitive diagnosis task,
which estimates the cognitive state of the student through
his/her logged data of doing practice quizzes. Nevertheless,
in the personalized learning scenario, existing cognitive di-
agnosis models suffer from the inability to (1) quickly adapt
to new students using a small amount of data, and (2) mea-
sure the reliability of the diagnosis result to avoid improper
services that mismatch the student’s actual state. In this pa-
per, we propose a general Bayesian mETA-learned Cognitive
Diagnosis framework (BETA-CD), which addresses the two
challenges by prior knowledge exploitation and model un-
certainty quantification, respectively. Specifically, we firstly
introduce Bayesian hierarchical modeling to associate each
student’s cognitive state with a shared prior distribution en-
coding prior knowledge and a personal posterior distribution
indicating model uncertainty. Furthermore, we formulate a
meta-learning objective to automatically exploit prior knowl-
edge from historical students, and efficiently solve it with a
gradient-based variational inference method. The code will
be publicly available at https://github.com/AyiStar/pyat.

Introduction
In intelligent tutoring systems, personalized learning is a
promising educational approach which aims to deliver cus-
tomized services based on the students’ personal states to
address their unique needs in study (Paramythis and Loidl-
Reisinger 2003). As shown in Figure 1, each student has a
few personal practice logs used to estimate his/her cogni-
tive state (e.g., how well he/she has mastered the specific
knowledge concepts), which is referred to as the procedure
of cognitive diagnosis (Wang et al. 2020). Then the system
is able to provide personalized services based on the diag-
nosis result, such as online course recommendation (Zhang
et al. 2019) and learning path planning (Liu et al. 2019).
Compared to conventional scenarios where students are pro-
vided with equally non-personalized practice questions and
educational services, personalized learning can essentially
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Figure 1: Illustrative procedure of personalized learning in
intelligent tutoring systems.

achieve lower practice burden and higher service quality.
To this objective, the procedure of cognitive diagnosis is re-
quired to (1) rely on as few practice data as possible from
students and (2) provide as an informative result as possible
for downstream services. In the literature, massive efforts
have been devoted to developing cognitive diagnosis mod-
els (CDMs) (Embretson and Reise 2013; Wang et al. 2020).
However, existing works are faced with the following two
challenges in the personalized learning scenario.

Firstly, it is challenging for existing CDMs to quickly
adapt to new students within only a small amount of prac-
tice data. Typically, directly applying ordinary optimization
methods to the current student’s practice logs will bring se-
vere overfitting problems. A major cause of such inability
for fast adaptation is the lack of the exploitation of prior
knowledge about the population of similar students. We take
the human teacher as an explanatory metaphor. In practice, a
proficient teacher can quickly judge a student’s state through
a few questions. A critical factor lies in the teacher’s rich
prior knowledge from her past teaching experience. For in-
stance, assume that a student has only one correct response
on a question at difficulty level 4 (out of 10). Taking no prior
knowledge into consideration, since the student has a 100%
correct rate, we might overestimate the student’s ability to
extremely high, say level 9. Contrastively, the teacher can re-
fer to all the students in the same class who also correctly an-
swered this question, and then give a more reasonable result,
e.g., level 6, which is the average ability level of the similar
students. Hence, it is necessary to exploit prior knowledge
in cognitive diagnosis procedures for facilitating fast adap-
tation with limited data.
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Secondly, there lacks a principled way of measuring the
reliability of the diagnosis results. Since downstream appli-
cations heavily depend on the results of cognitive diagnosis,
being agnostic about an unreliable result may cause a se-
rious mismatch between the provided services and the stu-
dent’s actual state (e.g., recommending an overwhelmingly
hard online course), degrading the service quality. However,
most of the existing CDMs solely provide the final value of
the cognitive state estimation while conveying little infor-
mation about how much we can trust it. To overcome this
weakness, we propose to measure the reliability of the di-
agnosis results by quantifying the model uncertainty of the
CDM in the procedure of cognitive diagnosis.

Summarily, in the context of personalized learning, cogni-
tive diagnosis models should be ideally equipped with both
prior knowledge exploitation and model uncertainty quan-
tification. To this end, we propose a novel Bayesian mETA-
learned Cognitive Diagnosis (BETA-CD) framework that
addresses both challenges in a unified manner. We first in-
troduce Bayesian hierarchical modeling for the cognitive di-
agnosis task. Specifically, we incorporate prior knowledge
as a globally parametrized prior distribution of the cog-
nitive states for all students. Correspondingly, the locally
inferred student-specific posterior distribution is naturally
recognized as the cognitive diagnosis result which quanti-
fies the model uncertainty. Furthermore, to effectively ex-
ploit prior knowledge, we formulate a meta-learning objec-
tive to automatically optimize an appropriate prior on his-
torical data so that the resulting posterior has a good and
quick adaptation to new students. To tackle the intractability
of posteriors in optimization, we leverage a gradient-based
variational inference method for scalable meta-optimization.
Finally, a practical specification for both prior and approx-
imate posterior is realized with a balanced consideration of
reasonability, performance and computational efficiency. As
a general and scalable framework, BETA-CD can be applied
to a wide range of CDMs, especially the recent deep mod-
els (Wang et al. 2020; Gao et al. 2021).

The main contributions of our work are listed as follows.
(1) We propose a general Bayesian meta-learned cogni-
tive diagnosis framework (BETA-CD) which achieves both
lower practice burden and higher service quality for per-
sonalized learning. (2) We introduce Bayesian hierarchical
modeling for the cognitive diagnosis task to unifiedly in-
corporate prior knowledge and model uncertainty. (3) We
formulate a meta-learning objective to automatically exploit
prior knowledge from historical data and solve it with a scal-
able gradient-based variational inference method. (4) Exten-
sive experiments on various datasets and models validate the
effectiveness and generality of BETA-CD.

Related Works
Cognitive Diagnosis. As a fundamental task, cognitive di-
agnosis has been well studied for decades in the area of edu-
cational psychology. In general, a cognitive diagnosis model
(CDM) links the parametrized trait features of the student
(θ) and the question (φ) to the prediction of the student’s
response result (correct or wrong) (Wang et al. 2020). The

most popular CDM is Item Response Theory (IRT) (Em-
bretson and Reise 2013), in which θ, φ ∈ R are unidimen-
sional continuous latent parameters indicating student abil-
ity level and question difficulty level, respectively, and the
predictive response is modeled in a logistic way, p(rij =
1|θi, φj) = sigmoid(θi − φj). Along this line, Multidimen-
sional IRT (MIRT) (Liu et al. 2018c) incorporates higher
dimensional parameters to extend the ability trait in IRT.
Some other CDMs directly model the mastery level of the
student on specific knowledge concepts (e.g., Trigonomet-
ric Function), such as Deterministic Inputs, Noisy-And gate
(DINA) (De La Torre 2009). Recently, data-driven CDMs
have been proposed, which leverage deep neural networks to
facilitate automatic modeling for the latent traits as well as
their complex relations (Wang et al. 2020; Gao et al. 2021).

Uncertainty Quantification. When developing mathe-
matical models for various real-world tasks such as data
analysis (Liu et al. 2018a; Zhao et al. 2022), image recog-
nition (Hu et al. 2021) and user modeling (He et al. 2020),
it is often needed to deal with the model uncertainty (Sulli-
van 2015; Abdar et al. 2021). In educational scenarios, be-
ing unaware of the uncertainty in cognitive diagnosis models
will cause irrational behaviors of intelligent tutoring systems
and thus leave terrible study experiences for the students.
A natural solution of uncertainty quantification is Bayesian
modeling (van de Schoot et al. 2021; Pei et al. 2020). In-
stead of training deterministic parameters, a Bayesian model
relates its parameters with prior distributions and acquires
their posterior by the Bayesian rule. There are some efforts
to incorporating Bayesian modeling for specific classes of
CDMs (Yamaguchi and Okada 2020; Ma and Jiang 2021;
Zhan et al. 2019). However, there still lacks a principled
way of dealing with uncertainty unifiedly for a wide range of
CDMs, especially scaling to those deep models in which the
computation of posteriors becomes intractable (Wang et al.
2020; Gao et al. 2021). To tackle this problem, we leverage a
gradient-based variational inference method with a learnable
prior to encode richer knowledge.

Meta-learning. Meta-learning aims at empowering the
machine learning model with meta-knowledge extracted
from a series of learning tasks so that the model can
adapt fast to new tasks drawn from the same task distri-
bution (Hospedales et al. 2021). With effective exploitation
of prior knowledge, meta-learning has been widely applied
to solve the data sparsity problem in various fields (Lee
et al. 2019; Rakelly et al. 2019). The most relevant works
to our work belong to so-called optimization-based meta-
learning (Finn, Abbeel, and Levine 2017; Li et al. 2017;
Rajeswaran et al. 2019). Furthermore, it has been shown
that optimization-based meta-learning can be endowed with
probabilistic interpretations by Bayesian hierarchical mod-
eling (Grant et al. 2018), such that we can reason about un-
certainty while adapting to new tasks (Finn, Xu, and Levine
2018; Ravi and Beatson 2018; Nguyen, Do, and Carneiro
2020). In the proposed BETA-CD, we formulate a meta-
learning objective to facilitate automatic prior knowledge
exploitation by treating the cognitive diagnosis procedure
for each student as individual tasks.
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Methodology
Problem Setup
Suppose there are M students, S = {si}Mi=1, and N ques-
tions, Q = {qj}Nj=1, in an intelligent tutoring system. Each
student practises on the system by responding to a few pro-
vided questions, and the results are recorded as triplets like
(si, qj , rij), where rij ∈ {1, 0} denotes that student si re-
sponses question qj correctly or wrongly. The set of ques-
tions that si has answered and the corresponding responses
are denoted as Qi and Ri, respectively. Through the prac-
tice data, we can discover the student’s cognitive state with
a cognitive diagnosis model (CDM). Principally, a CDM
consists of two sets of parameters: the cognitive state pa-
rameters θ that are personalized for each student, and the
question feature parameters Φ = {φj}Nj=1 that are shared
across students. In practice, the question features Φ are typ-
ically pretrained on historical data or directly calibrated by
experts and then fixed for new students. For brevity of pre-
sentation, we omit Φ with more focus on the cognitive state
parameters θ. Given the cognitive state θi of student si, the
CDM predicts his/her response to any question qj ∈ Q as
p(rij = 1|qj , θi).

Problem Definition Suppose an intelligent tutoring sys-
tem with a cognitive diagnosis model parametrized by θ.
Given the historical students S = {si}Mi=1 with recorded
practice data {(Qi, Ri)}Mi=1, for any new student s∗ /∈ S,
our goal is to obtain a personalized cognitive state estima-
tion θ∗ via a small amount of new practice data (Q∗, R∗).

Bayesian Meta-learned Cognitive Diagnosis
To achieve a lower practice burden and higher service
quality for personalized learning, we introduce a Bayesian
mETA-learned Cognitive Diagnosis framework, namely
BETA-CD, including: (1) Bayesian hierarchical modeling
that unifiedly incorporates prior knowledge and model un-
certainty; (2) Meta-learning objective formulation to facil-
itate automatic prior knowledge exploitation; (3) Gradient-
based variational inference for scalable meta-optimization.

Bayesian Hierarchical Modeling To solve the problem
defined above, we should seek a proper objective for cog-
nitive state parameter optimization. For a new student s∗,
a conventional way of estimating his/her cognitive state is
directly fitting the CDM to the practice data {Q∗, R∗}, i.e.,

θ∗ = arg min
θ
− log p(R∗|Q∗, θ), (1)

where p(R|Q, θ) is a short form for
∏r′∈R
q∈Q p(r = r′|q, θ) in

this section. Although the objective is simple to optimize, it
results in two challenges which are especially severe in the
context of personalized learning. First, since personalized
learning pursues a low practice burden for students, the data
size, |Q∗| = |R∗|, is assumed to be small. As a result, the
estimation obtained via Eq. (1) is prone to overfit. Second,
because the point output θ∗ is unable to quantify the model
uncertainty, downstream applications have little information
about the reliability of the cogitive diagnosis result, which
may lead to seriously low-quality educational services for
students.

𝝍
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Figure 2: (a) Graphic model for Bayesian hierarchical mod-
eling of cognitive diagnosis. (b) Graphic model after per-
forming inference on θi.

To this end, we introduce Bayesian hierarchical model-
ing (Fei-Fei and Perona 2005) to view the above two chal-
lenges from a probabilistic perspective. As shown in Fig-
ure 2(a), we assume a global latent variable ψ and student-
specific variables θi(i = 1, ...,M). ψ influences each θi by
specifying a parametrized prior distribution p(θi|ψ), which
can be treated as an encoding of prior knowledge about
the overall students. For example, if a Gaussian prior is
assumed, ψ consists of the mean and standard deviation
of θ. The student-specific cognitive state θi determines the
prediction of the student’s response to any question qj as
p(rij = 1|qj , θi), which has been supposed to be specified
by the CDM. For a new student s∗ with the observed prac-
tice data (Q∗, R∗), we can infer the posterior distribution of
his/her cognitive state by the Bayesian rule:

θ∗ ∼ p(θ|Q∗, R∗, ψ). (2)

Compared to Eq. (1), the above cognitive diagnosis result
has two key differences. First, the overfitting problem caused
by the limited observed data can be alleviated by leverag-
ing external prior knowledge contained in the prior p(θ|ψ).
Second, in contrast to a point result, the distributional one
contains rich information about the model uncertainty.

Meta-learned Prior Knowledge In the literature, the
prior p(θ|ψ) is determined either empirically or just for
mathematical convenience (Lord 2012). However, such a
crude prior typically acts as regularization and has lim-
ited effect in preventing overfitting. In contrast, we pro-
pose to automatically exploit prior knowledge from the prac-
tice data by optimizing the prior parametrization ψ with a
well-formulated meta-learning objective (Hospedales et al.
2021). Specifically, for each historical student si ∈ S, we
treat his/her cognitive diagnosis procedure as an individ-
ual task Ti = (Qti, R

t
i, Q

v
i , R

v
i ), where (Qti, Q

v
i ) denotes a

train-validation split of Qi, and so does (Rti, R
v
i ). It is be-

lieved that these tasks have internally similar structures so
that there exists shared prior knowledge that can be learned.
To be specific, such prior knowledge is supposed to help
the cognitive diagnosis model quickly adapt to each stu-
dent, i.e., infer a student-specific posterior p(θi|Qti, Rti, ψ)
that fits well on the validation set (Qvi , R

v
i ), as illustrated in

Figure 2(b). Hence, we aim to obtain an appropriate prior
parametrization ψ by learning to learn on each task with
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minimizing the following meta-loss:

min
ψ

M∑
i=1

L(m)
i (ψ) ≡

M∑
i=1

− log p(Rvi |Qvi , Qti, Rti, ψ)

=
M∑
i=1

− logEθi∼p(θi|Qt
i,R

t
i,ψ)

[p(Rvi |Qvi , θi)] .

(3)

Note that we assume ψ to be deterministic rather than treat-
ing it as a random variable. There are two reasons for this
assumption. First, in typical intelligent tutoring systems, the
number of historical students is much larger than the num-
ber of practice logs within each student. In this case, the un-
certainty of the meta-learned prior knowledge in ψ should
be low, i.e., p(ψ) can be approximated with a Dirac delta
distribution. Second, in personalized learning, it is the un-
certainty in the student’s cognitive state θ, rather than in the
prior knowledge ψ, that is of our interest.

Gradient-based Variational Inference With the meta-
learning objective (Eq. (3)) in mind, we now discuss how to
train the meta-parameters ψ effectively and efficiently. The
main difficulty lies in the intracbility of the posterior term
p(θi|Qti, Rti, ψ), especially when the cognitive state param-
eter θ is high-dimensional. To tackle this problem, we use
a variational distribution q(θi;λi) to approximate the poste-
rior, where λi = λi(Q

t
i, R

t
i, ψ) denotes the parameters as-

sumed in the same form as ψ for simplicity. In variational
inference, we obtain q(θi;λi) by minimizing its Kullback-
Leibler (KL) divergence from the target distribution:

λi = arg min
λ

KL
[
q(θi;λ)‖p(θi|Qti, Rti, ψ)

]
= arg min

λ

∫
q(θi;λ) log

q(θi;λ)p(Rti|Qti, ψ)

p(Rti|Qti, θi)p(θi|ψ)
dθi

= arg min
λ

Eθi∼q(θi;λ)
[
− log p(Rti|Qti, θi)

]
+ KL [q(θi;λ)‖p(θi|ψ)] + log p(Rti|Qti, ψ)︸ ︷︷ ︸

constant w.r.t. λ

.

(4)

Intuitively, the first term maximizes the expected log-
likelihood, while the second is a regularisation term that
penalizes the difference between the approximate posterior
and the prior. The last term is constant w.r.t. λ and thus ig-
nored during optimization. Accordingly, we define a local
loss used to obtain the approximate student-specific poste-
rior q(θi;λi) for each student si:

min
λi

L(l)
i (λi) ≡ Eθi∼q(θi;λ)

[
− log p(Rti|Qti, θi)

]
+ η KL [q(θi;λi)‖p(θi;ψ)] ,

(5)

where η is an empirical KL weighting parameter that we find
useful for training stability. We optimize λi by minimizing
the local loss as follows:

λi ← ψ − SGDKλi
(L(l)

i (λi);α), (6)

where SGDKλi
(L(l)

i (λi);α) denotes K-step stochastic gradi-
ent descent operations with per-step learning rate α in which

Algorithm 1: BETA-CD Meta-training

Input: Historical students S = {si}Mi=1 with practice data
{Ti = (Qi, Ri)}Mi=1
Parameter: KL weighting parameter η; Mini-batch size T ;
Sampling sizes Nt, Nv; Number of local updates K; Local
update rate α; Meta update rate γ
Output: Meta-parameters ψ

1: Initialize ψ randomly
2: while ψ not converged do
3: Sample a mini-batch tasks Ti, i = 1 : T
4: for each task Ti do
5: Train-validation split Ti = (Qti, R

t
i, Q

v
i , R

v
i )

6: Initialize λi ← ψ
7: for step k = 1 : K do
8: Sample θ̂nt

i ∼ q(θi;λi), nt = 1 : Nt
9: Compute local loss by sampling:

L(l)
i (λ) ≈ 1

Nt

∑Nt

nt=1− log p(Rti|Qti, θ̂
nt
i ) +

η KL[q(θi;λi)‖p(θi|ψ)]

10: Local Update: λi ← λi − α∇λi
L(l)
i (λi)

11: end for
12: Sample θ̂nv

i ∼ q(θi;λi), nv = 1 : Nv .
13: Compute meta-loss by sampling:

L(m)
i (ψ) ≈ − log

(
1
Nv

∑Nv

nv=1 p(R
v
i |Qvi , θ̂

nv
i )
)

14: end for
15: Meta Update: ψ ← ψ − γ · 1

T

∑T
i=1∇ψL

(m)
i (ψ)

16: end while
17: return ψ

the expectation terms are computed by Monte Carlo sam-
pling. This gradient-based variational inference method has
two advantages. First, it is much more computationally effi-
cient than the original minimization problem (Eq. (4)). Sec-
ond, by relating the prior and posterior with gradient-based
operations, we can effectively use the approximate posteri-
ors to compute the original meta-loss (Eq. (3)) and optimize
the meta-parameters ψ via gradient descent as well. The
whole implementation will be thoroughly presented next.

Implementation Detail
The meta-training procedure of BETA-CD is summarized
in Algorithm 1, following a bilevel paradigm that is com-
mon for optimization-based meta-learning (Finn, Abbeel,
and Levine 2017). Specifically, in the inner loops, for each
task Ti (i.e., the practice data of student si), we perform lo-
cal updates w.r.t. λi by minimizing the local loss (Eq. (5)) on
the training set to obtain the approximate posterior q(θi;λi).
Then in the outer loops, we perform meta-updates w.r.t. ψ
by minimizing the meta-loss (Eq. (3)) on the validation sets
of a mini-batch of tasks.

By meta-training on massive historical students, the ob-
tained ψ extracts rich prior knowledge about the overall
cognitive states of the student population. Hence, when a
new student arrives, we can infer his/her cognitive state via
a small amount of practice data in aid of the prior knowl-
edge. As illustrated in Algorithm 2, the meta-testing proce-
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Algorithm 2: BETA-CD Meta-testing

Input: A new student s∗ with practice data (Q∗, R∗)
Parameter: Trained meta-parameters ψ; Number of local
updates K; Local update rate α; KL weighting parameter η;
Sampling size Nt;
Output: Approximate posterior q(θ∗;λ∗)

1: Initialize λ∗ ← ψ
2: for step k = 1 : K do
3: Sample θ̂nt

∗ ∼ q(θ∗;λ∗), nt = 1 : Nt
4: Compute local loss by sampling:

Lt∗(λ) ≈ 1
Nt

∑Nt

nt=1[− log p(R∗|Q∗, θ̂nt
∗ ) +

η KL[q(θ∗;λ∗)‖p(θ∗|ψ))]

5: Local Update: λ∗ ← λ∗ − α∇λ∗Lt∗(λ∗, θ̂nt
∗ )

6: end for
7: return q(θ∗;λ∗)

dure on (Q∗, R∗) matches the local update on the training set
(Qti, R

t
i) of each task in meta-training, thus is supposed to

adapt better on unseen validation data. Finally, the approxi-
mate posterior q(θ∗;λ∗) is output as the cognitive diagnosis
result, in which we can easily observe the estimation uncer-
tainty. In case a point result is needed (e.g., in some of our
experiments), the cognitive state estimation or predictive re-
sponse on some question qj can also be obtained as Eq[θ∗]
and Eq [p(r∗j |qj , θ∗)], respectively.

In general, it is flexible to specify the parametrization
forms for the prior p(θi|ψ) and the approximate posterior
q(θi;λi), often aiming at a proper trade-off between perfor-
mance and complexity. We consider both of them as fully
factorized Gaussian distributions, i.e.,

p(θi|ψ) ≡ N (θi|µθ,σθI), (7)
q(θi;λi) ≡ N (θi|µλi ,σλiI). (8)

In other words, we define the parameters ψ = {µθ,σθ} and
λi = {µλi ,σλi} to be the mean and diagonal standard de-
viation of the Gaussian cognitive state. Besides convenience
for implementation, there are two reasons to make this as-
sumption. First, in educational psychology, the Gaussian
distribution has long been recognized as a proper statistic
model for the cognitive states of students (Liu et al. 2018b).
Second, in most of the existing CDMs, different dimensions
of the cognitive state parameters θ are modeled as indepen-
dent factors, such as the mastery level on individual knowl-
edge concepts, leading to a fully factorized prior as well.

We leverage some additional tricks in meta-optimization.
For numerical stability, we implement the standard devi-
ations in the logarithm form σ = exp(ρ). The KL di-
vergence KL [q(θi;λi)‖p(θi|ψ)] is computed efficiently in
the closed form (Blundell et al. 2015) since both distri-
butions are modeled as Gaussian. When sampling from
p(θi|ψ) and q(θi;λi), we implement the re-parametrization
trick (Kingma and Welling 2013). Finally, instead of using
a constant learning rate α for local updates, we meta-learn
an individual rate for each inner step along with the meta-
parameters (Antoniou, Edwards, and Storkey 2018).

Dataset #Students #Questions #Logs
ECPE 2,922 28 81,816
ASSIST 1,670 1,960 355,376
EXAM 3,750 1,179 158,178

Table 1: Statistics of the preprocessed datasets

Experiments
In this section, we first introduce the datasets and our ex-
perimental setups. Then, we conduct extensive experiments
to compare the performances of CDMs optimized by the or-
dinary optimization approach and the proposed BETA-CD
(hereinafter referred to as ORD-CDMs and BETA-CDMs,
respectively) to answer the following questions:

• RQ1: Can BETA-CDMs gain greater accuracy in cogni-
tive state estimation and thus perform better in predicting
student performance?
• RQ2: How do the different designed parts in BETA-CD

influence the performance of BETA-CDMs?
• RQ3: Are BETA-CDMs well calibrated as expected by

incorporating model uncertainty quantification?
• RQ4: In what ways can model uncertainty quantification

benefit personalized learning in practice?

Dataset Description
We evaluate our framework with three real-world datasets
consisting of massive students’ practice logs, i.e., ECPE,
ASSIST and EXAM. ECPE (Examination for the Certificate
of Proficiency in English), collected from a standard English
test by the English Language Institute of the University of
Michigan, is well adopted in educational psychology. AS-
SIST (ASSISTments 2017 skill builder) is a widely used edu-
cational dataset containing students’ practice in mathematics
with the ASSISTments system. Supplied by a famous online
intelligent tutoring system from iFLYTEK Co., Ltd., EXAM
contains mathematical test logs of high school examinations.

For each dataset, we filter out the questions answered by
less than 10 students and the students that answered less than
20 questions. The statistics of the preprocessed datasets are
presented in Table 1. We randomly divide the students in
each dataset by 6:2:2, where the 60% partition contains the
historical students in the intelligent tutoring system used to
train the CDM, one 20% partition acts as new students to be
diagnosed, and the other 20% partition is used for early stop-
ping and hyperparameter tuning. For each new student, 20%
of his/her logs are left out as a validation question set (i.e.,
Qv, Rv). Among the rest 80%, we randomly select different
numbers of logs as the training question sets (i.e., Qt, Rt).

Experimental Setup
To evaluate the effectiveness and generality of BETA-CD,
we apply our framework to four well-adopted CDMs, i.e.,
IRT (Embretson and Reise 2013), MIRT (Liu et al. 2018c),
DINA (De La Torre 2009) and NCD (Wang et al. 2020).
We call them BETA-CDMs with our framework applied
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Dataset Size IRT MIRT DINA NCD
ORD- BETA- ORD- BETA- ORD- BETA- ORD- BETA-

ECPE
3 69.12 72.86 71.66 72.84 69.51 71.77 70.37 72.54
5 70.48 73.15 72.17 73.33 70.58 72.09 70.93 72.77

10 73.13 73.80 73.07 73.91 71.79 72.90 71.73 73.42

ASSIST
3 60.81 67.46 65.37 67.24 52.45 63.67 61.77 64.93
5 63.51 68.14 65.71 68.19 53.13 63.85 61.86 65.30

10 65.99 69.28 66.51 68.97 54.15 64.14 62.25 65.84

EXAM
3 70.06 75.25 75.01 75.58 63.07 70.49 69.42 75.07
5 72.46 75.62 75.38 75.65 64.34 71.15 70.18 75.16

10 74.63 75.97 76.13 76.23 65.81 71.51 71.03 75.17

(a) Results with ACC metric.

Dataset Size IRT MIRT DINA NCD
ORD- BETA- ORD- BETA- ORD- BETA- ORD- BETA-

ECPE
3 66.13 71.40 68.25 71.55 64.97 67.99 67.44 70.92
5 68.11 72.30 69.19 72.51 66.33 68.80 68.60 71.44

10 71.92 74.10 71.12 74.17 68.78 70.67 70.49 73.29

ASSIST
3 64.87 72.52 70.20 72.36 58.97 68.43 65.06 69.44
5 67.12 73.74 70.75 73.52 59.77 68.69 65.24 69.85

10 70.61 74.93 71.90 74.70 60.93 69.00 65.74 70.50

EXAM
3 69.40 80.59 79.78 80.72 65.82 72.67 74.02 79.63
5 73.91 80.87 80.32 80.87 67.41 72.94 74.58 79.66

10 78.41 81.66 81.24 81.80 68.71 73.69 75.06 79.75

(b) Results with AUC metric.

Table 2: Student performance prediction of BETA-CD compared with ordinary methods.

and ORD-CDMs otherwise, e.g., BETA-IRT and ORD-IRT.
In ORD-CDMs, we implement ordinary gradient descent
in cognitive state estimation for new students. In BETA-
CDMs, the hyperparameters for meta-training and meta-
testing are as follows. We set the mini-batch size T = 8,
the sampling sizes Nt = Nv = 4 and the number of inner
updates K = 3. The KL weighting parameter η in the lo-
cal loss is set to 10−4. The learning rate for local updates
is initialized to α = 0.1. We set the learning rate for meta-
updates γ = 10−4 and use the Adam algorithm (Kingma and
Ba 2014) for meta-optimization. All the methods are imple-
mented by PyTorch using Python and all the experiments
are conducted on a Linux server with two 2.30GHz Intel(R)
Xeon(R) Gold 5118 CPUs and one 11G GTX 1080ti GPU.

Evaluation Protocols
Performance Prediction Since cognitive states cannot be
directly observed in practice, it is common to indirectly eval-
uate CDMs through the student performance prediction task
on validation question sets (Wang et al. 2020), which is es-
sentially a binary classification task. Specifically, we use two
classification metrics, i.e., accuracy (ACC) and the area un-
der the receiver operating characteristics curve (AUC).

Uncertainty Quantification To validate the effectiveness
of model uncertainty qualification, we compute the reliabil-
ity diagrams (Guo et al. 2017). In specific, a reliability dia-
gram (e.g., Figure 3) visually measures how well calibrated
the predictions of a model are by plotting the actual expected

accuracy opposed to the output confidence of the model. A
well-calibrated model with proper uncertainty quantification
will have a small gap between its confidence and the actual
accuracy, as it indicates that the predictive probability cor-
responds closely with how likely the prediction is actually
correct, neither being overconfident or overcareful. More
quantitively, we can compute the Expected Calibration Error
(ECE) based on the diagram, which is a weighted average of
accuracy-to-confidence differences (Guo et al. 2017).

Experimental Results
Student Performance Prediction (Q1) Table 2 shows the
comparison results between BETA-CDMs and ORD-CDMs
in student performance prediction using the ACC metric and
the AUC metric, respectively. For reliability and comparabil-
ity, data splits are conducted with 5 different random seeds,
each time keeping the same split across all the CDMs. The
table shows the averaged results, and Wilcoxon rank-sum
statistical tests have been used to check whether the differ-
ence between the ORD-CDMs and our BETA-CDMs is sta-
tistically significant (with a 0.05 significance level). Specifi-
cally, on each dataset, we set the size of training data per new
student as 3, 5, 10. From the table, we can see that for every
CDM, our BETA-CDM significantly outperforms the ORD-
CDM on all the datasets. The results indicate that our frame-
work is general to promote the cognitive state estimation of
a wide range of CDMs by extracting useful prior knowledge
from training data. Besides, there are two interesting obser-
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Method ECPE ASSIST EXAM
ACC AUC ACC AUC ACC AUC

Ordinary 70.48 68.11 63.51 67.12 72.46 73.91
No-ML 72.33 69.36 65.91 70.69 74.61 78.79
No-BM 72.77 72.17 67.93 73.33 75.48 80.83

BETA-CD 73.15 72.30 68.14 73.74 75.62 80.87

Table 3: Ablation study results of BETA-CD with IRT.
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Figure 3: Comparison of reliability diagrams on ASSIST.

vations which confirms the role of the proposed framework
for data sparsity problems. First, the BETA-CDMs has more
obvious improvement compared to the ORD-CDMs when
the amount of data is smaller. Second, BETA-CD has larger
impact on the deep learning based model (i.e., NCD) than
the other traditional models.

Ablation Study (Q2) To further examine different parts
in the proposed framework, we compare BETA-CD to two
variants. To validate the effectiveness of the Bayesian mod-
eling, we remove uncertainty in cognitive state estimation
by degenerating the prior p(θi|ψ) to δ(θi − ψ) and the pos-
terior p(θi|Qi, Ri, ψ) to the maximum likelihood estimation
(MLE), which is called No-BM. To validate the effective-
ness of the meta-learning formulation, we manually specify
a standard Gaussian prior ψ = {0, I} rather than optimize
ψ via meta-learning (Eq. (3)), which we call No-ML. Table 3
shows the results with IRT as the underlying CDM. The re-
sults on other CDMs are similar. As expected, meta-learning
plays a key part in cognitive diagnosis. Besides, it is worth
mentioning that Bayesian modeling also helps obtain better
diagnosis results because a manually specified prior can in-
corporate prior knowledge as well.

Model Uncertainty Quantification (Q3) To validate the
uncertainty quantification of BETA-CDMs, we use MIRT
and NCD as base CDMs to compute their reliability di-
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Figure 4: Empirical CDF curves on ECPE.

agrams and associated Expected Calibration Error (ECE)
across different students on ASSIST dataset. We have sim-
ilar results with other CDMs on other datasets. As shown
in Figure 3, the predictive probability of BETA-MIRT and
BETA-NCD is much closer to the actual accuracy than that
of ORD-MIRT and ORD-NCD, respectively, indicating bet-
ter calibration under our BETA-CD framework. Besides, the
ECE scores quantitively support the same results. Hence, we
conclude that BETA-CD can effectively quantify the model
uncertainty such that we can really believe in the CDM when
it gives confident predictions, and vice versa.

Benefits of Uncertainty Awareness (Q4) In principle, it
is beneficial for intelligent tutoring systems to be informed
of the reliability of the cognitive diagnosis through the
model uncertainty, so that the systems can make a wise de-
cision on whether to provide further services or collect more
practice data. To validate this benefit, we construct a circum-
stance in which the model is supposed to be more uncertain,
and check if BETA-CD can consistently detect larger model
uncertainty. Specifically, we consider the cases where the
numbers of practice logs from each student are 3, 5, 10, re-
spectively. In each case, we calculate the entropy of each
student’s cognitive state posterior, and plot the empirical Cu-
mulative Distribution Function (eCDF) of the entropy values
across all the students. Figure 4 shows the results of BETA-
IRT and BETA-MIRT on ECPE dataset, and the results on
other CDMs and datasets are similar. We can see that when
there are fewer practice data, the eCDF is lower on small
entropies and higher on large entropies, indicating an over-
all tendency of reporting larger uncertainty. Summarily, we
conclude that BETA-CD is able to appropriately measure the
reliability of the results via model uncertainty.

Conclusion
In this paper, we proposed a general Bayesian mETA-
learned Cognitive Diagnosis framework (BETA-CD), which
unifiedly addresses prior knowledge exploitation and model
uncertainty quantification for cognitive diagnosis in the con-
text of personalized learning. We firstly introduced Bayesian
hierarchical modeling consisting of a shared prior encod-
ing prior knowledge and a student-specific posterior convey-
ing uncertainty. Furthermore, we formulated a meta-learning
objective to automatically exploit prior knowledge and effi-
ciently solved it with a gradient-based variational inference
method. Extensive experiments have shown the effective-
ness and generality of our framework.
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