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Abstract

Multivariate time series anomaly detection has been exten-
sively studied under the one-class classification setting, where
a training dataset with all normal instances is required. How-
ever, preparing such a dataset is very laborious since each
single data instance should be fully guaranteed to be nor-
mal. It is, therefore, desired to explore multivariate time se-
ries anomaly detection methods based on the dataset without
any label knowledge. In this paper, we propose MTGFlow,
an unsupervised anomaly detection approach for Multivariate
Time series anomaly detection via dynamic Graph and entity-
aware normalizing Flow, leaning only on a widely accepted
hypothesis that abnormal instances exhibit sparse densities
than the normal. However, the complex interdependencies
among entities and the diverse inherent characteristics of each
entity pose significant challenges to density estimation, let
alone to detect anomalies based on the estimated possibility
distribution. To tackle these problems, we propose to learn
the mutual and dynamic relations among entities via a graph
structure learning model, which helps to model the accurate
distribution of multivariate time series. Moreover, taking ac-
count of distinct characteristics of the individual entities, an
entity-aware normalizing flow is developed to describe each
entity into a parameterized normal distribution, thereby pro-
ducing fine-grained density estimation. Incorporating these
two strategies, MTGFlow achieves superior anomaly detec-
tion performance. Experiments on five public datasets with
seven baselines are conducted, MTGFlow outperforms the
SOTA methods by up to 5.0 AUROC%.

Introduction
Multivariate time series (MTS) broadly exist in many im-
portant scenarios, such as production data produced by mul-
tiple devices in smart factories and monitoring data gener-
ated by various sensors in smart grids. Anomalies in MTS
exhibit unusual data behaviors at a specific time step or
during a time period. To identify these anomalies, previ-
ous methods mostly focus on training one-class classifica-
tion (OCC) models from only normal data (Wu and Keogh
2021; Schölkopf et al. 1999; Su et al. 2019; Chen et al. 2021;
Deng and Hooi 2021; Xu et al. 2021; Zhang et al. 2019).
They heavily rely on an assumption that the training dataset
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with all normal samples can be easily obtained (Ruff et al.
2021).

However, this assumption may not always hold in real-
world scenarios (Goodge et al. 2021; Zhang, Zhao, and Li
2019; Zong et al. 2018; Qiu et al. 2022), leading to noisy
training datasets with the mixture of normal and abnormal
data instances. Meanwhile, it is already verified that model
training procedure is prone to overfitting noisy labels (Zhang
et al. 2021), so that the performance of those OCC-based
methods could be severely degraded (Wang et al. 2019;
Huyan et al. 2021). Therefore, it is rewarding to develop un-
supervised MTS anomaly detection methods based on the
dataset with absolute zero known labels.

An effective unsupervised strategy is modeling the dataset
into a distribution, relying only on a widely accepted hypoth-
esis that abnormal instances exhibit sparse densities than
the normal, i.e., the low-density regions consist of abnormal
samples and the high-density regions are formed by the nor-
mal samples (Gupta et al. 2013; Pang, Cao, and Aggarwal
2021; Wang et al. 2020). Methods have been explored along
side this strategy and the key challenge lies in the accurate
density estimation of the distribution. Time series density is
modeled as the parameterized probability distribution (Sali-
nas et al. 2020; Rasul et al. 2021; Feng et al. 2022), while it
is still challenging to model a more complex data distribu-
tion. To improve the model capacity of density estimation,
Rasul et al. (Rasul et al. 2020) further exploits normaliz-
ing flow to model complex distribution for high-dimensional
MTS (Rasul et al. 2020). However, they neglect the inter-
dependencies among constituent series which also play an
important role in accurate density estimation.

The most related work is GANF (Dai and Chen 2021),
which tackles the same MTS anomaly detection task. In
their design, the static directed acyclic graph (DAG) is lever-
aged to model intractable dependence among multiple enti-
ties, and normalizing flow (Dinh, Sohl-Dickstein, and Ben-
gio 2016; Papamakarios, Pavlakou, and Murray 2017) is
employed to estimate an overall distribution for all enti-
ties together. Although GANF has achieved state-of-the-art
(SOTA) results previously, it still suffers from two draw-
backs. First, rather than a static inter-relationship, in real-
world applications, the mutual dependencies among entities
could not only be complex but also evolving. This dynamic
property can not be simply characterized via a DAG struc-
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ture. Second, entities usually have diverse working mecha-
nisms, leading to diverse sparse characteristics when anoma-
lies occurred. GANF projects all entities into the same distri-
bution, resulting in a compromise for the density estimation
of each individual time series. Thereby, the final anomaly
detection performance could also be degraded.

In this paper, we propose MTGFlow, an unsupervised
anomaly detection method for MTS anomaly detection, to
tackle the above problems. First, considering the evolving
relations among entities, we introduce a graph structure
learning module to model these changeable interdependen-
cies. To learn the dynamic structure, a self-attention mod-
ule (Vaswani et al. 2017) is plugged into our model for its
superior performance on quantifying pairwise interaction.
Second, aiming at the diverse inherent characteristics ex-
isted among individual entities, we design an entity-aware
normalizing flow to model the entity-specific density esti-
mation. Thereby, each entity can be assigned to a unique
target distribution and the diverse entity densities can be esti-
mated independently. In addition, we also propose to control
the model size by sharing entity-specific model parameters,
which helps MTGFlow achieve fine-grained density estima-
tion without much memory consumption.

We summarize our contributions as follows:

• We propose MTGFlow, a new SOTA method for unsu-
pervised MTS anomaly detection. It essentially enables
anomaly localization and interpretation.

• We model the complicated interdependencies among en-
tities into the dynamic graph, which captures the com-
plex and evolving mutual dependencies among entities.
Also, entity-aware normalizing flow is introduced to pro-
duce entity-specific density estimation.

• Experiments on five datasets with seven baseline meth-
ods are conducted, outperforming the SOTA methods by
up to 5.0 AUROC%.

Related Work
Time Series Anomaly Detection
Time series anomaly detection has been extensively inves-
tigated under OCC setting (Chalapathy and Chawla 2019;
Hundman et al. 2018). Previous influential methods like
DeepSVDD (Ruff et al. 2018), EncDecAD (Malhotra et al.
2016), OmniAnomaly (Su et al. 2019), USAD (Audibert
et al. 2020) and DAEMON (Chen et al. 2021) firstly train
a model with absolutely normal instances so that the ab-
normal instances would exhibit differently when they are
fed into the model during testing. Along side this line,
Anomaly Transformer (Xu et al. 2021) and TranAD (Tuli,
Casale, and Jennings 2022) further investigate fine-grained
representation learning procedure via techniques like self-
attention (Vaswani et al. 2017), achieving good detection
performance.

However, all these works are based on the assumption that
a sufficient training dataset with all normal instances can
be acquired, which is very hard for real-world applications
since each instance should be manually checked carefully. In
addition, once there exist abnormal instances in the training

data, the performance of these OCC-based detection meth-
ods could be severely degraded (Wang et al. 2019; Huyan
et al. 2021). Therefore, instead of fitting distribution of the
normal training dataset, Dai and Chen propose GANF (Dai
and Chen 2021) to detect MTS anomalies in an unsuper-
vised manner. Inspired by them, we propose MTGFlow to
facilitate the learning capacity and improve detection per-
formance.

Graph Structure Learning
Graph convolution networks (GCN) (Kipf and Welling
2016) have achieved great success in modeling intrinsic
structure patterns. However, such a graph structure is usually
unknown in real-world scenarios so graph structure learning
methods are in need (Veličković et al. 2017). In the field
of anomaly detection of MTS, some recent works attempt
to explore this area. GDN (Deng and Hooi 2021) learns a
directed graph via node embedding vectors. According to
the cosine similarity of embedding vectors, top-K candi-
dates of each node are considered to have interdependencies.
GANF (Dai and Chen 2021) models relations among multi-
ple sensors, using DAG, and learns the structure of the DAG
through continuous optimization with a simplified constraint
that facilitates backward propagation. Our work MTGFlow
models the mutual complex dependence as a fully connected
graph via the self-attention mechanism, so that a much more
flexible relation among entities can be represented.

Normalizing Flow for Anomaly Detection
Normalizing flow is an important technology on density es-
timation and has been successfully utilized in image gen-
eration tasks (Dinh, Sohl-Dickstein, and Bengio 2016; Pa-
pamakarios, Pavlakou, and Murray 2017). Recently, it is
also explored for anomaly detection based on the assump-
tion that anomalies are in low-density regions, like Differ-
Net (Rudolph, Wandt, and Rosenhahn 2021) and CFLOW-
AD (Gudovskiy, Ishizaka, and Kozuka 2022), which lever-
age normalizing flow to estimate likelihoods of normal em-
beddings and declare image defects when the embedding is
far away from the dense region. GANF is a great work that
employs normalizing flow for unsupervised MTS anomaly
detection. We follow this research line and facilitate model
capacity through an entity-aware normalizing flow design.

Preliminary
In this section, we give a brief introduction of normalizing
flow to better understand MTGFlow.

Normalizing Flow
Normalizing flow is an unsupervised density estimation ap-
proach to map the original distribution to an arbitrary tar-
get distribution by the stack of invertible affine transfor-
mations. When density estimation on original data distri-
bution X is intractable, an alternative option is to estimate
z density on target distribution Z . Specifically, suppose a
source sample x ∈ RD ∼ X and a target distribution sam-
ple z ∈ RD ∼ Z . Bijective invertible transformation Fθ

aims to achieve one-to-one mapping z = fθ(x) from X
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Figure 1: Overview of the proposed MTGFlow. Within a sliding window of size T , time series xc is fed to the RNN module to
capture the temporal correlations. Hidden states of RNN are regarded as time encoding, Hc. Meanwhile, xc is also input to the
graph structure learning module to capture dynamic interdependencies among entities, which are modeled as adjacency matrix
Ac. The spatio-temporal conditions Cc are derived via the graph convolution operation for Hc and Ac. Finally, Cc is used to
help entity-aware normalizing flow model to produce entity-specific density estimation for the distribution of time series.

to Z . According to the change of variable formula, we can
get PX (x) = PZ(z)

∣∣∣det ∂fθ
∂xT

∣∣∣ . Benefiting from the invert-
ibility of mapping functions and tractable jacobian determi-
nants

∣∣∣det ∂fθ
∂xT

∣∣∣. The objective of flow models is to achieve
ẑ = z, where ẑ = fθ(x). Flow models are able to achieve
more superior density estimation performance when addi-
tional conditions C are input (Ardizzone et al. 2019). Such
a flow model is called conditional normalizing flow, and its
corresponding mapping is derived as z = fθ(x|C). Parame-
ters θ of fθ are updated by maximum likelihood estimation
(MLE): θ∗ = argmax

θ
(log(PZ(fθ(x|C))+ log(

∣∣∣det ∂fθ
∂xT

∣∣∣))
Method

Data Preparation
MTS are defined as x = (x1, x2, ..., xK) and xi ∈ RL,
where K represents the total number of entities, and L de-
notes the total number of observations of each entity. We
use the z-score to normalize the time series from different
entities. x̄i = xi−mean(xi)

std(xi)
, where mean(xi) and std(xi)

represent the mean and standard deviation of the i-th entity
along the time dimension, respectively. To preserve tempo-
ral correlations of the original series, we use a sliding win-
dow with size T and stride size S to sample the normalized
MTS. T and S can be adjusted to obtain the training sample
xc, where c is the sampling count. xc is short for xcS:cS+T .

Overall Structure
The core idea behind MTGFlow is to dynamically model
mutual dependence so that fine-grained density estimation of
the multivariate time series can be obtained. Such accurate
estimation enables the superiority of capturing low-density

regions, and further promotes the anomaly detection perfor-
mance even if there is high anomaly contamination in the
training dataset. Fig. 1 shows the overview of MTGFlow. In
particular, we model the temporal variations of each entity,
using RNN model. Meanwhile, a graph structure learning
module is leveraged to model the dynamic interdependen-
cies. Then, the derived time encoding, output of RNN, per-
forms the graph convolution operation with the above corre-
sponding learned graph structure. We regard above outputs
as spatio-temporal conditions as they contain temporal and
structural information. Next, the spatio-temporal conditions
are input to help entity-aware normalizing flow achieve pre-
cise fine-grained density estimation. The deviations of ẑ and
z are measured by log likelihoods. Finally, all modules of
MTGFlow are jointly optimized through MLE.

Graph Structure Learning via Self-attention

Since dependence among entities is mutual and evolves over
time, we exploit self-attention to learn a dynamic graph
structure. Entities in multivariate time series are regarded
as graph nodes. Given the window sequence xc, the query
and key of node i are represented by vectors xc

iW
Q and

xc
iW

K , where WQ ∈ RT×T and WK ∈ RT×T are the
query and key weights. The pairwise relationship ecij at the
c-th sampling count between node i and node j is described

as ecij =
(xc

iW
Q)(xc

jW
K)T

√
T

. The attention score acij is used
to quantify the pairwise relation from node i to node j, cal-
culated by acij =

exp(ecij)∑K
j=1 exp(ecij)

. And the attention matrix

consists of attention scores of each node, thus including mu-
tual dependence among entities. Naturally, we treat the at-
tention matrix as the adjacency matrix Ac of the learned
graph. Since input time series are evolving over time, Ac

also changes to capture the dynamic interdependencies.
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Spatio-temporal Condition
To better estimate the density of multiple time series, the ro-
bust spatio-temporal condition information is important. As
described above, underlying structure information is mod-
eled as the dynamic graph. Besides spatio information, tem-
poral correlations also play an important role to feature time
series. Here, we follow the most prevalent idea, where RNN
is utilized to capture the time correlations. For a window se-
quence of entity k, xc, the time representation Ht

k at time t ∈
[cS : cS + T ) is derived by Ht

k = RNN(xt
k, H

t−1
k ), where

RNN can be any sequence model such as LSTM (Hochreiter
and Schmidhuber 1997) and GRU (Cho et al. 2014), and Ht

k
is the hidden state of RNN. To derive the spatio and tem-
poral information Ct of all entities at t, a graph convolu-
tion operation is performed through the learned graph Ac.
As mentioned in GANF, we also find that history informa-
tion of the node itself helps enhance temporal relationships
of time series. Hence, the spatio-temporal condition at t:

Ct = ReLU(AcHtW1 +Ht−1W2)W3, (1)

where W1 and W2 are graph convolution and history in-
formation weights, respectively. W3 is used to improve the
expression ability of condition representations. The spatio-
temporal condition Cc for window c is the concatenation of
Ct along the time axis.

Entity-aware Normalizing Flow
Distributions of individual entities have discrepancies be-
cause of their different work mechanisms, and thus their re-
spective anomalies will generate distinct sparse character-
istics. If we map time series from all entities to the same
distribution N(0, I), as does in GANF, then the description
capacity of the model will be largely limited and the unique
inherent property of each entity will be ignored. Therefore,
we design the entity-aware normalizing flow zk = fk

θ (x|C)
to make more detailed density estimation, where x, C, k are
the input sequence, condition, and the k-th entity, respec-
tively. Technically, for one entity, we assign the multivariate
Gaussian distribution as the target distribution. The covari-
ance matrix of the above target distribution is the identity
matrix I for better convergence. Moreover, in order to gener-
ate different target distributions Zk, we independently draw
mean vectors µk ∈ RT from N(0, I) (Izmailov et al. 2020),
However, we find that such setting results in performance
degradation. So, in our experiment, each element of µk is
kept the same. Specifically, for the time series of the entity
k, the density estimation is given by:

PXk (xk) = PZk (f
k
θ (xk|C))

∣∣∣∣det ∂fk
θ

∂xk
T

∣∣∣∣
Zk = N(µk, I)

(2)

where each element of µk is the same, and is drawn from the
N(0, 1). In such a case, model parameters will increase with
the number of entities. To mitigate this problem, we share
entity-aware normalizing flow parameters across all entities.
So, the density estimation for k reads:

PXk (xk) = PZk (fθ(xk|C))

∣∣∣∣det ∂fθ
∂xk

T

∣∣∣∣ (3)

Joint Optimization
As described above, MTGFlow combines graph structure
learning and RNN to capture the spatio and temporal depen-
dence on multiple time series. Then, derived saptio-temporal
conditions are utilized to contribute to entity-aware normal-
izing flow accurately estimating density of time series. To
avoid getting stuck in the local optimum for each module
of MTGFlow, we jointly optimize all modules for overall
performance of MTGFlow. The whole parameters W ∗ are
estimated via MLE.
W ∗ = argmax

W
log(PX (x))

≈ argmax
W

1

NK

N∑
c=1

K∑
k=1

log(PZk (fθ(x
c
k|Cc

k))

∣∣∣∣det ∂fθ
∂xc

k
T

∣∣∣∣)
≈ argmax

W

1

NK

N∑
c=1

K∑
k=1

−1

2
∥ẑck − µk∥22 + log

∣∣∣∣det ∂fθ
∂xc

k
T

∣∣∣∣ ,
where N is the total number of windows.

Anomaly Detection and Interpretation
Based on the hypothesis that anomalies tend to be sparse
on data distributions, low log likelihoods indicate that the
observations are more likely to be anomalous.

Anomaly Detection Taking the window sequence xc
k as

the input, the density of all entities can be estimated. The
mean of the negative log likelihoods of all entities serves as
the anomaly score Sc, which is calculated by:

Sc = − 1

K

K∑
k=1

log(PXk (x
c
k)) (4)

A higher anomaly score represents that xc
k locates in the

lower density region, indicating a higher possibility to be
abnormal. Since abnormal series exist in the training set
and validation set, we cannot directly set the threshold to
label the anomaly, such as the maximum deviation in vali-
dation data (Deng and Hooi 2021). Therefore, to reduce the
anomaly disturbance, we store Sc of the whole training set,
and the interquartile range (IQR) is used to set the threshold:
Threshold = Q3 +1.5 ∗ (Q3 −Q1), where Q1 and Q3 are
25-th and 75-th percentile of Sc.

Anomaly Interpretation Abnormal behaviors of any en-
tity could lead to the overall abnormal behavior of the whole
window sequence. Naturally, we can get the entity anomaly
score Sck for entity k according to Eq. (4).

Sc = − 1

k

K∑
k=1

log(PXk (x
c
k)) =

K∑
k=1

Sck (5)

Since we map time series of each entity into unique tar-
get distributions, different ranges of Sck are observed. This
bias will assign each entity to different weights in terms of
its contribution to Sc. To circumvent the above-unexpected
bias, we design the entity-specific threshold for each entity.
Considering different scales of Sck, IQR is used to set re-
spective thresholds. Therefore, the threshold for Sck is given
as: Thresholdk = λk(Q

k
3+1.5∗(Qk

3−Qk
1)), where Qk

1 and
Qk

3 are 25-th and 75-th percentile of Sck across all obser-
vations, respectively. And λk is used to adjust Thresholdk
because normal observations in different entities also fluctu-
ate with different scales.
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Experiment
Experiment Setup
Dataset The commonly used public datasets for MTS
anomaly detection in OCC are MSL (Mars Science Labo-
ratory rover) (Hundman et al. 2018), SMD (Server Machine
Dataset) (Su et al. 2019), PSM (Pooled Server Metrics) (Ab-
dulaal, Liu, and Lancewicki 2021), SWaT (Secure Water
Treatment) (Goh et al. 2016) and WADI (Water Distribu-
tion) (Ahmed, Palleti, and Mathur 2017). The sensor data in
SWaT and WADI is from water Treatment with 51 and 123
entities. MSL, SMD, and PSM are from Mars rover with 55
features, server metrics with 38 features, and server nodes at
eBay with 25 features, respectively. Since only normal time
series are provided in these datasets for training in OCC set-
ting, we follow the dataset setting of GANF (Dai and Chen
2021) and split the original testing dataset by 60% for train-
ing, 20% for validation, and 20% for testing in SWaT. For
other datasets, the training split contains 60% data, and the
test split contains 40% data.

Implementation Details For all datasets, we set the win-
dow size as 60 and the stride size as 10. Adam optimizer
with a learning rate 0.002 is utilized to update all parameters.
One layer of LSTM is sufficient to extract time representa-
tions in our experiment. One self-attention layer with 0.2
dropout ratio is adopted to learn the graph structure. We use
MAF as the normalizing flow model. For SWaT, one flow
block and 512 batch size are employed. For other datasets,
we arrange two flow blocks for it and set the batch size as
256. λ is set as 0.8 for thresholds of all entities. The epoch
is 40 for all experiments, which are performed in PyTorch-
1.7.1 with a single NVIDIA RTX 3090 24GB GPU1.

Evaluation Metric As in previous works, MTGFlow aims
to detect window-level anomalies, and labels are annotated
as abnormal when there exists any anomalous time point.
The performance is evaluated by the Area Under the Re-
ceiver Operating Characteristic curve (AUROC).

Baselines SOTA methods include semi-supervised
methods DeepSAD (Ruff et al. 2019), OCC methods
DeepSVDD (Ruff et al. 2018), ALOCC (Sabokrou et al.
2020), DROCC (Goyal et al. 2020), and USAD (Audibert
et al. 2020) and unsupervised methods DAGMM (Zong
et al. 2018) and GANF (Dai and Chen 2021).

Performance We list the AUROC metric results in Ta-
ble 1. Note that the standard deviation of SMD is large
because it comprises 28 sub-datasets, where we test the
performance on each of them and average all the results.
MTGFlow has superior performance over all the other
seven baselines. Compared with MTGFlow, DeepSVDD
and DROCC project all training samples into the hyper-
sphere so that they cannot learn the accurate decision bound-
ary distinguishing normal from abnormal samples. Adver-
sarial learning used by ALOCC and USAD and semi-
supervised learning strategy in DeepSAD leverage a more
informative training procedure to mitigate the effect of high

1Code is available at github.com/zqhang/MTGFLOW.

Figure 2: Log likelihoods for anomalies.

Figure 3: Comparison on normalized anomaly scores be-
tween MTGFlow and GANF.

anomaly contamination. As for DAGMM, it is restricted
to the distribution estimation ability of GMM for multiple
entities. Although GANF obtains a better result, its detec-
tion performance is still limited by inadequate dependence
modeling and indiscriminative density estimation. Due to a
much more flexible modeling structure, MTGFlow outper-
forms the above baseline methods. Moreover, we study log
likelihoods for anomalies ranging from 2016/1/2 11:07:00
to 11:37:00 in Fig. 2. It is clear that log likelihoods are
high for the normal series but lower for labeled abnormal
ones (highlighted in red). This variation of log likelihoods
validates that MTGFlow can detect anomalies according to
low density regions of modeled distribution. Meanwhile,
to investigate anomaly discrimination ability of MTGFlow,
we present the normalized Sc for MTGFlow and GANF in
Fig. 3. As it is displayed, for normal series, anomaly scores
of MTGFlow are more centered at 0 than these of GANF,
and the overlap areas of normal and abnormal scores are also
smaller in MTGFlow, reducing the false positive ratio. This
larger score discrepancy corroborates that MTGFlow has su-
perior detection performance.

Ablation Study
Module Ablation Study To test the validity of each de-
signed module, we give several ablation experiments. We
denote MTGFlow without graph and entity-aware normaliz-
ing flow as MTGFlow/(G, E), MTGFlow only without graph
as MTGFlow/G, and MTGFlow only without entity-aware
normalizing flow as MTGFlow/E. Results are presented in
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Dataset DeepSVDD ALOCC DROCC DeepSAD USAD DAGMM GANF MTGFlow

SWaT 66.8±2.0 77.1±2.3 72.6±3.8 75.4±2.4 78.8±1.0 72.8 ±3.0 79.8±0.7 84.8±1.5
WADI 83.5±1.6 83.3±1.8 75.6±1.6 85.4±2.7 86.1±0.9 77.2±0.9 90.3±1.0 91.9±1.1
PSM 67.5±1.4 71.8±1.3 74.3±2.0 73.2±3.3 78.0±0.2 64.6 ±2.6 81.8±1.5 85.7±1.5
MSL 60.8±0.4 60.3±0.9 53.4±1.6 61.6±0.6 57.0±0.1 56.5 ±2.6 64.5±1.9 67.2±1.7
SMD 75.5±15.5 80.5±11.1 76.7±8.7 85.9 ±11.1 86.9±11.7 78.0±9.2 89.2±7.8 91.3±7.6

Table 1: Anomaly detection performance of AUROC(%) on five public datatsets.

Graph Entity SWaT WADI

MTGFlow/(G, E) % % 78.3±0.9 89.7±0.5
MTGFlow/G % ! 82.4±1.0 91.3±0.4
MTGFlow/E ! % 81.2±1.1 91.0±0.7
MTGFlow ! ! 84.8±1.5 91.9±1.1

Table 2: Module ablation study (AUROC%).

Window size
Blocks 1 2 3

SWaT

40 81.4±3.2 82.7±2.1 81.7±0.9
60 84.8±1.5 83.6±2.0 83.1±0.9
80 82.8±1.0 82.7±0.8 83.4±0.6
100 82.6±0.5 83.4±0.9 83.5±0.6
120 83.2±2.0 83.4±2.3 84.5±2.6

WADI

40 90.8±1.3 91.7±1.2 91.7±1.3
60 89.2±1.9 91.9±1.1 91.5±0.8
80 89.8±2.0 90.7±0.8 91.7±0.7
100 89.6±1.1 90.9±0.8 91.8±0.6
120 88.6±1.4 91.0±0.6 91.5±0.9

Table 3: Ablation study of hyperparameters (AUROC%).

Table 2, where MTGFlow/(G, E) obtains the worst perfor-
mance. It is attributed to the lack of relational modeling
among entities and indistinguishable density estimation. Ap-
plying graph structure learning to model pairwise relations,
MTGFlow/E achieves better performance. Also, considering
more fine-grained density estimation, MTGFlow/G achieves
an improvement over MTGFlow/(G, E). Integrating these
two modules, MTGFlow accomplishes the best results.

Hyperparameter Robustness We conduct a comprehen-
sive study on the choice of hyperparameters, the results are
shown in Table 3. Concretely, we conduct experiments with
various sizes for the sliding window and the number of the
normalizing flow blocks in Table 3. When the window size
is small, such as 40, 60, and 80, the increase in the number of
blocks does not necessarily improve anomaly detection per-
formance. A larger model may cause overfitting to the whole
distribution, where abnormal sequences are undesirably lo-
cated in high-density regions of this distribution. When the
window size is larger, the distribution to be estimated is
high-dimensional so that model needs more capacity. Hence,
detection performance derives the average gain with blocks
increasing due to more accurate distribution modeling.
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Figure 4: Effect of anomaly contamination ratio.

Anomaly Ratio Analysis To further investigate the influ-
ence of anomaly contamination rates, we vary training splits
to adjust anomalous contamination rates. For all the above-
mentioned datasets, the training split increases from 60% to
80% with 5% stride. We present an average result over five
runs in Fig. 4. Although the anomaly contamination ratio of
training dataset rises, the anomaly detection performance of
MTGFlow remains at a stable high level.

Result Analysis
In order to further investigate the effectiveness of MTGFlow,
we give a detailed analysis based on SWaT dataset.

Dynamic Graph Structure Interdependencies among en-
tities are not guaranteed to be immutable. In fact, pairwise
relations evolve with time. Benefiting from self-attention,
MTGFlow can model this characteristic into a dynamic
graph structure. We treat the attention matrix as the graph
adjacent matrix. An empirical threshold of 0.15 is set for the
adjacency matrix to show an intuitive learned graph struc-
ture in the test split. In Fig. 5, the node size represents its
node degrees, the arrow direction represents the learned di-
rected dependence and the arrow width indicates the weight
of the corresponding interdependencies. The graph struc-
ture at 2016/1/1 14:00:00 is centered on the sensor P201,
while the edges in the graph have completely changed and
the center has shifted from P201 to AIT503 at 2016/1/2
7:00:00. This alteration of the graph structure may result
from changing in working condition of water treatment
plant. Besides, two similar graph structures can be found
at 2016/1/2 13:00:00 and 2016/1/2 14:00:00. This suggests
that the graph structure will be consistent if the interdepen-
dencies remain unchanged over a period of time, possibly
due to repetitive work patterns of entities. In addition, the
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Figure 5: Dynamic graph structure in MTGFlow.
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Figure 7: Variation of log likelihoods for different entities on
the whole testing dataset (anomalies are highlighted in red,
and the blue line is the threshold according to Sck).

main pairwise relations (thick arrow) at 2016/1/1 14:00:00
are similar as the ones at 2016/1/2 14:00:00, both centered
on P201. It indicates that the interdependencies on multiple
sensors are periodic. We also find mutual interdependencies
from learned graph structures, such as the edges between
P201 and AIT201 at 2016/1/2 13:00:00. We summarize
the findings: (1) Dynamic interdependencies among multi-
ple entities. (2) Consistent interdependencies among multi-
ple entities. (3) Periodic interdependencies among multiple
entities. (4) Mutual interdependencies among multiple en-
tities. Therefore, it is necessary to use a dynamic graph to
model such changeable interdependencies.

Entity-specific Density Estimation We further explore
whether the distributions of all entities are transformed into
different target distributions to verify our entity-aware de-

sign. Since the window size is 60, the corresponding trans-
formed distributions are also 60-dimensional distributions.
Every single dimension of the multivariate Gaussian distri-
bution is a Gaussian distribution. For better visualization,
we present the 0-th dimension of the transformed distribu-
tions in Fig. 6. Four distributions of different entities are dis-
played. It can be seen that these distributions have been pro-
jected as unique distributions. Moreover, these distributions
are successfully converted to preset Gaussian distributions
with different mean vectors. The one-to-one mapping mod-
els entity-specific distributions and captures their respective
sparse characteristics of anomalies.

Distinct Sparse Characteristics To demonstrate that the
sparse characteristics vary with different entities, we study
changes of Sck along time on SWaT. As shown in Fig. 7, Sck

of AIT502, P102, FIT502, and LIT301 are presented.
The highlighted regions denote marked anomalies. For a bet-
ter illustration, we divide the anomalous regions as A1, A2,
A3, A4, and A5 along the timeline. We can observe that dif-
ferent entities react to different anomalies because of their
different work mechanisms. Specifically, AIT502 has obvi-
ous fluctuations at A4, while P102 reacts to A2. In addition,
FIT502 is sensitive to A4 and A5, yet LIT301 is sensitive
to A2, A3, A4, and A5. Nevertheless, MTGFlow is still able
to accurately distinguish and detect these anomalies.

Conclusion

In this work, we proposed MTGFlow, an unsupervised
anomaly detection approach for MTS based on the dataset
with absolute zero known label. Extensive experiments on
real-world datasets demonstrate its superiority, even if there
exists high anomaly contamination. The superior anomaly
detection performance of MTGFlow is attributed to dynamic
graph structure learning and entity-aware density estimation.
In addition, we explore various interdependencies that exist
between individual entities from the learned dynamic graph
structure. And a detected anomaly can be understood and
localized via entity anomaly scores. In the future, we plan
to explore the performance of our method from more realis-
tic scenarios (Wu and Keogh 2021), and further improve its
practicality.
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