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Abstract

Spatio-temporal prediction plays a critical role in smart city
construction. Jointly modeling multiple spatio-temporal tasks
can further promote an intelligent city life by integrating their
inseparable relationship. However, existing studies fail to ad-
dress this joint learning problem well, which generally solve
tasks individually or a fixed task combination. The challenges
lie in the tangled relation between different properties, the
demand for supporting flexible combinations of tasks and
the complex spatio-temporal dependency. To cope with the
problems above, we propose an Automated Spatio-Temporal
multi-task Learning (AutoSTL) method to handle multiple
spatio-temporal tasks jointly. Firstly, we propose a scalable
architecture consisting of advanced spatio-temporal opera-
tions to exploit the complicated dependency. Shared mod-
ules and feature fusion mechanism are incorporated to further
capture the intrinsic relationship between tasks. Furthermore,
our model automatically allocates the operations and fusion
weight. Extensive experiments on benchmark datasets veri-
fied that our model achieves state-of-the-art performance. As
we can know, AutoSTL is the first automated spatio-temporal
multi-task learning method.

Introduction
With the conspicuous progress of data mining techniques,
spatio-temporal prediction has unprecedentedly facilitated
today’s society, such as traffic state modeling (Zhang,
Zheng, and Qi 2017; Wang et al. 2022; Zhou et al. 2020;
Xu et al. 2016), urban crime prediction (Zhao et al. 2022b;
Zhao and Tang 2017a,b), next point-of-interest recommen-
dation (Guo et al. 2016; Cui et al. 2021), etc.Spatio-temporal
prediction aims to model spatial and temporal patterns from
historical spatio-temporal data, and predict the future states.

Generally, the spatio-temporal prediction tasks are de-
fined and handled individually. Take traffic state model-
ing, the focus of this paper, as an example, the traffic
state has been divided into multiple tasks, such as traf-
fic flow prediction (Zhang, Zheng, and Qi 2017; Ye et al.
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Figure 1: Illustration of close relationship between multiple
spatio-temporal properties and regions.

2021), on-demand flow prediction (Feng et al. 2021), traf-
fic speed prediction (Li et al. 2018; Wu et al. 2019), etc.
Most spatio-temporal prediction researches are engaged in
pursuing higher model capacity on a single task. Neverthe-
less, it is pivotal to propose an architecture that is capable of
jointly handling multiple spatio-temporal prediction tasks.
The properties of different tasks evolve coherently, and ad-
dressing the intrinsic information sharing between different
tasks benefits each task (Caruana 1997). Firstly, different
properties of a single region are highly related. As illustrated
in Figure 1(a), traffic in flow and out flow of region r2 are
highly-correlated, which share consistent volume and fluctu-
ation. On the other hand, different properties of different re-
gions share similar characteristics. In Figure 1(b), in flow of
r1 and out flow of r2 vary with similar periodicity and trend.
A similar phenomenon generally appears between multiple
properties as well as nonadjacent regions. Capturing mul-
tiple tasks together can benefit both efficiency and efficacy
(Tang et al. 2020; Chen et al. 2022; Zhao et al. 2022a).

Researchers have been paying growing attention to
Spatio-Temporal Multi-Task Learning (STMTL). The earli-
est attempt employs convolutional neural network to model
the traffic flow and on-demand flow (Zhang et al. 2019).
LSTM-based method was also incorporated to predict traf-
fic in flow and out flow simultaneously (Zhang et al. 2020).
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Figure 2: Model framework. The left part is the architecture of AutoSTL. From bottom to top, the model consists of shared
bottom, n hidden layers and task-specific tower. ① represents the hidden layer. The right part is the illustration of hidden layer,
which consists of task-specific and shared modules ② and module fusion mechanism ③.

However, there are several limitations for existing STMTL
methods. Firstly, relationship between different tasks has
not been well-addressed. Current STMTL methods basically
employ MLP fusion layer or concatenation to fuse different
task features. Secondly, in order to adapt to multiple prop-
erties, these methods are specified with manually designed
module and architecture such as stacked LSTM or CNN,
which may not be optimal for the complex task correlation
and introduce human error. Last, existing methods aim to
fixed combination of tasks, which suffer from poor trans-
ferability and scalability. It demands reconstruction with
tremendous expert efforts for other tasks or data.

In this paper, we propose a self-adaptive architecture,
named AutoSTL, to solve multiple spatio-temporal tasks si-
multaneously. We mainly face several serious challenges.
First, the spatio-temporal correlations of all grids are com-
plex to be well-captured, especially modeling multiple
spatio-temporal properties. Besides, to benefit each specific
task, it demands exploiting their entangled relationship and
an appropriate feature fusion mechanism. Furthermore, in
order to support flexible multiple task combinations, the
model is supposed to be scalable and easily extendable. Fi-
nally, manually-designed model requires tremendous expert
efforts and may trigger bias or mistakes, leading to a sub-
optimal model. To fully address the problems above, we
design a scalable architecture AutoSTL, which can auto-
matically allocate modules with a set of advanced spatio-
temporal operations. We introduce shared modules to specif-
ically address the relationship between properties and an au-
tomated fusion mechanism to fuse multi-task features. The
architecture consists of stacking hidden layers, where the
modules inside and the fusion weight are fully self-adaptive.
The main contributions could be summarized as follows:

• We propose a novel end-to-end framework, AutoSTL, to

solve multiple spatio-temporal tasks simultaneously. It can
automatically choose the suitable saptio-temporal module
and fusion weight with trivial cost.

• A shared module modeling relationship between multiple
tasks is incorporated, which can well-exploit the intrinsic
dependency and benefit every single task.

• Our proposed model AutoSTL is the first model solving
spatio-temporal multi-task learning automatically. Exten-
sive experiments with multiple multi-task settings verified
its efficacy and generality.

Preliminaries
Problem Definition. Spatio-Temporal Multi-Task Predic-
tion. Let a graph G = (V ,E) describe the traffic state data.
V is the node set representing regions of city, and E is the
edge set which depicts the connectivity between regions. At
time step t, the multi-task feature matrix of G is Xt =
[xt,1, ...,xt,k, ...,xt,K ] ∈ RN×K , where N is the number
of region, K is the number of task, and k = 1, ...,K repre-
sents certain spatio-temporal task such as traffic speed, flow
and trip duration of regions.

Spatio-temporal Multi-Task prediction aims to predict fu-
ture multiple traffic states simultaneously given the historic
states, by capturing the spatial and temporal variation pat-
tern. The mapping function fW parameterized by W is:

x1:T,k,G
fW−→ yk, ∀k = 1, ...,K (1)

where x1:T,k ∈ RT×N indicates the traffic state of histori-
cal T time steps. yk ∈ RN is the traffic state of task k in
the future time step. For convenient description, we omit the
subscript and denote X1:T as X .
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Methodology
Architecture Overview
We propose a scalable architecture to solve multiple spatio-
temporal tasks in an automated way, named AutoSTL. As
visualized in Figure 2, AutoSTL generally consists of shared
bottom, hidden layers and task-specific tower.

We employ scalable hidden layer to capture spatio-
temporal dependency of multiple tasks simultaneously.
Specifically, we incorporate task-specific module to model
each property and shared module to capture the intrinsic re-
lationship between tasks. For module design, we define a
spatio-temporal operation set including recurrent neural net-
work, convolution neural network, graph convolution net-
work and Transformer. The concrete assignation is searched
by Automated Machine Learning (AutoML). For a further
flexible fusion of multiple task properties, we propose self-
adaptive fusion weights and optimize with AutoML. After
representation learning of hidden layers, the task-specific
tower predict by feeding on the multiple task features.

It is noteworthy that the module operations and fusion
weights of AutoSTL are automatically decided. The opti-
mal allocation contributes to effectively capturing spatio-
temporal patterns of specific task and intrinsic relationships
between multiple spatio-temporal tasks.

Framework
Shared Bottom We transform the input data with an MLP
layer shared bottom. Specifically, we input the feature ma-
trix of historic T time steps X , and let Z0 represent the
hidden representation learned by the shared bottom.

Z0 = σ(W sX + bs) (2)

where W s and bs represent weight and bias of MLP layer
respectively, and σ is activation function.

Hidden Layer We employ n stacking hidden layers to
capture the spatio-temporal dependency of each task and the
intrinsic relationship between different tasks. As shown in
Figure 2, a hidden layer includes modules and fusion mech-
anism. We incorporate task-specific module for each task to
address spatio-temporal dependency, and shared module to
address the intrinsic relationship between different tasks. For
each module, we exploit a spatio-temporal operation set, and
adaptively select one spatio-temporal operation from the op-
eration set. Processed by the spatio-temporal operations, the
features are flexibly fused by module fusion mechanism.

Spatio-Temporal Operation Set We maintain a spatio-
temporal operation set including multiple spatio-temporal
operations to support the automatic assignment of mod-
ule operations. Specifically, we employ diffusion convolu-
tion (Li et al. 2018), 1-D dilated causal convolution (Wu
et al. 2019), long-short term memory (LSTM), informer
(Zhou et al. 2021) and spatial-informer (Wu et al. 2021)
as spatio-temporal data mining operations, abbreviated as
GCN, CNN, RNN, TX, and TX S, respectively.

Diffusion convolution has an edge on capturing spatial de-
pendency in data. In particular, it characterizes graph convo-
lution based on K-step random walking on the graph. The

diffusion convolution on the hidden representation is:

OGCN(Zi)=
K∑

k=0

(
D−1

O A
)kZiW 1,k+

(
D−1

I A⊤
)k

ZiW 2,k

(3)
where A is the adjacent matrix of G, D−1

O and D−1
I are out-

degree and in-degree diagonal matrices. W 1,k and W 2,k are
trainable filter parameters.

1-D dilated causal convolution is an effective operation
for temporal information. Through padding zero to input
data, it reserves causal temporal dependency and is able to
predict next state based on past states (Wu et al. 2019).

OCNN (Zi) = (ZiW 3)⊙ σ (ZiW 4) (4)

LSTM is a classical technique to learn temporal informa-
tion. It enjoys a naturally-progressive architecture to model
the sequential dependency and predict the future state. It is
generally-applied in spatio-temporal data mining methods
(Zhang et al. 2016; Zhang, Zheng, and Qi 2017).

ORNN (Zi) = LSTM(Zi) (5)

Transformer has proven its efficacy in recent spatio-
temporal prediction advances (Guo et al. 2019; Li et al.
2019), we employ its efficient variant informer (Zhou et al.
2021), and the enhanced version spatial-informer consider-
ing spatial dependency (Wu et al. 2021) as operations, i.e.,
TX and TX S. TX could be formulated as follows:

OTX =softmax

(
ψ
(
Z(i)WQ

)(
Z(i)WK

)⊤
√
d

)(
Z(i)W V

)
(6)

where ψ is the sampling function in informer, d is feature
dimension, and WQ, WK , W V are trainable weight matri-
ces. Similarly, spatial-informer conducts attention mecha-
nism on spatial relationship, i.e., OTX S feeds on the spatial
transposition of Zi.

Based on the spatio-temporal operations, we attain the op-
eration set O = [OGCN , ORNN , OCNN , OTX , OTX S]. As
in bottom right of Figure 2, operations in each module are
from O. It is worth noting that the spatio-temporal operation
set is extensible. We select operations due to their advanced
capacity of modeling spatial and temporal dependency as
well as efficiency. The operation set could be easily modi-
fied or extended for future potential enhancement.

Task-specific and Shared Module As visualized in Fig-
ure 2, we present two kinds of modules in hidden layer, i.e.,
task-specific module and shared module. Task-specific mod-
ule aims to capture information benefiting a certain task, and
shared module is supposed to learn the entangled correlation
between different tasks. Note that in each hidden layer, we
can assign multiple task-specific modules and shared mod-
ules. For clear description, we assign one task-specific mod-
ule for each task as well as one shared module in each hidden
layer, as shown in Figure 2. We denote the module of layer i
as Mi,λ, where λ∈ {A,B,S}. λ = S stands for shared mod-
ule, and λ = A andB represent task-specific module of task
A and B, respectively. For instance, M2,A is the specific
module of task A in the 2-nd hidden layer.
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Figure 3: Three phases of weights searching. (a). Pretrain architecture, weights are fixed as initialization. (b). Search optimal
weights by AutoML. (c). Identify operation in modules and achieve the optimal architecture.

To maintain a trade-off between efficacy and efficiency,
we search one specific operation for each module, rather
than utilize all operations. There emerges a challenge that
the hard selection of operations can not be optimized with
gradient due to the non-differentiable selection. Convention-
ally, a soft weight α is added to depict the significance of
candidate operations, and a soft fusion is hired to approach
the selection. But it can hardly avoid reaching the sub-
optimal result. To overcome this, we incorporate gumbel-
softmax to approximate the hard selection of operations.

To identify operation in module, we assign weight for
each module α = [αGCN , αRNN , αCNN , αTX , αTX S] to
weight all candidate operations. Then the operations of mod-
ule could be identified through hard sampling by gumbel-
max technique (Gumbel 1954). For instance, the module of
the task A Mi,A(Zi,A) could be reached by:

Mi,A(Zi,A)=one hot

(
argmax
j∈[1,|O|]

[logαj + gj ]

)
⊙O(Zi)

(7)
where gj = −log(−log(εj)) and εj belongs to uniform dis-
tribution. ⊙ is the dot product.

Due to the non-differentiable argmax operation, we in-
troduce Gumbel-softmax (Jang, Gu, and Poole 2016; Zhao
et al. 2021a). In particular, it simulates hard selection based
on reparameterization on categorical distribution:

pj =
exp ((log (αj) + gj) /τ)∑n

k=1 exp ((log (αk) + gk) /τ)
(8)

where pj is the probability of selecting the operation j, and τ
controls the approach to hard selection. When τ approaches
to zero, the Gumbel-softmax outputs one-hot vector.

Module Fusion Mechanism In order to model both task-
specific and cross-tasks information, we propose a flexible
module fusion mechanism. Take task A as an example, we
fuse the output of its task-specific module Mi,A and shared

module Mi,S , and obtain the task-specific feature Zi+1,A.
Then, we output the task-specific feature to the task-specific
and shared-modules in the next hidden layer. To dynami-
cally weight each module’s contribution to the output, we
set the fusion weight β = [βA,βB ] and search through gra-
dient. So the task-specific feature of task A and B learned
by the (i + 1)-th layer Zi+1,A and Zi+1,B are as follows,
which is illustrated in Figure 2:

Zi+1,A = softmax(βA)⊙ [Mi,A(Zi,A),Mi,S(Zi,A)]
(9)

Zi+1,B = softmax(βB)⊙ [Mi,B(Zi,B),Mi,S(Zi,B)]
(10)

Notably, the input of both tasks of the first hidden layer
is Z0. As shown in the left bottom of Figure 2, the output
of shared bottom are duplicated and input to the first hid-
den layer, and the intermediate hidden layers feed on task
specific features. The task-specific data output by the last
hidden layer goes through task-specific tower and achieves
the prediction of each task.

Task-specific Prediction Tower After representation
learning of n hidden layers, we utilize task-specific tower to
predict the future state. We hire MLP layers as tower, which
enjoys low computational complexity.

Y A = W oA(Zn,A) + boA (11)

Y B = W oB(Zn,B) + boB (12)
where W oA and boA are the weight matrix and bias of the
tower of task A, so do W oB and boB to task B.

Optimization by AutoML
Traditional spatio-temporal prediction works endeavor to
manually design specified architecture, which highly de-
pends on expert’s experience and suffers from poor general-
ity. AutoML has demonstrated its efficiency and efficacy on
searching model operation and architecture with advanced
model capacity (Pan et al. 2021; Wu et al. 2021; Zhao et al.
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Dataset NYC Taxi PEMSD4
Metrics RMSE MAE RMSE MAE RMSE MAE
Methods In Out In Out OD Duration OD Duration Flow Speed Flow Speed
ARIMA 23.63 25.36 13.81 13.87 1.04 3.21 0.84 2.01 146.01 8.37 114.51 4.40
DCRNN 7.75 7.21 4.73 4.58 0.63 3.09 0.25 1.52 27.67 2.06 17.42 1.11
GWNet 8.89 7.27 5.37 4.60 0.60 2.90 0.23 1.24 30.61 2.27 19.62 1.28
CCRNN 8.04 7.35 4.87 4.52 0.61 2.97 0.23 1.40 28.13 2.07 17.81 1.14

PLE 8.77 8.46 5.29 5.19 0.66 3.05 0.27 1.44 30.14 2.25 19.24 1.29
PLE-LSTM 8.66 8.31 5.19 5.09 0.65 3.04 0.27 1.38 29.60 2.11 18.66 1.20

DCRNN-MTL 7.85 7.52 4.84 4.75 0.62 2.92 0.24 1.28 27.65 2.34 17.44 1.46
CCRNN-MTL 7.68 7.50 4.62 4.53 0.63 2.86 0.24 1.22 27.99 2.56 17.59 1.52

GTS† 7.86 7.40 4.90 4.65 - - - - 28.05 2.09 17.87 1.15
MTGNN 7.64 7.17 4.67 4.48 0.59 2.89 0.24 1.24 28.03 2.05 17.92 1.12
AutoSTL 7.57* 7.16 4.53* 4.41* 0.59 2.89 0.21* 1.12* 27.36* 2.01* 17.40* 1.08*

†GTS fails to run on traffic OD flow and trip duration due to its tremendous allocation of GPU space.

Table 1: Overall experiment results. Best performances are bold, next best performances are underlined. “*” indicates the
statistically significant improvements (i.e., two-sided t-test with p < 0.05) over the best baseline.

2021b). We utilize AutoML to maintain self-adaptive model
architecture as well as module operations.

The optimization procedure consists of 3 phases, i.e., pre-
train, search and retrain, as shown in Figure 3. First, we
initialize and fix all searching weights α and β as average
value, and pretrain the model for several epochs. Then, we
update α and β with a mini-batch of validation data along
with the model training, i.e., Bi-level Optimization. Finally,
after the search phase, the optimal operations in module and
weight of fusion mechanism are already identified. We re-
train the optimal architecture with a full-training.

Bi-level Optimization In AutoSTL, the concrete opera-
tions of modules in hidden layer and fusion weight are iden-
tified adaptively based on model training. AutoML will offer
the model with optimal performance within the search space.
Let W represent the neural network parameters of the Au-
toSTL, α and β stand for the operations in modules and
fusion weights, respectively. The whole algorithm could be
optimized with a bi-level optimization. Notably, the update
of architecture parameters α and β are based on a mini-
batch of validation data, which avoids overfitting problem
with an acceptable computational cost:

min
α,β

Lval (W
∗(α,β),α,β)

s.t. W ∗(α,β) = argmin
W

Ltrain (W ,α∗,β∗)
(13)

To alleviate the computational cost of the optimization of
W ∗(α,β), we propose to approximate the inner optimiza-
tion function with one step of gradient descent:

W ∗(α,β) ≈ W − η∂WLtrain(W ,α,β) (14)

where η is learning rate. Through iteratively minimizing
training loss Ltrain and validation loss Lval, we can achieve
a model with the optimal performance.

Experiment
In this section, we present the experiment result as well as
analysis to verify the efficacy of our proposed AutoSTL.

Datasets
We evaluate AutoSTL on two commonly used real-world
benchmark datasets of spatio-temporal prediction, i.e., NYC
Taxi1 and PEMSD42. We collect data from April to June in
2016 for NYC Taxi with 35 million trajectories, and the data
of January and February in 2018 for PEMSD4.

Data Preprocessing
To thoroughly prove the capability of AutoSTL on STMTL,
we propose multiple experimental scenarios with different
datasets. In a nutshell, we execute two groups of multi-task
on NYC Taxi, i.e., traffic in flow and out flow, as well as
traffic on-demand flow and trip duration. Besides, we pro-
pose one multi-task setting on PEMSD4, i.e., traffic flow and
speed of sensors on road.

Baselines
We compare with two lines of representative spatio-temporal
prediction methods, which can be grouped as methods for
single task and multiple tasks. Methods for single task:
ARIMA (Box et al. 2015), DCRNN (Li et al. 2018),
GWNet (Wu et al. 2019), CCRNN (Ye et al. 2021).
Methods for multiple tasks: PLE (Tang et al. 2020), PLE-
LSTM , DCRNN-MTL, CCRNN-MTL, MTGNN (Wu
et al. 2020), GTS (Shang and Chen 2021).

Experimental Setups
To facilitate the reproducibility, we detail the experimental
setting including training environment and implementation
details. We predict the traffic attribute of the future 1 time
interval based on the historical 12 time steps, i.e., |T | = 12.
We select root mean squared error (RMSE) and mean ab-
solute error (MAE) as evaluation metrics. All experimental
results are the average value of 5 individual runs.

In terms of model structure, we assign 1 task-specific
module and 1 shared module in each hidden layer, e.g., 3

1https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
2http://pems.dot.ca.gov/
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Methods RMSE MAE
In Out In Out

w/o α 7.77 7.20 4.65 4.44
w/o β 7.94 7.47 4.75 4.59

w/o s-m 9.13 7.22 5.69 4.51
AutoSTL 7.57 7.16 4.53 4.41

Table 2: Components analysis of AutoSTL on NYC Taxi.

modules in one hidden layer for two-tasks learning. We stack
3 hidden layers in total.

Overall Performance
Table 1 presents the overall experiment results. From the re-
sult we can exactly reach conclusions below: In the group
of the method for single-task, (1) ARIMA gets worse re-
sults than deep learning-based models in all tasks. The per-
formance gap is because of the advanced capacity of neu-
ral networks. (2) DCRNN and GWNet take the leading
place among the GCN-based methods, and DCRNN per-
forms steadily on different datasets. The possible reason
is that the adaptive adjacent matrix equipped with GWNet
and CCRNN makes the performance unstable. (3) AutoSTL
outperforms single task baselines consistently, including
the state-of-the-art spatio-temporal prediction methods, i.e.,
DCRNN, GWNet, and CCRNN. It verifies AutoSTL the ad-
vanced ability of capturing spatio-temporal dependency be-
tween different properties, which benefits each single task
and attains the best performance.

Among the multi-task methods, (1) PLE-LSTM performs
better than PLE, which shows the capability of LSTM for
modeling temporal dependency beyond MLP. (2) DCRNN-
MTL and CCRNN-MTL did not achieve better results than
their single-task setting. This is a seesaw phenomenon that
model improves the performance of one task but hurts the
other one, which commonly emerges in multi-task learn-
ing and is ascribed to the incapability of modeling multi-
ple properties. (3) AutoSTL achieves superior results than
GTS and MTGNN, the latter two are designed specifically
for modeling multi-variate time series. It verifies the effi-
cacy of the self-adaptive architecture and operations in Au-
toSTL. (4) AutoSTL attains consistently advanced perfor-
mance while baseline models achieve fluctuant results on
different tasks and datasets. The flexible spatio-temporal op-
eration and the automatic allocation by AutoML contribute
to the outstanding adaptivity to different tasks and datasets.

Ablation Study
In this subsection, we present several variants of our pro-
posed method and make a detailed comparison with them to
verify the effective components in AutoSTL.

• w/o α: Fix operations in hidden layers with optimal ones.

• w/o β: Fix fusion weights with average value.

• w/o s-m: Remove shared module in hidden layer.

Table 2 presents the results of AutoSTL and the variants.
From the result, we can safely draw conclusions as follows:
(1) Based on the experiment result on NYC Taxi, we fix the
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Figure 4: Influence of hyper-parameters on NYC Taxi
dataset. We present the RMSE of traffic in and out flow.

operations of 3 hidden layers with GCN, GCN and RNN
from bottom to top, which is a proper approximation to the
manual-design model. According to the results, we find that
the specific operation allocation inside each hidden layer
still affects the performance, and the automated architec-
ture, i.e., AutoSTL, performs better. (2) Through fixing the
fusion weights β and considering the equal contribution of
each module in the hidden layer, we test the function of the
self-adaptive fusion mechanism. The results demonstrate the
prominence of properly weighting different spatio-task fea-
tures. (3) By removing the shared module in each hidden
layer, we test its contribution to multi-task learning.

The distinct performance gap below AutoSTL proves the
advanced ability to address the dependency of the shared
module. Without effectively modeling the relationship be-
tween multiple tasks, w/o s-m converges with optimizing
single task, i.e., traffic out flow, whereas performs consid-
erably less well in traffic in flow prediction.

Hyper-parameter Analysis
We demonstrate how hyper-parameters influence the perfor-
mance of AutoSTL. We verify the key hyper-parameters,
i.e., the hidden size of embedding layer, the number of hid-
den layers and the number of shared module in hidden layer.

Figure 4 presents the RMSE performance of traffic in and
out flow on NYC Taxi dataset. In Figure 4(a), we test hidden
size in {16, 32, 64, 128}. An improvement of hidden size
in a relatively-low range can benefit performance, but when
it is too large, i.e., 128, the model collapses dramatically,
which is possibly caused by overfitting problem. From Fig-
ure 4(b), AutoSTL with 3 hidden layers achieves best per-
formance, fewer hidden layer impairs model capacity, while
large ones may trigger overfitting. As shown in Figure 4(c),
we can conclude that only 1 shared module in each hidden
layer is enough for multiple properties modeling.

Efficiency Comparison
We compare parameter volume, training time, and inference
time on NYC Taxi in Table 3. For AutoSTL, it contains
3 phases, i.e., pretrain, search and retrain. In pretrain and
search phases, the model has 142K parameters, and the fi-
nal searched model has 312K for retrain phase. Following
Wu et al. (Wu et al. 2021), we set the embedding size of the
first two phases a quarter of that of the retrain phase, so the
pretrain and search phases have fewer parameters and take
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Methods MAE Para Training Inference
In Out (K) time(s) time(ms)

DCRNN 4.73 4.58 127 11,556 1280
GWNet 5.37 4.60 272 2,056 40
CCRNN 4.87 4.52 139 2,218 53

DCRNN-MTL 4.84 4.75 127 5,783 1280
CCRNN-MTL 4.62 4.53 139 1,236 52

MTGNN 4.67 4.48 612 1683 78
AutoSTL 4.53 4.41 312 1,958 100

Table 3: Space and time efficiency comparison.

trivial training costs, i.e., about one-seventh training cost of
model retraining. From the results, we can observe that Au-
toSTL achieves state-of-the-art prediction effectiveness with
competitive space and time consumption. MTGNN takes
less training time than AutoSTL, but it demands twice space
allocation due to its MLP components.

Visualization

We show the efficacy of AutoSTL from multiple views. Fig-
ure 5 illustrates the validation loss of traffic in flow on NYC
Taxi with respect to training epoch. We can observe that Au-
toSTL converge with least epochs, i.e., 32, while all base-
lines take at least 70 epochs to converge. AutoSTL hires
advanced spatio-temporal operations into a compact archi-
tecture, which leads to more accurate gradient descent, and
fosters quicker convergence with fewer training epochs.

Related Work

Traditional Spatio-Temporal Prediction

Varieties of deep learning techniques have been applied to
spatio-temporal prediction. The capability of deep learning
techniques can be roughly divided into two categories, i.e.,
temporal pattern capture and spatial pattern capture. For
temporal pattern capture, since Ma et al. (Ma et al. 2015)
and Tian et al. (Tian and Pan 2015) first applied LSTM to
spatio-temporal prediction, there emerge a bunch of Recur-
rent Neural Network (RNN) methods such as LSTM and
GRU capturing the temporal variation pattern (Ma et al.
2015; Tian and Pan 2015; Li et al. 2018). Also, 1-D Con-
volution (Guo et al. 2019) and its enhancement with Dilated
Causal Convolution (Yu, Yin, and Zhu 2018; Yu and Koltun
2015) have also achieved good performance with outstand-
ing efficiency. For spatial pattern capture, DeepST (Zhang
et al. 2016) and ST-ResNet (Zhang, Zheng, and Qi 2017)
are representative efforts made to enhance RNN with CNN
to respectively model the temporal and spatial correlation.
Besides, STGCN (Yu, Yin, and Zhu 2018) and DCRNN (Li
et al. 2018) firstly propose to describe spatial relationship
in spatio-temporal prediction with graph structure. Our Au-
toSTL framework hires a spatio-temporal operation set with
advanced and efficient spatio-temporal operations, and as-
signs operation automatically, which considers spatial and
temporal dependency comprehensively.

2.08
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2.26

30 60 90
epoch

DCRNNLo
ss

0.67

GWNet

AutoSTLMTGNN 
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Figure 5: Loss curves comparison on NYC Taxi.

Spatio-temporal Multi-Task Learning
Spatio-temporal multi-task learning methods could be re-
ferred to two main lines of researches, i.e., spatio-temporal
multi-task learning and multi-variate time series prediction.
For spatio-temporal multi-task learning, MDL (Zhang et al.
2020) is one of the earliest endeavours, which incorpo-
rates convolutional neural network to solve traffic node flow
and edge flow jointly. Zhang et al. propose a full LSTM
method to predict traffic in and out flow together (Zhang
et al. 2019). Other STMTL works includes MasterGNN
(Han et al. 2021), MT-ASTN (Wang et al. 2020), GEML
(Wang et al. 2019), etc. These models are restricted to solv-
ing two specific tasks and suffer from poor generality. For
multi-variate time series prediction, MTGNN hires graph
neural network for multivariate time series data prediction
(Wu et al. 2020). DMVST-Net (Yao et al. 2018) consider
multivariate time series in temporal, spatial and semantic
views. GTS (Shang and Chen 2021) incorporates a proba-
bilistic graph model and achieves an efficient approach for
graph structure learning. This line of models demand hu-
man efforts for new settings due to the highly-specified ar-
chitecture. Our AutoSTL is the first attempt to handle flexi-
bly multiple spatio-temporal tasks. Its multi-task framework
and shared module well exploit the attributes’ relationship.
Besides, it assigns modules and hyperparameters automati-
cally for different settings and achieves good generality.

Conclusion
In this paper, we present a self-adaptive framework to model
multiple spatio-temporal tasks effectively. We present a
spatio-temporal operation set as candidate operation. A scal-
able architecture consisting of extendable hidden layers is
proposed, where each layer is composed of task-specific and
shared modules. To further enhance the multi-task learning,
we employ a fusion mechanism to fuse multiple task fea-
tures. In order to support flexible combinations of multiple
tasks and data, we assign operations in module and fusion
weight by AutoML. Our proposed method is the first to solve
spatio-temporal multi-task learning automatically.

In terms of the physical application of spatio-temporal
prediction in today’s life, our method could be easily ex-
tended to other domains such as weather and environment,
public safety, human mobility, etc. In the future, we will con-
tinue discovering its potential efficacy on more applications.
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